1
|
Zhuang W, Mun SY, Park WS. Direct effects of antipsychotics on potassium channels. Biochem Biophys Res Commun 2025; 749:151344. [PMID: 39842331 DOI: 10.1016/j.bbrc.2025.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K+ channels (Kv, KCa, Kir, K2P, and other channels), which change the functions of various organs. This review summarizes the biological actions of antipsychotics, including off-target side effects involving K+ channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Deleye L, Franchi F, Trevisani M, Loiacono F, Vercellino S, Debellis D, Liessi N, Armirotti A, Vázquez E, Valente P, Castagnola V, Benfenati F. Few-layered graphene increases the response of nociceptive neurons to irritant stimuli. NANOSCALE 2024; 16:2419-2431. [PMID: 38226500 DOI: 10.1039/d3nr03790h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The unique properties of few-layered graphene (FLG) make it interesting for a variety of applications, including biomedical applications, such as tissue engineering and drug delivery. Although different studies focus on applications in the central nervous system, its interaction with the peripheral nervous system has been so far overlooked. Here, we investigated the effects of exposure to colloidal dispersions of FLG on the sensory neurons of the rat dorsal root ganglia (DRG). We found that the FLG flakes were actively internalized by sensory neurons, accumulated in large intracellular vesicles, and possibly degraded over time, without major toxicological concerns, as neuronal viability, morphology, protein content, and basic electrical properties of DRG neurons were preserved. Interestingly, in our electrophysiological investigation under noxious stimuli, we observed an increased functional response upon FLG treatment of the nociceptive subpopulation of DRG neurons in response to irritants specific for chemoreceptors TRPV1 and TRPA1. The observed effects of FLG on DRG neurons may open-up novel opportunities for applications of these materials in specific disease models.
Collapse
Affiliation(s)
- Lieselot Deleye
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
| | - Francesca Franchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Martina Trevisani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- Department of Experimental Medicine, Section of Physiology, University of Genova, Genoa, 16132, Italy.
| | - Fabrizio Loiacono
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Silvia Vercellino
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, IIT, Via Morego 30, 16163, Genoa, Italy
| | - Nara Liessi
- Analytical Chemistry Facility, IIT, via Morego, 30, 16163, Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, IIT, via Morego, 30, 16163, Genoa, Italy
| | - Ester Vázquez
- Facultad de Ciencias Químicas, Universidad Castilla La-Mancha, Ciudad Real, 13071 Spain
| | - Pierluigi Valente
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genova, Genoa, 16132, Italy.
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
3
|
Della Pietra A, Gómez Dabó L, Mikulenka P, Espinoza-Vinces C, Vuralli D, Baytekin I, Martelletti P, Giniatullin R. Mechanosensitive receptors in migraine: a systematic review. J Headache Pain 2024; 25:6. [PMID: 38221631 PMCID: PMC10788982 DOI: 10.1186/s10194-023-01710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Migraine is a debilitating neurological disorder with pain profile, suggesting exaggerated mechanosensation. Mechanosensitive receptors of different families, which specifically respond to various mechanical stimuli, have gathered increasing attention due to their potential role in migraine related nociception. Understanding these mechanisms is of principal importance for improved therapeutic strategies. This systematic review comprehensively examines the involvement of mechanosensitive mechanisms in migraine pain pathways. METHODS A systematic search across the Cochrane Library, Scopus, Web of Science, and Medline was conducted on 8th August 2023 for the period from 2000 to 2023, according to PRISMA guidelines. The review was constructed following a meticulous evaluation by two authors who independently applied rigorous inclusion criteria and quality assessments to the selected studies, upon which all authors collectively wrote the review. RESULTS We identified 36 relevant studies with our analysis. Additionally, 3 more studies were selected by literature search. The 39 papers included in this systematic review cover the role of the putative mechanosensitive Piezo and K2P, as well as ASICs, NMDA, and TRP family of channels in the migraine pain cascade. The outcome of the available knowledge, including mainly preclinical animal models of migraine and few clinical studies, underscores the intricate relationship between mechanosensitive receptors and migraine pain symptoms. The review presents the mechanisms of activation of mechanosensitive receptors that may be involved in the generation of nociceptive signals and migraine associated clinical symptoms. The gender differences of targeting these receptors as potential therapeutic interventions are also acknowledged as well as the challenges related to respective drug development. CONCLUSIONS Overall, this analysis identified key molecular players and uncovered significant gaps in our understanding of mechanotransduction in migraine. This review offers a foundation for filling these gaps and suggests novel therapeutic options for migraine treatments based on achievements in the emerging field of mechano-neurobiology.
Collapse
Affiliation(s)
- Adriana Della Pietra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Laura Gómez Dabó
- Neurology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Petr Mikulenka
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | | | - Doga Vuralli
- Department of Neurology and Algology, Neuroscience and Neurotechnology Center of Excellence, Neuropsychiatry Center, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Isil Baytekin
- Department of Neurology, Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Paolo Martelletti
- School of Health Sciences, Unitelma Sapienza University of Rome, Rome, Italy
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
4
|
Toy PH, Loo YH, Leakasindhu S, Kan CM. Synthesis of Bungeanool, Isobungeanool, Dihydrobungeanool, Tetrahydrobungeanool, Hazaleamide, Lanyuamide III, and Analogues. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1653-4050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe bungeanools are a family of alkamide natural products isolated from the pericarps of Zanthoxylum bungeanum (Sichuan pepper), and they are structurally related to the sanshools. While the sanshools, especially hydroxy-α-sanshool, have been studied in a variety of contexts, research regarding the bungeanools has been much more limited. To facilitate their study, we have developed stereoselective syntheses of all four members of this family of compounds by using flexible routes that are also amenable to the synthesis of analogues. The key transformation in the syntheses was the stereoselective triphenylphosphine/phenol-catalyzed isomerization of an alkynoate to the corresponding conjugated E,E-dienoate.
Collapse
|
5
|
Comes N, Gasull X, Callejo G. Proton Sensing on the Ocular Surface: Implications in Eye Pain. Front Pharmacol 2021; 12:773871. [PMID: 34899333 PMCID: PMC8652213 DOI: 10.3389/fphar.2021.773871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Protons reaching the eyeball from exogenous acidic substances or released from damaged cells during inflammation, immune cells, after tissue injury or during chronic ophthalmic conditions, activate or modulate ion channels present in sensory nerve fibers that innervate the ocular anterior surface. Their identification as well as their role during disease is critical for the understanding of sensory ocular pathophysiology. They are likely to mediate some of the discomfort sensations accompanying several ophthalmic formulations and may represent novel targets for the development of new therapeutics for ocular pathologies. Among the ion channels expressed in trigeminal nociceptors innervating the anterior surface of the eye (cornea and conjunctiva) and annex ocular structures (eyelids), members of the TRP and ASIC families play a critical role in ocular acidic pain. Low pH (pH 6) activates TRPV1, a polymodal ion channel also activated by heat, capsaicin and hyperosmolar conditions. ASIC1, ASIC3 and heteromeric ASIC1/ASIC3 channels present in ocular nerve terminals are activated at pH 7.2–6.5, inducing pain by moderate acidifications of the ocular surface. These channels, together with TRPA1, are involved in acute ocular pain, as well as in painful sensations during allergic keratoconjunctivitis or other ophthalmic conditions, as blocking or reducing channel expression ameliorates ocular pain. TRPV1, TRPA1 and other ion channels are also present in corneal and conjunctival cells, promoting inflammation of the ocular surface after injury. In addition to the above-mentioned ion channels, members of the K2P and P2X ion channel families are also expressed in trigeminal neurons, however, their role in ocular pain remains unclear to date. In this report, these and other ion channels and receptors involved in acid sensing during ocular pathologies and pain are reviewed.
Collapse
Affiliation(s)
- Núria Comes
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gerard Callejo
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
6
|
Singh S, Agarwal P, Ravichandiran V. Two-Pore Domain Potassium Channel in Neurological Disorders. J Membr Biol 2021; 254:367-380. [PMID: 34169340 DOI: 10.1007/s00232-021-00189-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023]
Abstract
K2P channel is the leaky potassium channel that is critical to keep up the negative resting membrane potential for legitimate electrical conductivity of the excitable tissues. Recently, many substances and medication elements are discovered that could either straightforwardly or in a roundabout way influence the 15 distinctive K+ ion channels including TWIK, TREK, TASK, TALK, THIK, and TRESK. Opening and shutting of these channels or any adjustment in their conduct is thought to alter the pathophysiological condition of CNS. There is no document available till now to explain in detail about the molecular mechanism of agents acting on K2P channel. Accordingly, in this review we cover the current research and mechanism of action of these channels, we have also tried to mention the detailed effect of drugs and how the channel behavior changes by focusing on recent advances regarding activation and modulation of ion channels.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India.
| | - Punita Agarwal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| |
Collapse
|
7
|
Development of a novel in vitro assay to screen for neuroprotective drugs against iatrogenic neurite shortening. PLoS One 2021; 16:e0248139. [PMID: 33690613 PMCID: PMC7946280 DOI: 10.1371/journal.pone.0248139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022] Open
Abstract
This work tries to help overcome the lack of relevant translational screening assays, as a limitation for the identification of novel analgesics for neuropathic pain. Hyperexcitability and neurite shortening are common adverse effects of antiviral and antitumor drugs, leading to neuropathic pain. Now, as seen in the drug screening that we developed here, a high-content microscopy-based assay with immortalized dorsal root ganglia (DRG) neurons (differentiated F11 cells) allowed to identify drugs able to protect against the iatrogenic neurite shortening induced by the antitumor drug vincristine and the antiviral drug rilpivirine. We observed that vincristine and rilpivirine induced a significant reduction in the neurite length, which was reverted by α-lipoic acid. We had also evidenced protective effects of pregabalin and melatonin, acting through the α2δ-2 subunit of the voltage-dependent calcium channels and the MT1 receptor, respectively. Additionally, two hits originated from a previous primary screening aimed to detect inhibitors of hyperexcitability to inflammatory mediators in DRG neurons (nitrendipine and felodipine) also prevented neurite shortening in our model. In summary, in this work we developed a novel secondary assay for identifying hits with neuroprotective effect against iatrogenic neurite shortening, consistent with the anti-hyperexcitability action previously tested: highlighting nitrendipine and felodipine against iatrogenic damage in DRG neurons.
Collapse
|
8
|
The Background K + Channel TRESK in Sensory Physiology and Pain. Int J Mol Sci 2020; 21:ijms21155206. [PMID: 32717813 PMCID: PMC7432782 DOI: 10.3390/ijms21155206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
TRESK belongs to the K2P family of potassium channels, also known as background or leak potassium channels due to their biophysical properties and their role regulating membrane potential of cells. Several studies to date have highlighted the role of TRESK in regulating the excitability of specific subtypes of sensory neurons. These findings suggest TRESK could be involved in pain sensitivity. Here, we review the different evidence available that involves the channel in pain and sensory perception, from studies knocking out the channel or overexpressing it to identified mutations that link the channel to migraine pain. In addition, the therapeutic possibilities are discussed, as targeting the channel seems an interesting therapeutic approach to reduce nociceptor activation and to decrease pain.
Collapse
|
9
|
Castellanos A, Pujol-Coma A, Andres-Bilbe A, Negm A, Callejo G, Soto D, Noël J, Comes N, Gasull X. TRESK background K + channel deletion selectively uncovers enhanced mechanical and cold sensitivity. J Physiol 2020; 598:1017-1038. [PMID: 31919847 DOI: 10.1113/jp279203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS TRESK background K+ channel is expressed in sensory neurons and acts as a brake to reduce neuronal activation. Deletion of the channel enhances the excitability of nociceptors. Skin nociceptive C-fibres show an enhanced activation by cold and mechanical stimulation in TRESK knockout animals. Channel deletion selectively enhances mechanical and cold sensitivity in mice, without altering sensitivity to heat. These results indicate that the channel regulates the excitability of specific neuronal subpopulations involved in mechanosensitivity and cold-sensing. ABSTRACT Background potassium-permeable ion channels play a critical role in tuning the excitability of nociceptors, yet the precise role played by different subsets of channels is not fully understood. Decreases in TRESK (TWIK-related spinal cord K+ channel) expression/function enhance excitability of sensory neurons, but its role in somatosensory perception and nociception is poorly understood. Here, we used a TRESK knockout (KO) mouse to address these questions. We show that TRESK regulates the sensitivity of sensory neurons in a modality-specific manner, contributing to mechanical and cold sensitivity but without any effect on heat sensitivity. Nociceptive neurons isolated from TRESK KO mice show a decreased threshold for activation and skin nociceptive C-fibres show an enhanced activation by cold and mechanical stimulation that was also observed in behavioural tests in vivo. TRESK is also involved in osmotic pain and in early phases of formalin-induced inflammatory pain, but not in the development of mechanical and heat hyperalgesia during chronic pain. In contrast, mice lacking TRESK present cold allodynia that is not further enhanced by oxaliplatin. In summary, genetic removal of TRESK uncovers enhanced mechanical and cold sensitivity, indicating that the channel regulates the excitability of specific neuronal subpopulations involved in mechanosensitivity and cold-sensing, acting as a brake to prevent activation by innocuous stimuli.
Collapse
Affiliation(s)
- Aida Castellanos
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Anna Pujol-Coma
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Alba Andres-Bilbe
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Ahmed Negm
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Gerard Callejo
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Jacques Noël
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Nuria Comes
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| |
Collapse
|
10
|
Rainero I, Vacca A, Govone F, Gai A, Pinessi L, Rubino E. Migraine: Genetic Variants and Clinical Phenotypes. Curr Med Chem 2019; 26:6207-6221. [DOI: 10.2174/0929867325666180719120215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Abstract
Migraine is a common, chronic neurovascular disorder caused by a complex interaction
between genetic and environmental risk factors. In the last two decades, molecular genetics
of migraine have been intensively investigated. In a few cases, migraine is transmitted as a
monogenic disorder, and the disease phenotype cosegregates with mutations in different genes
like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine,
candidate genes as well as genome-wide association studies have shown that a large number of
genetic variants may increase the risk of developing migraine. At present, few studies investigated
the genotype-phenotype correlation in patients with migraine. The purpose of this review
was to discuss recent studies investigating the relationship between different genetic variants
and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in
migraineurs is complicated by several confounding factors and, to date, only polymorphisms
of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional
genomic studies and network analyses are needed to clarify the complex pathways underlying
migraine and its clinical phenotypes.
Collapse
Affiliation(s)
- Innocenzo Rainero
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Alessandro Vacca
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Flora Govone
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Annalisa Gai
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Lorenzo Pinessi
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Elisa Rubino
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| |
Collapse
|
11
|
Kollert S, Döring F, Gergs U, Wischmeyer E. Chloroform is a potent activator of cardiac and neuronal Kir3 channels. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:573-580. [PMID: 31720798 DOI: 10.1007/s00210-019-01751-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/16/2019] [Indexed: 11/24/2022]
Abstract
Chloroform has been used over decades in anesthesia before it was replaced by other volatile anesthetics like halothane or sevoflurane. Some of the reasons were inadmissible side effects of chloroform like bradycardia or neural illness. In the present study, we identified members of the G protein-activated inwardly rectifying potassium channel family (Kir3) expressed in Xenopus oocytes as potential common molecular targets for both the neural and cardiac effects of chloroform. Millimolar concentration currents representing a 1:10000 dilution of commercially available chloroform were used in laboratories that augment neuronal Kir3.1/3.2 currents as well as cardiac Kir3.1/3.4. This effect was selective and only observed in currents from Kir3 subunits but not in currents from Kir2 subunits. Augmentation of atrial Kir3.1/3.4 currents leads to an effective drop of the heart rate and a reduction in contraction force in isolated mouse atria.
Collapse
Affiliation(s)
- Sina Kollert
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Physiology, AG Molecular Electrophysiology, University of Würzburg and Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Frank Döring
- Institute of Physiology, AG Molecular Electrophysiology, University of Würzburg and Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Ulrich Gergs
- Institute of Pharmacology and Toxicology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Erhard Wischmeyer
- Institute of Physiology, AG Molecular Electrophysiology, University of Würzburg and Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
12
|
Pattison LA, Callejo G, St John Smith E. Evolution of acid nociception: ion channels and receptors for detecting acid. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190291. [PMID: 31544616 PMCID: PMC6790391 DOI: 10.1098/rstb.2019.0291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
Nociceptors, i.e. sensory neurons tuned to detect noxious stimuli, are found in numerous phyla of the Animalia kingdom and are often polymodal, responding to a variety of stimuli, e.g. heat, cold, pressure and chemicals, such as acid. Owing to the ability of protons to have a profound effect on ionic homeostasis and damage macromolecular structures, it is no wonder that the ability to detect acid is conserved across many species. To detect changes in pH, nociceptors are equipped with an assortment of different acid sensors, some of which can detect mild changes in pH, such as the acid-sensing ion channels, proton-sensing G protein-coupled receptors and several two-pore potassium channels, whereas others, such as the transient receptor potential vanilloid 1 ion channel, require larger shifts in pH. This review will discuss the evolution of acid sensation and the different mechanisms by which nociceptors can detect acid. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
| | | | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
13
|
Weir GA, Pettingill P, Wu Y, Duggal G, Ilie AS, Akerman CJ, Cader MZ. The Role of TRESK in Discrete Sensory Neuron Populations and Somatosensory Processing. Front Mol Neurosci 2019; 12:170. [PMID: 31379497 PMCID: PMC6650782 DOI: 10.3389/fnmol.2019.00170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022] Open
Abstract
Two-pore domain K+ (K2P) channels generate K+ leak current, which serves a vital role in controlling and modulating neuronal excitability. This diverse family of K+ channels exhibit distinct expression and function across neuronal tissues. TWIK-related spinal cord K+ channel (TRESK) is a K2P channel with a particularly enriched role in sensory neurons and in vivo pain pathways. Here, we explored the role of TRESK across molecularly distinct sensory neuron populations and assessed its contribution to different sensory modalities. We found TRESK mRNA only in select populations of C- and A-δ nociceptors, in addition to low threshold D-hair afferents. Neurons from mice in which TRESK has been ablated demonstrated marked hyperexcitability, which was amplified under inflammatory challenge. Detailed behavioral phenotyping of TRESK knockout mice revealed specific deficits in somatosensory processing of noxious and non-noxious stimuli. These results demonstrate novel roles of TRESK in somatosensory processing and offer important information to those wishing to target the channel for therapeutic means.
Collapse
Affiliation(s)
- Greg A Weir
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Philippa Pettingill
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Yukyee Wu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Galbha Duggal
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Andrei-Sorin Ilie
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Colin J Akerman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Abstract
Supplemental Digital Content is Available in the Text. Inhibition of K2P potassium channels by pyrethroid insecticides contribute to activate primary sensory neurons to cause paraesthesias and painful sensations. Pyrethroid insecticides are widely used for pest control in agriculture or in human public health commonly as a topical treatment for scabies and head lice. Exposure to pyrethroids such as permethrin or tetramethrin (TM) causes sensory alterations such as transient pain, burning, stinging sensations, and paraesthesias. Despite the well-known effects of pyrethroids on sodium channels, actions on other channels that control sensory neuron excitability are less studied. Given the role of 2-pore domain potassium (K2P) channels in modulating sensory neuron excitability and firing, both in physiological and pathological conditions, we examined the effect of pyrethroids on K2P channels mainly expressed in sensory neurons. Through electrophysiological and calcium imaging experiments, we show that a high percentage of TM-responding neurons were nociceptors, which were also activated by TRPA1 and/or TRPV1 agonists. This pyrethroid also activated and enhanced the excitability of peripheral saphenous nerve fibers. Pyrethroids produced a significant inhibition of native TRESK, TRAAK, TREK-1, and TREK-2 currents. Similar effects were found in transfected HEK293 cells. At the behavioral level, intradermal TM injection in the mouse paw produced nocifensive responses and caused mechanical allodynia, demonstrating that the effects seen on nociceptors in culture lead to pain-associated behaviors in vivo. In TRESK knockout mice, pain-associated behaviors elicited by TM were enhanced, providing further evidence for a role of this channel in preventing excessive neuronal activation. Our results indicate that inhibition of K2P channels facilitates sensory neuron activation and increases their excitability. These effects contribute to the generation of paraesthesias and pain after pyrethroid exposure.
Collapse
|
15
|
Giblin JP, Etayo I, Castellanos A, Andres-Bilbe A, Gasull X. Anionic Phospholipids Bind to and Modulate the Activity of Human TRESK Background K + Channel. Mol Neurobiol 2018; 56:2524-2541. [PMID: 30039335 DOI: 10.1007/s12035-018-1244-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/15/2018] [Indexed: 01/08/2023]
Abstract
The background K+ channel TRESK regulates sensory neuron excitability, and changes in its function/expression contribute to neuronal hyperexcitability after injury/inflammation, making it an attractive therapeutic target for pain-related disorders. Factors that change lipid bilayer composition/properties (including volatile anesthetics, chloroform, chlorpromazine, shear stress, and cell swelling/shrinkage) modify TRESK current, but despite the importance of anionic phospholipids (e.g., PIP2) in the regulation of many ion channels, it remains unknown if membrane lipids affect TRESK function. We describe that both human and rat TRESK contain potential anionic phospholipid binding sites (apbs) in the large cytoplasmic loop, but only the human channel is able to bind to multilamellar vesicles (MLVs), enriched with anionic phospholipids, suggesting an electrostatically mediated interaction. We mapped the apbs to a short stretch of 14 amino acids in the loop, located at the membrane-cytosol interface. Disruption of electrostatic lipid-TRESK interactions inhibited hTRESK currents, while subsequent application of Folch Fraction MLVs or a PIP2 analog activated hTRESK, an effect that was absent in the rat ortholog. Strikingly, channel activation by anionic phospholipids was conferred to rTRESK by replacing the equivalent rat sequence with the human apbs. Finally, in the presence of a calcineurin inhibitor, stimulation of a Gq/11-linked GPCR reduced hTRESK current, revealing a likely inhibitory effect of membrane lipid hydrolysis on hTRESK activity. This novel regulation of hTRESK by anionic phospholipids is a characteristic of the human channel that is not present in rodent orthologs. This must be considered when extrapolating results from animal models and may open the door to the development of novel channel modulators as analgesics.
Collapse
Affiliation(s)
- Jonathan P Giblin
- Neurophysiology Lab, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Iñigo Etayo
- Neurophysiology Lab, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Aida Castellanos
- Neurophysiology Lab, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Alba Andres-Bilbe
- Neurophysiology Lab, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Lab, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| |
Collapse
|
16
|
Verapamil Inhibits TRESK (K 2P18.1) Current in Trigeminal Ganglion Neurons Independently of the Blockade of Ca 2+ Influx. Int J Mol Sci 2018; 19:ijms19071961. [PMID: 29973548 PMCID: PMC6073232 DOI: 10.3390/ijms19071961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 12/29/2022] Open
Abstract
Tandem pore domain weak inward rectifier potassium channel (TWIK)-related spinal cord K⁺ (TRESK; K2P18.1) channel is the only member of the two-pore domain K⁺ (K2P) channel family that is activated by an increase in intracellular Ca2+ concentration ([Ca2+]i) and linked to migraines. This study was performed to identify the effect of verapamil, which is an L-type Ca2+ channel blocker and a prophylaxis for migraines, on the TRESK channel in trigeminal ganglion (TG) neurons, as well as in a heterologous system. Single-channel and whole-cell currents were recorded in TG neurons and HEK-293 cells transfected with mTRESK using patch-clamping techniques. In TG neurons, changes in [Ca2+]i were measured using the fluo-3-AM Ca2+ indicator. Verapamil, nifedipine, and NiCl₂ inhibited the whole-cell currents in HEK-293 cells overexpressing mTRESK with IC50 values of 5.2, 54.3, and >100 μM, respectively. The inhibitory effect of verapamil on TRESK channel was also observed in excised patches. In TG neurons, verapamil (10 μM) inhibited TRESK channel activity by approximately 76%. The TRESK channel activity was not dependent on the presence of extracellular Ca2+. In addition, the inhibitory effect of verapamil on the TRESK channel remained despite the absence of extracellular Ca2+. These findings show that verapamil inhibits the TRESK current independently of the blockade of Ca2+ influx in TG neurons. Verapamil will be able to exert its pharmacological effects by modulating TRESK, as well as Ca2+ influx, in TG neurons in vitro. We suggest that verapamil could be used as an inhibitor for identifying TRESK channel in TG neurons.
Collapse
|
17
|
Lefaucheur JP. New insights into the pathophysiology of primary hemifacial spasm. Neurochirurgie 2018; 64:87-93. [DOI: 10.1016/j.neuchi.2017.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/21/2022]
|
18
|
Park H, Kim EJ, Han J, Han J, Kang D. Effects of analgesics and antidepressants on TREK-2 and TRESK currents. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:379-85. [PMID: 27382354 PMCID: PMC4930906 DOI: 10.4196/kjpp.2016.20.4.379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 01/18/2023]
Abstract
TWIK-related K+ channel-2 (TREK-2) and TWIK-related spinal cord K+ (TRESK) channel are members of two-pore domain K+ channel family. They are well expressed and help to set the resting membrane potential in sensory neurons. Modulation of TREK-2 and TRESK channels are involved in the pathogenesis of pain, and specifi c activators of TREK-2 and TRESK may be benefi cial for the treatment of pain symptoms. However, the effect of commonly used analgesics on TREK-2 and TRESK channels are not known. Here, we investigated the effect of analgesics on TREK-2 and TRESK channels. The effects of analgesics were examined in HEK cells transfected with TREK-2 or TRESK. Amitriptyline, citalopram, escitalopram, and fluoxetine significantly inhibited TREK-2 and TRESK currents in HEK cells (p<0.05, n=10). Acetaminophen, ibuprofen, nabumetone, and bupropion inhibited TRESK, but had no effect on TREK-2. These results show that all analgesics tested in this study inhibit TRESK activity. Further study is needed to identify the mechanisms by which the analgesics modulate TREK-2 and TRESK differently.
Collapse
Affiliation(s)
- Hyun Park
- Department of Neurosurgery, Gyeongsang National University Hospital, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Eun-Jin Kim
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Jaehee Han
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Jongwoo Han
- Department of Neurosurgery, Gyeongsang National University Hospital, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Dawon Kang
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
19
|
Liebert AD, Chow RT, Bicknell BT, Varigos E. Neuroprotective Effects Against POCD by Photobiomodulation: Evidence from Assembly/Disassembly of the Cytoskeleton. J Exp Neurosci 2016; 10:1-19. [PMID: 26848276 PMCID: PMC4737522 DOI: 10.4137/jen.s33444] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a decline in memory following anaesthesia and surgery in elderly patients. While often reversible, it consumes medical resources, compromises patient well-being, and possibly accelerates progression into Alzheimer's disease. Anesthetics have been implicated in POCD, as has neuroinflammation, as indicated by cytokine inflammatory markers. Photobiomodulation (PBM) is an effective treatment for a number of conditions, including inflammation. PBM also has a direct effect on microtubule disassembly in neurons with the formation of small, reversible varicosities, which cause neural blockade and alleviation of pain symptoms. This mimics endogenously formed varicosities that are neuroprotective against damage, toxins, and the formation of larger, destructive varicosities and focal swellings. It is proposed that PBM may be effective as a preconditioning treatment against POCD; similar to the PBM treatment, protective and abscopal effects that have been demonstrated in experimental models of macular degeneration, neurological, and cardiac conditions.
Collapse
Affiliation(s)
| | - Roberta T. Chow
- Brain and Mind Institute, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
20
|
Kollert S, Dombert B, Döring F, Wischmeyer E. Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling. Sci Rep 2015. [PMID: 26224542 PMCID: PMC4519772 DOI: 10.1038/srep12548] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In dorsal root ganglia (DRG) neurons TRESK channels constitute a major current component of the standing outward current IKSO. A prominent physiological role of TRESK has been attributed to pain sensation. During inflammation mediators of pain e.g. lysophosphatidic acid (LPA) are released and modulate nociception. We demonstrate co-expression of TRESK and LPA receptors in DRG neurons. Heterologous expression of TRESK and LPA receptors in Xenopus oocytes revealed augmentation of basal K+ currents upon LPA application. In DRG neurons nociception can result from TRPV1 activation by capsaicin or LPA. Upon co-expression in Xenopus oocytes LPA simultaneously increased both depolarising TRPV1 and hyperpolarising TRESK currents. Patch-clamp recordings in cultured DRG neurons from TRESK[wt] mice displayed increased IKSO after application of LPA whereas under these conditions IKSO in neurons from TRESK[ko] mice remained unaltered. Under current-clamp conditions LPA application differentially modulated excitability in these genotypes upon depolarising pulses. Spike frequency was attenuated in TRESK[wt] neurons and, in contrast, augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. Hence excitation of sensory neurons is strongly controlled by the activity of TRESK channels, which therefore are good candidates for the treatment of pain disorders.
Collapse
Affiliation(s)
- Sina Kollert
- Institute of Physiology, AG Molecular Electrophysiology, University of Würzburg, 97070 Würzburg Germany
| | - Benjamin Dombert
- Institute for Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Frank Döring
- Institute of Physiology, AG Molecular Electrophysiology, University of Würzburg, 97070 Würzburg Germany
| | - Erhard Wischmeyer
- Institute of Physiology, AG Molecular Electrophysiology, University of Würzburg, 97070 Würzburg Germany
| |
Collapse
|
21
|
Bouhadfane M, Kaszás A, Rózsa B, Harris-Warrick RM, Vinay L, Brocard F. Sensitization of neonatal rat lumbar motoneuron by the inflammatory pain mediator bradykinin. eLife 2015; 4:e06195. [PMID: 25781633 PMCID: PMC4410746 DOI: 10.7554/elife.06195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/16/2015] [Indexed: 11/27/2022] Open
Abstract
Bradykinin (Bk) is a potent inflammatory mediator that causes hyperalgesia. The action of Bk on the sensory system is well documented but its effects on motoneurons, the final pathway of the motor system, are unknown. By a combination of patch-clamp recordings and two-photon calcium imaging, we found that Bk strongly sensitizes spinal motoneurons. Sensitization was characterized by an increased ability to generate self-sustained spiking in response to excitatory inputs. Our pharmacological study described a dual ionic mechanism to sensitize motoneurons, including inhibition of a barium-sensitive resting K+ conductance and activation of a nonselective cationic conductance primarily mediated by Na+. Examination of the upstream signaling pathways provided evidence for postsynaptic activation of B2 receptors, G protein activation of phospholipase C, InsP3 synthesis, and calmodulin activation. This study questions the influence of motoneurons in the assessment of hyperalgesia since the withdrawal motor reflex is commonly used as a surrogate pain model. DOI:http://dx.doi.org/10.7554/eLife.06195.001 When we accidentally place our hand on a hot stove, we normally experience a painful sensation that starts with the sensory nerves under our skin. These nerves respond by transmitting electrical impulses to our brain, where the painful sensation is then processed. At the same time, these impulses are also transmitted to the motor nerves that control the muscles in our hand to trigger an immediate reflex to withdraw the hand from the hot stove. Pain therefore has a useful role as it can reduce how bad an injury is. People with a condition called hyperalgesia have an increased sensitivity to pain. This condition can result from a chemical called bradykinin ‘sensitizing’ the sensory nerves, causing them to transmit more electrical impulses in response to pain than normal. This makes the injury feel much more painful, and can make the pain last for longer than is beneficial. It was less clear whether bradykinin also affects motor nerves and so triggers a withdrawal reflex. By recording the electrical activity of motor nerve cells taken from the spinal cords of newborn rats, Bouhadfane et al. now show that these motor nerves become more active when exposed to bradykinin. Nerve cells generate electrical signals when ions—such as potassium, sodium, and calcium ions—move through channels in the membranes of the cell. Therefore, to investigate how bradykinin influences the electrical activity of motor nerves, Bouhadfane et al. exposed the cells to drugs that inhibit particular ion channels. This revealed that bradykinin sensitizes the motor nerves by blocking a type of potassium ion channel and activating another ion channel that mainly transports sodium ions. Furthermore, Bouhadfane et al. were able to identify the signaling pathways that allow bradykinin to affect the motor nerve cells. The study implies that the neuronal circuitry for pain does not rely exclusively on sensory nerve cells but should also integrate motor nerve cells. A future challenge remains in developing a protocol to resolve the contribution of motor nerve cells to hyperalgesia assessed by reflex withdrawal. DOI:http://dx.doi.org/10.7554/eLife.06195.002
Collapse
Affiliation(s)
- Mouloud Bouhadfane
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France
| | - Attila Kaszás
- Institut de Neuroscience des Systèmes (UMR1106), Aix Marseille Université and INSERM, Marseille, France
| | - Balázs Rózsa
- Two-Photon Imaging Center, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Laurent Vinay
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France
| | - Frédéric Brocard
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France
| |
Collapse
|
22
|
Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. Pain 2014; 155:2534-2544. [DOI: 10.1016/j.pain.2014.09.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/29/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022]
|
23
|
Enyedi P, Veres I, Braun G, Czirják G. Tubulin binds to the cytoplasmic loop of TRESK background K⁺ channel in vitro. PLoS One 2014; 9:e97854. [PMID: 24830385 PMCID: PMC4022642 DOI: 10.1371/journal.pone.0097854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/25/2014] [Indexed: 12/02/2022] Open
Abstract
The cytoplasmic loop between the second and third transmembrane segments is pivotal in the regulation of TRESK (TWIK-related spinal cord K+ channel, K2P18.1, KCNK18). Calcineurin binds to this region and activates the channel by dephosphorylation in response to the calcium signal. Phosphorylation-dependent anchorage of 14-3-3 adaptor protein also modulates TRESK at this location. In the present study, we identified molecular interacting partners of the intracellular loop. By an affinity chromatography approach using the cytoplasmic loop as bait, we have verified the specific association of calcineurin and 14-3-3 to the channel. In addition to these known interacting proteins, we observed substantial binding of tubulin to the intracellular loop. Successive truncation of the polypeptide and pull-down experiments from mouse brain cytosol narrowed down the region sufficient for the binding of tubulin to a 16 amino acid sequence: LVLGRLSYSIISNLDE. The first six residues of this sequence are similar to the previously reported tubulin-binding region of P2X2 purinergic receptor. The tubulin-binding site of TRESK is located close to the protein kinase A (PKA)-dependent 14-3-3-docking motif of the channel. We provide experimental evidence suggesting that 14-3-3 competes with tubulin for the binding to the cytoplasmic loop of TRESK. It is intriguing that the 16 amino acid tubulin-binding sequence includes the serines, which were previously shown to be phosphorylated by microtubule-affinity regulating kinases (MARK kinases) and contribute to channel inhibition. Although tubulin binds to TRESK in vitro, it remains to be established whether the two proteins also interact in the living cell.
Collapse
Affiliation(s)
- Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Irén Veres
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gabriella Braun
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gábor Czirják
- Department of Physiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Vásquez V, Krieg M, Lockhead D, Goodman MB. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. Cell Rep 2014; 6:70-80. [PMID: 24388754 DOI: 10.1016/j.celrep.2013.12.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/18/2013] [Accepted: 12/06/2013] [Indexed: 12/01/2022] Open
Abstract
Mechanoelectrical transduction (MeT) channels embedded in neuronal cell membranes are essential for touch and proprioception. Little is understood about the interplay between native MeT channels and membrane phospholipids, in part because few techniques are available for altering plasma membrane composition in vivo. Here, we leverage genetic dissection, chemical complementation, and optogenetics to establish that arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, enhances touch sensation and mechanoelectrical transduction activity while incorporated into membrane phospholipids in C. elegans touch receptor neurons (TRNs). Because dynamic force spectroscopy reveals that AA modulates the mechanical properties of TRN plasma membranes, we propose that this polyunsaturated fatty acid (PUFA) is needed for MeT channel activity. These findings establish that polyunsaturated phospholipids are crucial determinants of both the biochemistry and mechanics of mechanoreceptor neurons and reinforce the idea that sensory mechanotransduction in animals relies on a cellular machine composed of both proteins and membrane lipids.
Collapse
Affiliation(s)
- Valeria Vásquez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dean Lockhead
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Wright PD, Weir G, Cartland J, Tickle D, Kettleborough C, Cader MZ, Jerman J. Cloxyquin (5-chloroquinolin-8-ol) is an activator of the two-pore domain potassium channel TRESK. Biochem Biophys Res Commun 2013. [DOI: 10.1016/j.bbrc.2013.10.090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
THIK-1 (K2P13.1) is a small-conductance background K(+) channel in rat trigeminal ganglion neurons. Pflugers Arch 2013; 466:1289-300. [PMID: 24081450 DOI: 10.1007/s00424-013-1358-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
The goal of this study was to determine the molecular identity of a small-conductance (~5-pS) background K(+) channel expressed in trigeminal ganglion (TG) neurons. We tested the hypothesis that the 5-pS channel is a K2P channel by comparing the pharmacological and single-channel properties of THIK-1 expressed in HEK293 cells. As reported earlier, whole-cell THIK-1 current was inhibited by halothane and activated by arachidonic acid. Among 25 additional modulators tested, bupivacaine (100 μM), quinidine (50 μM) and Ba(2+) (3 mM) and cold (10 °C) were most effective inhibitors of THIK-1 current (>50 % inhibition). In cell-attached patches with high KCl in the pipette and bath solutions, THIK-1 produced a small-conductance (~5 pS) channel with a weak inwardly rectifying current-voltage relationship. Halothane, bupivacaine and cold inhibited the single-channel activities of both THIK-1 and the 5-pS channel in TG neurons, whereas arachidonic acid augmented them. THIK-1 expressed in HEK293 cells and the 5-pS channels in TG neurons were insensitive to hypoxia. Reverse transcriptase-PCR, Western blot and immunocytochemical analyses suggested that THIK-1 mRNA and protein were expressed in TG neurons. These results show that THIK-1 is functionally expressed in TG neurons and contributes to the background K(+) conductance.
Collapse
|