1
|
Neuenschwander S, Rosso G, Branco N, Freitag F, Tehovnik EJ, Schmidt KE, Baron J. On the Functional Role of Gamma Synchronization in the Retinogeniculate System of the Cat. J Neurosci 2023; 43:5204-5220. [PMID: 37328291 PMCID: PMC10342227 DOI: 10.1523/jneurosci.1550-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/06/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023] Open
Abstract
Fast gamma oscillations, generated within the retina, and transmitted to the cortex via the lateral geniculate nucleus (LGN), are thought to carry information about stimulus size and continuity. This hypothesis relies mainly on studies conducted under anesthesia and the extent to which it holds under more naturalistic conditions remains unclear. Using multielectrode recordings of spiking activity in the retina and the LGN of both male and female cats, we show that visually driven gamma oscillations are absent for awake states and are highly dependent on halothane (or isoflurane). Under ketamine, responses were nonoscillatory, as in the awake condition. Response entrainment to the monitor refresh was commonly observed up to 120 Hz and was superseded by the gamma oscillatory responses induced by halothane. Given that retinal gamma oscillations are contingent on halothane anesthesia and absent in the awake cat, such oscillations should be considered artifactual, thus playing no functional role in vision.SIGNIFICANCE STATEMENT Gamma rhythms have been proposed to be a robust encoding mechanism critical for visual processing. In the retinogeniculate system of the cat, many studies have shown gamma oscillations associated with responses to static stimuli. Here, we extend these observations to dynamic stimuli. An unexpected finding was that retinal gamma responses strongly depend on halothane concentration levels and are absent in the awake cat. These results weaken the notion that gamma in the retina is relevant for vision. Notably, retinal gamma shares many of the properties of cortical gamma. In this respect, oscillations induced by halothane in the retina may serve as a valuable preparation, although artificial, for studying oscillatory dynamics.
Collapse
Affiliation(s)
- Sergio Neuenschwander
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Giovanne Rosso
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Natalia Branco
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Fabio Freitag
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Edward J Tehovnik
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Kerstin E Schmidt
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Jerome Baron
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Li Z, Gao M, Wang Y. The Orientation Selectivity of Spike-LFP Synchronization in Macaque V1 and V4. Front Comput Neurosci 2019; 13:47. [PMID: 31354464 PMCID: PMC6637915 DOI: 10.3389/fncom.2019.00047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/26/2019] [Indexed: 11/29/2022] Open
Abstract
Orientation selectivity is a fundamental property of visual cortical neurons and plays a crucial role in pattern perception. Although many studies have dedicated to explain how the orientation selectivity emerged, the mechanism underlying orientation selectivity is still not clear. In this work, we investigated the synchronization between spikes and local field potentials (LFP) in gamma band, with the aim of providing a new avenue to analyze the orientation selectivity. The experimental data were recorded by utilizing two chronically implanted multi-electrode arrays, where each array consisted of 48 electrodes and was placed over V1 and V4, respectively, in two macaques performing a selective visual attention task. An unbiased and robust measure for quantifying the synchronization between spikes and LFP was employed in the analysis process, which is termed as spike-triggered correlation matrix synchronization (SCMS) and performs reliably for limited samples of data. We observed the spike-LFP synchronization in three cases, i.e., spikes and LFP in V1, spikes and LFP in V4, spikes in V4 and LFP in V1. From the orientation tuning curves based on the spike-LFP synchronization, it is found that there is a strong correlation between the synchronization and grating orientation. The neurons in both V1 and V4 exhibit orientation selectivity, but V1 is stronger. In addition, the spike-LFP synchronization strength between V1 and V4 also shows orientation selectivity to drifting gratings. It means that the synchronization not only reflects the basic features of visual stimulation, but also describes the orientation tuning characteristics of neurons in different regions. Our results suggest that the spike-LFP synchronization can be used as an alternative and effective method to study the mechanism for generating orientation selectivity of visual neurons.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China.,Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, China
| | - Mengyu Gao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China.,Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, China
| | - Yongtian Wang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China.,Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, China
| |
Collapse
|
3
|
Chen G, Zhang Y, Li X, Zhao X, Ye Q, Lin Y, Tao HW, Rasch MJ, Zhang X. Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations. Neuron 2019; 96:1403-1418.e6. [PMID: 29268099 DOI: 10.1016/j.neuron.2017.11.033] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/25/2017] [Accepted: 11/20/2017] [Indexed: 12/29/2022]
Abstract
Distinct subtypes of inhibitory interneuron are known to shape diverse rhythmic activities in the cortex, but how they interact to orchestrate specific band activity remains largely unknown. By recording optogenetically tagged interneurons of specific subtypes in the primary visual cortex of behaving mice, we show that spiking of somatostatin (SOM)- and parvalbumin (PV)-expressing interneurons preferentially correlates with cortical beta and gamma band oscillations, respectively. Suppression of SOM cell spiking reduces the spontaneous low-frequency band (<30-Hz) oscillations and selectively reduces visually induced enhancement of beta oscillation. In comparison, suppressing PV cell activity elevates the synchronization of spontaneous activity across a broad frequency range and further precludes visually induced changes in beta and gamma oscillations. Rhythmic activation of SOM and PV cells in the local circuit entrains resonant activity in the narrow 5- to 30-Hz band and the wide 20- to 80-Hz band, respectively. Together, these findings reveal differential and cooperative roles of SOM and PV inhibitory neurons in orchestrating specific cortical oscillations.
Collapse
Affiliation(s)
- Guang Chen
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiang Li
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiaochen Zhao
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qian Ye
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yingxi Lin
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Malte J Rasch
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Chen CY, Hafed ZM. Orientation and Contrast Tuning Properties and Temporal Flicker Fusion Characteristics of Primate Superior Colliculus Neurons. Front Neural Circuits 2018; 12:58. [PMID: 30087598 PMCID: PMC6066560 DOI: 10.3389/fncir.2018.00058] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/03/2018] [Indexed: 02/03/2023] Open
Abstract
The primate superior colliculus is traditionally studied from the perspectives of gaze control, target selection, and selective attention. However, this structure is also visually responsive, and it is the primary visual structure in several species. Thus, understanding the visual tuning properties of the primate superior colliculus is important, especially given that the superior colliculus is part of an alternative visual pathway running in parallel to the predominant geniculo-cortical pathway. In recent previous studies, we have characterized receptive field organization and spatial frequency tuning properties in the primate (rhesus macaque) superior colliculus. Here, we explored additional aspects like orientation tuning, putative center-surround interactions, and temporal frequency tuning characteristics of visually-responsive superior colliculus neurons. We found that orientation tuning exists in the primate superior colliculus, but that such tuning is relatively moderate in strength. We also used stimuli of different sizes to explore contrast sensitivity and center-surround interactions. We found that stimulus size within a visual receptive field primarily affects the slope of contrast sensitivity curves without altering maximal firing rate. Additionally, sustained firing rates, long after stimulus onset, strongly depend on stimulus size, and this is also reflected in local field potentials. This suggests the presence of inhibitory interactions within and around classical receptive fields. Finally, primate superior colliculus neurons exhibit temporal frequency tuning for frequencies lower than 30 Hz, with critical flicker fusion frequencies of <20 Hz. These results support the hypothesis that the primate superior colliculus might contribute to visual performance, likely by mediating coarse, but rapid, object detection and identification capabilities for the purpose of facilitating or inhibiting orienting responses. Such mediation may be particularly amplified in blindsight subjects who lose portions of their primary visual cortex and therefore rely on alternative visual pathways including the pathway through the superior colliculus.
Collapse
Affiliation(s)
- Chih-Yang Chen
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tübingen University, Tübingen, Germany
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Ziad M. Hafed
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| |
Collapse
|
5
|
Niu X, Shi L, Wan H, Wang Z, Shang Z, Li Z. Dynamic functional connectivity among neuronal population during modulation of extra-classical receptive field in primary visual cortex. Brain Res Bull 2015; 117:45-53. [DOI: 10.1016/j.brainresbull.2015.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
|