1
|
Clark KB. Smart Device-Driven Corticolimbic Plasticity in Cognitive-Emotional Restructuring of Space-Related Neuropsychiatric Disease and Injury. Life (Basel) 2022; 12:236. [PMID: 35207523 PMCID: PMC8875345 DOI: 10.3390/life12020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Escalating government and commercial efforts to plan and deploy viable manned near-to-deep solar system exploration and habitation over the coming decades now drives next-generation space medicine innovations. The application of cutting-edge precision medicine, such as brain stimulation techniques, provides powerful clinical and field/flight situation methods to selectively control vagal tone and neuroendocrine-modulated corticolimbic plasticity, which is affected by prolonged cosmic radiation exposure, social isolation or crowding, and weightlessness in constricted operational non-terran locales. Earth-based clinical research demonstrates that brain stimulation approaches may be combined with novel psychotherapeutic integrated memory structure rationales for the corrective reconsolidation of arousing or emotional experiences, autobiographical memories, semantic schema, and other cognitive structures to enhance neuropsychiatric patient outcomes. Such smart cotherapies or countermeasures, which exploit natural, pharmaceutical, and minimally invasive neuroprosthesis-driven nervous system activity, may optimize the cognitive-emotional restructuring of astronauts suffering from space-related neuropsychiatric disease and injury, including mood, affect, and anxiety symptoms of any potential severity and pathophysiology. An appreciation of improved neuropsychiatric healthcare through the merging of new or rediscovered smart theragnostic medical technologies, capable of rendering personalized neuroplasticity training and managed psychotherapeutic treatment protocols, will reveal deeper insights into the illness states experienced by astronauts. Future work in this area should emphasize the ethical role of telemedicine and/or digital clinicians to advance the (semi)autonomous, technology-assisted medical prophylaxis, diagnosis, treatment, monitoring, and compliance of astronauts for elevated health, safety, and performance in remote extreme space and extraterrestrial environments.
Collapse
Affiliation(s)
- Kevin B. Clark
- Felidae Conservation Fund, Mill Valley, CA 94941, USA;
- Cures Within Reach, Chicago, IL 60602, USA
- Domain and Campus Champions Program, NSF Extreme Science and Engineering Discovery Environment (XSEDE), National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Multi-Omics and Systems Biology Analysis Working Group, NASA GeneLab, NASA Ames Research Center, Mountain View, CA 94035, USA
- SETI Institute, Mountain View, CA 94043, USA
- NASA NfoLD, NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA 94035, USA
- Universities Space Research Association, Columbia, MD 21046, USA
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
- Peace Innovation Institute, The Hague 2511, Netherlands and Stanford University, Palo Alto, CA 94305, USA
- Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, 14057 Berlin, Germany
- Nanotechnology and Biometrics Councils, Institute for Electrical and Electronics Engineers (IEEE), New York, NY 10016-5997, USA
| |
Collapse
|
2
|
The Role of the Left and Right Anterior Temporal Poles in People Naming and Recognition. Neuroscience 2020; 440:175-185. [DOI: 10.1016/j.neuroscience.2020.05.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 01/27/2023]
|
3
|
Dricu M, Schüpbach L, Bristle M, Wiest R, Moser DA, Aue T. Group membership dictates the neural correlates of social optimism biases. Sci Rep 2020; 10:1139. [PMID: 31980697 PMCID: PMC6981267 DOI: 10.1038/s41598-020-58121-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
Optimism bias, i.e. expecting the future to hold more desirable than undesirable outcomes, also extends to people that we like or admire. However, it remains unknown how the brain generates this social optimism bias. In this study, respondents estimated the likelihood of future desirable and undesirable outcomes for an in-group and three out-groups: warm-incompetent, cold-competent, and cold-incompetent. We found a strong social optimism bias for the in-group and the warm out-group and an inverted pattern for the cold-incompetent out-group. For all groups, scores of social optimism bias correlated with the brain activity in structures that respondents differentially engaged depending on the target social group. In line with our hypotheses, evaluating the in-group recruited the ventromedial prefrontal cortex and the precuneus/posterior cingulate cortex, whereas evaluating the warm out-group engaged the posterior insula, mid cingulate cortex, and somatosensory cortices. These findings suggest different underlying cognitive mechanisms of social optimism bias for these groups, despite similar behavioural patterns. Thinking about the cold out-groups recruited the right anterior temporal lobe, and temporoparietal junction. Evaluating the cold-incompetent out-group additionally recruited the anterior insula, inferior frontal cortex and dorsomedial frontal cortex. We discuss these neuroimaging findings with respect to their putative cognitive functions.
Collapse
Affiliation(s)
| | | | | | - Roland Wiest
- University of Bern, Bern, Switzerland.,Institute for Diagnostic and Interventional Neuroradiology, Inselspital Hospital, Bern, Switzerland
| | | | | |
Collapse
|
4
|
Bona S, Silvanto J, Cattaneo Z. TMS over right OFA affects individuation of faces but not of exemplars of objects. Neuropsychologia 2018; 117:364-370. [PMID: 29966617 DOI: 10.1016/j.neuropsychologia.2018.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 11/26/2022]
Abstract
In addition to its well-documented role in processing of faces, the occipital face area in the right hemisphere (rOFA) may also play a role in identifying specific individuals within a class of objects. Here we explored this issue by using fMRI-guided TMS. In a first experiment, participants had to judge whether two sequentially presented images of faces or objects represented exactly the same exemplar or two different exemplars of the same class, while receiving online TMS over either the rOFA, the right lateral occipital cortex (rLO) or the Vertex (control). We found that, relative to Vertex, stimulation of rOFA impaired individuation of faces only, with no effect on objects; in contrast, TMS over rLO reduced individuation of objects but not of faces. In a second control experiment participants judged whether a picture representing a fragment of a stimulus belonged or not to the subsequently presented image of a whole stimulus (part-whole matching task). Our results showed that rOFA stimulation selectively disrupted performance with faces, whereas performance with objects (but not with faces) was selectively affected by TMS over rLO. Overall, our findings suggest that rOFA does not contribute to discriminate between exemplars of non-face objects.
Collapse
Affiliation(s)
- Silvia Bona
- Department of Psychology, University of Milano-Bicocca, 20126 Milan, Italy
| | - Juha Silvanto
- University of Westminster, Faculty of Science and Technology, Department of Psychology, 115 New Cavendish Street, W1W 6UW London, UK
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, 20126 Milan, Italy; IRCCS Mondino Foundation, 27100 Pavia, Italy.
| |
Collapse
|
5
|
Piretti L, Carnaghi A, Campanella F, Ambron E, Skrap M, Rumiati RI. The neural network associated with lexical-semantic knowledge about social groups. Cortex 2015. [PMID: 26211435 DOI: 10.1016/j.cortex.2015.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A person can be appraised as an individual or as a member of a social group. In the present study we tested whether the knowledge about social groups is represented independently of the living and non-living things. Patients with frontal and temporal lobe tumors involving either the left or the right hemisphere performed three tasks--picture naming, word-to-picture matching and picture sorting--tapping the lexical semantic knowledge of living things, non-living things and social groups. Both behavioral and voxel-based lesion-symptom mapping (VLSM) analyses suggested that social groups might be represented differently from other categories. VLSM analysis carried out on naming errors revealed that left-lateralized lesions in the inferior frontal gyrus, amygdala, insula and basal ganglia were associated with the lexical-semantic processing of social groups. These findings indicate that the social group representation may rely on areas associated with affective processing.
Collapse
Affiliation(s)
| | | | - Fabio Campanella
- Neurosurgery Unit, S.Maria della Misericordia Hospital, Udine, Italy
| | | | - Miran Skrap
- Neurosurgery Unit, S.Maria della Misericordia Hospital, Udine, Italy
| | | |
Collapse
|
6
|
Pisoni A, Vernice M, Iasevoli L, Cattaneo Z, Papagno C. Guess who? Investigating the proper name processing network by means of tDCS. Neuropsychologia 2015; 66:267-78. [DOI: 10.1016/j.neuropsychologia.2014.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 12/30/2022]
|
7
|
Hurley RS, Bonakdarpour B, Wang X, Mesulam MM. Asymmetric connectivity between the anterior temporal lobe and the language network. J Cogn Neurosci 2014; 27:464-73. [PMID: 25244113 DOI: 10.1162/jocn_a_00722] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The anterior temporal lobe (ATL) sits at the confluence of auditory, visual, olfactory, transmodal, and limbic processing hierarchies. In keeping with this anatomical heterogeneity, the ATL has been implicated in numerous functional domains, including language, semantic memory, social cognition, and facial identification. One question that has attracted considerable discussion is whether the ATL contains a mosaic of differentially specialized areas or whether it provides a domain-independent amodal hub. In the current study, based on task-free fMRI in right-handed neurologically intact participants, we found that the left lateral ATL is interconnected with hubs of the temporosylvian language network, including the inferior frontal gyrus and middle temporal gyrus of the ipsilateral hemisphere and, to a lesser extent, with homotopic areas of the contralateral hemisphere. In contrast, the right lateral ATL had much weaker functional connectivity with these regions in either hemisphere. Together with evidence that has been gathered in lesion-mapping and event-related neuroimaging studies, this asymmetry of functional connectivity supports the inclusion of the left ATL within the language network, a relationship that had been overlooked by classic aphasiology. The asymmetric domain selectivity for language of the left ATL, together with the absence of such an affiliation in the right ATL, is inconsistent with a strict definition of domain-independent amodal functionality in this region of the brain.
Collapse
|