1
|
Hay AL, Birch J, Ellis S, Burns D, Mansour S, Khakoo SI, Hammond JA. Cattle killer immunoglobulin-like receptor expression on leukocyte subsets suggests functional divergence compared to humans. Vet Immunol Immunopathol 2023; 263:110646. [PMID: 37634416 DOI: 10.1016/j.vetimm.2023.110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
Cattle, sheep, and goats are the only species outside primates known to have an expanded and diversified family of killer immunoglobulin-like receptors (KIR). Primate KIR are expressed on the surface of NK and T cells and bind MHC-I to control activation. However, the surface expression, ligands and function of bovid KIR remain unknown. Cattle botaKIR2DL1 is the only functional KIR of the same DL-lineage as the expanded KIR in primates and we examined if leukocyte expression patterns were consistent with human. We raised a specific mouse anti-botaKIR2DL1 monoclonal antibody and assessed its utility in flow cytometry, ELISA, and western blot. Unlike primates, cattle DL-lineage KIR (botaKIR2DL1) is present on B cells and monocytes in addition to T cells and low-level expression on NK cells. Expression decreases after in vitro PBMC stimulation with IL-2. This suggests that botaKIR2DL1 has different functions, and potentially ligands, compared to primate KIR.
Collapse
Affiliation(s)
- Abigail L Hay
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - James Birch
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - Shirley Ellis
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - Daniel Burns
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Salah Mansour
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Salim I Khakoo
- School of Medicine, University of Southampton, Tremona Road, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - John A Hammond
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom.
| |
Collapse
|
2
|
Hasan MZ, Höltermann C, Petersen B, Schrod A, Mätz-Rensing K, Kaul A, Salinas G, Dressel R, Walter L. Detailed phenotypic and functional characterization of CMV-associated adaptive NK cells in rhesus macaques. Front Immunol 2022; 13:1028788. [PMID: 36518759 PMCID: PMC9742600 DOI: 10.3389/fimmu.2022.1028788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Previous research on adaptive NK cells in rhesus macaques suffered from the lack of specific antibodies to differentiate between inhibitory CD94/NKG2A and stimulatory CD94/NKG2C heterodimeric receptors. Recently we reported an expansion of NKG2C receptor-encoding genes in rhesus macaques, but their expression and functional role on primary NK cells remained unknown due to this deficit. Thus, we established monoclonal antibodies 4A8 and 7B1 which show identical specificities and bind to both NKG2C-1 and NKG2C-2 but neither react with NKG2C-3 nor NKG2A on transfected cells. Using a combination of 4A8 and Z199 antibodies in multicolor flow cytometry we detected broad expression (4-73%) of NKG2C-1 and/or NKG2C-2 (NKG2C-1/2) on primary NK cells in rhesus macaques from our breeding colony. Stratifying our data to CMV-positive and CMV-negative animals, we noticed a higher proportion (23-73%) of primary NK cells expressing NKG2C-1/2 in CMV+ as compared to CMV- macaques (4-5%). These NKG2C-1/2-positive NK cells in CMV+ macaques are characterized by lower expression of IL12RB2, ZBTB16, SH2D1B, but not FCER1G, as well as high expression of IFNG, indicating that antibody 4A8 detects CMV-associated adaptive NK cells. Single cell RNA seq data of 4A8-positive NK cells from a rhCMV-positive macaque demonstrated that a high proportion of these adaptive NK cells transcribe in addition to NKG2C-1 and NKG2C-2 also NKG2C-3, but interestingly NKG2A as well. Remarkably, in comparison to NKG2A, NKG2C-1 and in particular NKG2C-2 bind Mamu-E with higher avidity. Primary NK cells exposed to Mamu-E-expressing target cells displayed strong degranulation as well as IFN-gamma expression of 4A8+ adaptive NK cells from rhCMV+ animals. Thus, despite co-expression of inhibitory and stimulatory CD94/NKG2 receptors the higher number of different stimulatory NKG2C receptors and their higher binding avidity to Mamu-E outreach inhibitory signaling via NKG2A. These data demonstrate the evolutionary conservation of the CMV-driven development of NKG2C-positive adaptive NK cells with particular molecular signatures in primates and with changes in gene copy numbers and ligand-binding strength of NKG2C isotypes. Thus, rhesus macaques represent a suitable and valuable nonhuman primate animal model to study the CMV-NKG2C liaison in vivo.
Collapse
Affiliation(s)
- Mohammad Zahidul Hasan
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- PhD program Molecular Biology of Cells, GGNB, Georg August University, Göttingen, Germany
| | - Charlotte Höltermann
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- PhD program Molecular Biology of Cells, GGNB, Georg August University, Göttingen, Germany
| | - Beatrix Petersen
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Annette Schrod
- Animal Husbandry, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Kerstin Mätz-Rensing
- Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Artur Kaul
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Gabriela Salinas
- NGS Core Unit for Integrative Genomics, Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Dressel
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
3
|
Hasan MZ, Walter L. Rhesus Macaque Activating Killer Immunoglobulin-Like Receptors Associate With Fc Receptor Gamma (FCER1G) and Not With DAP12 Adaptor Proteins Resulting in Stabilized Expression and Enabling Signal Transduction. Front Immunol 2021; 12:678964. [PMID: 33968088 PMCID: PMC8102735 DOI: 10.3389/fimmu.2021.678964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Activating killer cell immunoglobulin-like receptors (KIR) in macaques are thought to be derived by genetic recombination of the region encoding the transmembrane and intracellular part of KIR2DL4 and a KIR3D gene. As a result, all macaque activating KIR possess a positively charged arginine residue in the transmembrane region. As human KIR2DL4 associates with the FCER1G (also called Fc receptor-gamma, FcRγ) adaptor, we hypothesized that in contrast to human and great ape the activating KIRs of macaques associate with FcRγ instead of DAP12. By applying co-immunoprecipitation of transfected as well as primary cells, we demonstrate that rhesus macaque KIR3DS05 indeed associates with FcRγ and not with DAP12. This association with FcRγ results in increased and substantially stabilized surface expression of KIR3DS05. In addition, we demonstrate that binding of specific ligands of KIR3DS05, Mamu-A1*001 and A1*011, resulted in signal transduction in the presence of FcRγ in contrast to DAP12.
Collapse
Affiliation(s)
- Mohammad Zahidul Hasan
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
4
|
Goyos A, Fort M, Sharma A, Lebrec H. Current Concepts in Natural Killer Cell Biology and Application to Drug Safety Assessments. Toxicol Sci 2019; 170:10-19. [PMID: 31020324 DOI: 10.1093/toxsci/kfz098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes capable of cytotoxicity against virally infected cells and tumor cells. The display of effector function by NK cells is the result of interactions between germline encoded activating/inhibitory NK cell receptors and their ligands (major histocompatibility complex class I, major histocompatibility complex class I-like, viral, and cellular stress-related surface molecules) expressed on target cells. Determination of NK cell number and function is a common element of the immunotoxicology assessment paradigm for the development of certain classes of pharmaceuticals across a range of modalities. This article summarizes the evidence associating NK cell dysfunction with infectious and cancer risks, reviews emerging NK cell biology, including the impact of immunogenetics on NK cell education and function, and provides perspectives about points to consider when assessing NK cell function in different species in the context of safety assessment.
Collapse
Affiliation(s)
- Ana Goyos
- Amgen Research, Inc, South San Francisco, California 94080
| | - Madeline Fort
- Amgen Research, Inc, South San Francisco, California 94080
| | - Amy Sharma
- Genentech, Inc, South San Francisco, California 94080
| | - Herve Lebrec
- Amgen Research, Inc, South San Francisco, California 94080
| |
Collapse
|
5
|
Wroblewski EE, Parham P, Guethlein LA. Two to Tango: Co-evolution of Hominid Natural Killer Cell Receptors and MHC. Front Immunol 2019; 10:177. [PMID: 30837985 PMCID: PMC6389700 DOI: 10.3389/fimmu.2019.00177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells have diverse roles in hominid immunity and reproduction. Modulating these functions are the interactions between major histocompatibility complex (MHC) class I molecules that are ligands for two NK cell surface receptor types. Diverse killer cell immunoglobulin-like receptors (KIR) bind specific motifs encoded within the polymorphic MHC class I cell surface glycoproteins, while, in more conserved interactions, CD94:NKG2A receptors recognize MHC-E with bound peptides derived from MHC class I leader sequences. The hominid lineage presents a choreographed co-evolution of KIR with their MHC class I ligands. MHC-A, -B, and -C are present in all great apes with species-specific haplotypic variation in gene content. The Bw4 epitope recognized by lineage II KIR is restricted to MHC-B but also present on some gorilla and human MHC-A. Common to great apes, but rare in humans, are MHC-B possessing a C1 epitope recognized by lineage III KIR. MHC-C arose from duplication of MHC-B and is fixed in all great apes except orangutan, where it exists on approximately 50% of haplotypes and all allotypes are C1-bearing. Recent study showed that gorillas possess yet another intermediate MHC organization compared to humans. Like orangutans, but unlike the Pan-Homo species, duplication of MHC-B occurred. However, MHC-C is fixed, and the MHC-C C2 epitope (absent in orangutans) emerges. The evolution of MHC-C drove expansion of its cognate lineage III KIR. Recently, position −21 of the MHC-B leader sequence has been shown to be critical in determining NK cell educational outcome. In humans, methionine (−21M) results in CD94:NKG2A-focused education whereas threonine (−21T) produces KIR-focused education. This is another dynamic position among hominids. Orangutans have exclusively −21M, consistent with their intermediate stage in lineage III KIR-focused evolution. Gorillas have both −21M and −21T, like humans, but they are unequally encoded by their duplicated B genes. Chimpanzees have near-fixed −21T, indicative of KIR-focused NK education. Harmonious with this observation, chimpanzee KIR exhibit strong binding and, compared to humans, smaller differences between binding levels of activating and inhibitory KIR. Consistent between these MHC-NK cell receptor systems over the course of hominid evolution is the evolution of polymorphism favoring the more novel and dynamic KIR system.
Collapse
Affiliation(s)
- Emily E Wroblewski
- Department of Anthropology, Washington University, St. Louis, MO, United States
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
6
|
Ries M, Reynolds MR, Bashkueva K, Crosno K, Capuano S, Prall TM, Wiseman R, O’Connor DH, Rakasz EG, Uno H, Lifson JD, Evans DT. KIR3DL01 upregulation on gut natural killer cells in response to SIV infection of KIR- and MHC class I-defined rhesus macaques. PLoS Pathog 2017; 13:e1006506. [PMID: 28708886 PMCID: PMC5529027 DOI: 10.1371/journal.ppat.1006506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/26/2017] [Accepted: 07/02/2017] [Indexed: 01/29/2023] Open
Abstract
Natural killer cells provide an important early defense against viral pathogens and are regulated in part by interactions between highly polymorphic killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their MHC class I ligands on target cells. We previously identified MHC class I ligands for two rhesus macaque KIRs: KIR3DL01 recognizes Mamu-Bw4 molecules and KIR3DL05 recognizes Mamu-A1*002. To determine how these interactions influence NK cell responses, we infected KIR3DL01+ and KIR3DL05+ macaques with and without defined ligands for these receptors with SIVmac239, and monitored NK cell responses in peripheral blood and lymphoid tissues. NK cell responses in blood were broadly stimulated, as indicated by rapid increases in the CD16+ population during acute infection and sustained increases in the CD16+ and CD16-CD56- populations during chronic infection. Markers of proliferation (Ki-67), activation (CD69 & HLA-DR) and antiviral activity (CD107a & TNFα) were also widely expressed, but began to diverge during chronic infection, as reflected by sustained CD107a and TNFα upregulation by KIR3DL01+, but not by KIR3DL05+ NK cells. Significant increases in the frequency of KIR3DL01+ (but not KIR3DL05+) NK cells were also observed in tissues, particularly in the gut-associated lymphoid tissues, where this receptor was preferentially upregulated on CD56+ and CD16-CD56- subsets. These results reveal broad NK cell activation and dynamic changes in the phenotypic properties of NK cells in response to SIV infection, including the enrichment of KIR3DL01+ NK cells in tissues that support high levels of virus replication.
Collapse
Affiliation(s)
- Moritz Ries
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew R. Reynolds
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ksenia Bashkueva
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristin Crosno
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trent M. Prall
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger Wiseman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hajime Uno
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Wang W, Xiang HP, Wang HP, Zhu LX, Geng XP. CD4 + CD25 + CD127 high cells as a negative predictor of multiple organ failure in acute pancreatitis. World J Emerg Surg 2017; 12:7. [PMID: 28174597 PMCID: PMC5290669 DOI: 10.1186/s13017-017-0116-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/11/2017] [Indexed: 01/07/2023] Open
Abstract
Background It has been suggested that severity of the immune response induced by immune cells is associated with morbidity and mortality from acute pancreatitis. The authors investigated and evaluated the relationship between distinct peripheral lymphocyte subsets at admission and clinical outcome prior to hospital discharge so as to find a predictor to the prognosis of acute pancreatitis in lymphocyte profile. Methods Lymphocyte subsets in admission peripheral venous blood were tested through flow cytometry on 48 patients with acute pancreatitis. Clinical data was recorded as well. The primary observational outcomes were multiple organ failure (MOF) and infection. Results There was a significant difference in natural killer cells between two subgroups sorted by the presence or absence of infection (25.5 ± 4.47 [95% CI 14.4, 36.6] vs 14.8 ± 7.62 [95% CI 12.5,1 7.1] p = 0.021). Patients who developed MOF had lower CD4 + CD25 + CD127high (4.49 ± 1.5 (MOF) [95% CI 3.83, 5.16] vs 6.57 ± 2.65 (non-MOF) [95% CI 5.5, 7.64] p = 0.002) and higher CD127low/high cell counts (1.35 ± 0.66 [95% CI 1.06, 1.65] vs 0.97 ± 0.44 [95% CI 0.79, 1.15] p = 0.02). MOF patients were significantly older (55 ± 14.58 [95% CI 48.49,61.42] vs 46 ± 15.59 [95% CI 39.39,51.99] p = 0.04), and had higher Acute Physiology and Chronic Health Evaluation IIscores (7 ± 3.66 [95% CI 5.5,7.64] vs 4 ± 2.89 [95% CI 2.45,4.78] p = 0.001) and C reactive protein (100.53 ± 94.38 [95% CI 58.69,142.48] vs 50.8 ± 59.2 [95% CI 26.88,74.71] p = 0.04). In a multivariate regression model, only CD4 + CD25 + CD127high cell was a significant predictor of non-MOF. For the detection of non-MOF, CD4 + CD25 + CD127high cell generated a receiver operating characteristic (ROC) curve with an area under the curve of 0.74. Conclusion CD4 + CD25 + CD127high cell at early phase of acute pancreatitis yields good specificity in detecting non-MOF at a suggested cutoff value 6.41%. Patients with fewer natural killer cells may be at risk in developing secondary infection.
Collapse
Affiliation(s)
- Wei Wang
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601 Anhui Province People's Republic of China
| | - He-Ping Xiang
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601 Anhui Province People's Republic of China
| | - Hui-Ping Wang
- Hematology department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 Anhui Province People's Republic of China
| | - Li-Xin Zhu
- Central lab of the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province People's Republic of China
| | - Xiao-Ping Geng
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 Anhui Province People's Republic of China
| |
Collapse
|
8
|
Béziat V, Hilton HG, Norman PJ, Traherne JA. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunology 2016; 150:248-264. [PMID: 27779741 PMCID: PMC5290243 DOI: 10.1111/imm.12684] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are components of two fundamental biological systems essential for human health and survival. First, they contribute to host immune responses, both innate and adaptive, through their expression by natural killer cells and T cells. Second, KIR play a key role in regulating placentation, and hence reproductive success. Analogous to the diversity of their human leucocyte antigen class I ligands, KIR are extremely polymorphic. In this review, we describe recent developments, fuelled by methodological advances, that are helping to decipher the KIR system in terms of haplotypes, polymorphisms, expression patterns and their ligand interactions. These developments are delivering deeper insight into the relevance of KIR in immune system function, evolution and disease.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
9
|
Walter L, Petersen B. Diversification of both KIR and NKG2 natural killer cell receptor genes in macaques - implications for highly complex MHC-dependent regulation of natural killer cells. Immunology 2016; 150:139-145. [PMID: 27565739 DOI: 10.1111/imm.12666] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 02/01/2023] Open
Abstract
The killer immunoglobulin-like receptors (KIR) as well as their MHC class I ligands display enormous genetic diversity and polymorphism in macaque species. Signals resulting from interaction between KIR or CD94/NKG2 receptors and their cognate MHC class I proteins essentially regulate the activity of natural killer (NK) cells. Macaque and human KIR share many features, such as clonal expression patterns, gene copy number variations, specificity for particular MHC class I allotypes, or epistasis between KIR and MHC class I genes that influence susceptibility and resistance to immunodeficiency virus infection. In this review article we also annotated publicly available rhesus macaque BAC clone sequences and provide the first description of the CD94-NKG2 genomic region. Besides the presence of genes that are orthologous to human NKG2A and NKG2F, this region contains three NKG2C paralogues. Hence, the genome of rhesus macaques contains moderately expanded and diversified NKG2 genes in addition to highly diversified KIR genes. The presence of two diversified NK cell receptor families in one species has not been described before and is expected to require a complex MHC-dependent regulation of NK cells.
Collapse
Affiliation(s)
- Lutz Walter
- Primate Genetics Laboratory, Leibniz Institute for Primate Research, German Primate Center, Göttingen, Germany
| | - Beatrix Petersen
- Primate Genetics Laboratory, Leibniz Institute for Primate Research, German Primate Center, Göttingen, Germany
| |
Collapse
|
10
|
Walter L, Ansari AA. MHC and KIR Polymorphisms in Rhesus Macaque SIV Infection. Front Immunol 2015; 6:540. [PMID: 26557119 PMCID: PMC4617107 DOI: 10.3389/fimmu.2015.00540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023] Open
Abstract
Natural killer lymphocytes are essentially involved as the first line of defense against agents such as viruses and malignant cells. The activity of these cells is regulated via interaction of specific and diverse killer cell immunoglobulin-like receptors (KIR) with the highly polymorphic cognate MHC class I proteins on target cells. Genetic variability of both KIR and MHC-I ligands has been shown to be associated with resistance to many diseases, including infection with the immunodeficiency virus. Disease course and progression to AIDS after infection with human immunodeficiency virus-1 (HIV-1) is essentially influenced by the presence of the stimulatory KIR3DS1 receptor in combination with HLA-Bw4. Knowledge of such genetic interactions that contribute to not only disease resistance but also susceptibility are just as important. Such combined genetic factors were recently reported in the rhesus macaque AIDS model. Here, we review the rhesus macaque MHC class I and KIR gene systems and the role of their polymorphisms in the SIV infection model.
Collapse
Affiliation(s)
- Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research , Göttingen , Germany
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , USA
| |
Collapse
|
11
|
Abstract
Natural killer (NK) cells play a central role in immune responses through direct cytotoxicity and the release of cytokines that prime adaptive immunity. In simian primates, NK cell responses are regulated by interactions between two highly polymorphic sets of molecules: the killer-cell immunoglobulin-like receptors (KIRs) and their major histocompatibility complex (MHC) class I ligands. KIR-MHC class I interactions in humans have been implicated in the outcome of a number viral diseases and cancers. However, studies to address the role of KIRs in animal models have been limited by the complex immunogenetics and lack of defined ligands for KIRs in non-human primates. Due to the rapid evolution of KIRs, there is little conservation among the KIR genes of different primate species and it is not possible to predict the specificity of KIRs from known KIR-MHC class I interactions in humans. Hence, the MHC class I ligands for KIRs in species other than humans are poorly defined. Here, we review the KIR genes of the rhesus macaque, an important animal model for human immunodeficiency virus infection and other infectious diseases, and the MHC class I ligands that have been identified for KIRs in this species.
Collapse
Affiliation(s)
- Benjamin N. Bimber
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR 97239
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| |
Collapse
|
12
|
Manser AR, Weinhold S, Uhrberg M. Human KIR repertoires: shaped by genetic diversity and evolution. Immunol Rev 2015; 267:178-96. [DOI: 10.1111/imr.12316] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Angela R. Manser
- Institute for Transplantation Diagnostics and Cell Therapeutics; Heinrich-Heine University Düsseldorf; Medical Faculty; Düsseldorf Germany
| | - Sandra Weinhold
- Institute for Transplantation Diagnostics and Cell Therapeutics; Heinrich-Heine University Düsseldorf; Medical Faculty; Düsseldorf Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics; Heinrich-Heine University Düsseldorf; Medical Faculty; Düsseldorf Germany
| |
Collapse
|
13
|
Pomplun N, Weisgrau KL, Evans DT, Rakasz EG. OMIP-028: activation panel for Rhesus macaque NK cell subsets. Cytometry A 2015. [PMID: 26218174 DOI: 10.1002/cyto.a.22727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicholas Pomplun
- Wisconsin National Primate Research Center, University Of Wisconsin-Madison, Wisconsin, 53711
| | - Kim L Weisgrau
- Wisconsin National Primate Research Center, University Of Wisconsin-Madison, Wisconsin, 53711
| | - David T Evans
- Wisconsin National Primate Research Center, University Of Wisconsin-Madison, Wisconsin, 53711.,Department of Pathology and Laboratory Medicine, University Of Wisconsin-Madison, Wisconsin, 53711
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University Of Wisconsin-Madison, Wisconsin, 53711
| |
Collapse
|
14
|
Albrecht C, Malzahn D, Brameier M, Hermes M, Ansari AA, Walter L. Progression to AIDS in SIV-Infected Rhesus Macaques is Associated with Distinct KIR and MHC class I Polymorphisms and NK Cell Dysfunction. Front Immunol 2014; 5:600. [PMID: 25506344 PMCID: PMC4246914 DOI: 10.3389/fimmu.2014.00600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/07/2014] [Indexed: 12/21/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIR) regulate the activity of natural killer (NK) cells and have been shown to be associated with susceptibility to a number of human infectious diseases. Here, we analyzed NK cell function and genetic associations in a cohort of 52 rhesus macaques experimentally infected with SIVmac and subsequently stratified into high viral load (HVL) and low viral load (LVL) plasma viral loads at set point. This stratification coincided with fast (HVL) and slow (LVL) disease progression indicated by the disease course and critical clinical parameters including CD4+ T cell counts. HVL animals revealed sustained proliferation of NK cells but distinct loss of peripheral blood NK cell numbers and lytic function. Genetic analyses revealed that KIR genes 3DL05, 3DS05, and 3DL10 as well as 3DSW08, 3DLW03, and 3DSW09 are correlated, most likely due to underlying haplotypes. SIV-infection outcome associated with presence of transcripts for two inhibitory KIR genes (KIR3DL02, KIR3DL10) and three activating KIR genes (KIR3DSW08, KIR3DS02, KIR3DS05). Presence of KIR3DL02 and KIR3DSW08 was associated with LVL outcome, whereas presence of KIR3DS02 was associated with HVL outcome. Furthermore, we identified epistasis between KIR and MHC class I alleles as the transcript presence of the correlated genes KIR3DL05, KIR3DS05, and KIR3DL10 increased HVL risk when Mamu-B*012 transcripts were also present or when Mamu-A1*001 transcripts were absent. These genetic associations were mirrored by changes in the numbers, the level of proliferation, and lytic capabilities of NK cells as well as overall survival time and gastro-intestinal tissue viral load.
Collapse
Affiliation(s)
- Christina Albrecht
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University , Göttingen , Germany
| | - Markus Brameier
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Meike Hermes
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , USA
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| |
Collapse
|
15
|
Fisher JP, Heuijerjans J, Yan M, Gustafsson K, Anderson J. γδ T cells for cancer immunotherapy: A systematic review of clinical trials. Oncoimmunology 2014; 3:e27572. [PMID: 24734216 PMCID: PMC3984269 DOI: 10.4161/onci.27572] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
γδ T cells contribute to the front line of lymphoid antitumor surveillance and bridge the gap between innate and adaptive immunity. They can be readily expanded to high numbers in vivo and in vitro, starting from the blood of cancer patients, and a number of Phase I trials have demonstrated that these cells can be employed in cancer immunotherapy. Sufficient patients have received γδ T cell-based immunotherapies in the context of clinical trials to evaluate their utility, and to inform the direction of new trials. A systematic approach was used to identify Phase I, Phase II, and feasibility studies testing γδ T cell-based immunotherapy in cancer patients. Studies were excluded from further analysis if they did not provide patient-specific data. Data were compiled to evaluate efficacy, with stratification by treatment approach. When possible, comparisons were made with the efficacy of second-line conventional therapeutic approaches for the same malignancy. Twelve eligible studies were identified, providing information on 157 patients who had received γδ T cell-based immunotherapy. The comparison of objective response data suggests that γδ T cell-based immunotherapy is superior to current second-line therapies for advanced renal cell carcinoma and prostate cancer, but not for non-small cell lung carcinoma. An evaluation of pooled data from 132 published in vitro experiments shows a consistent improvement in the cytotoxicity of γδ T cells in the presence of antitumor antibodies. Immunotherapy using γδ T cells alone shows promising clinical activity, but there is a strong preclinical rationale for combining this treatment modality with cancer-targeting antibodies to augment its efficacy.
Collapse
Affiliation(s)
| | | | | | - Kenth Gustafsson
- UCL Institute of Child Health; Molecular Immunology Unit; London, UK
| | | |
Collapse
|