1
|
Sharma J, Mudalagiriyappa S, Abdelaal HFM, Kelly TC, Choi W, Ponnuraj N, Vieson MD, Talaat AM, Nanjappa SG. E3 ubiquitin ligase CBLB regulates innate immune responses and bacterial dissemination during nontuberculous mycobacteria infection. J Leukoc Biol 2024; 115:1118-1130. [PMID: 38271280 PMCID: PMC11135617 DOI: 10.1093/jleuko/qiae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens causing pulmonary infection to fatal disseminated disease. NTM infections are steadily increasing in children and adults, and immune-compromised individuals are at a greater risk of fatal infections. The NTM disease's adverse pathology and resistance to antibiotics have further worsened the therapeutic measures. Innate immune regulators are potential targets for therapeutics to NTM, especially in a T cell-suppressed population, and many ubiquitin ligases modulate pathogenesis and innate immunity during infections, including mycobacterial infections. Here, we investigated the role of an E3 ubiquitin ligase, Casitas B-lineage lymphoma proto-oncogene B (CBLB), in immunocompromised mouse models of NTM infection. We found that CBLB is essential to prevent bacterial growth and dissemination. Cblb deficiency debilitated natural killer cells, inflammatory monocytes, and macrophages in vivo. However, Cblb deficiency in macrophages did not wane its ability to inhibit bacterial growth or production of reactive oxygen species or interferon γ production by natural killer cells in vitro. CBLB restricted NTM growth and dissemination by promoting early granuloma formation in vivo. Our study shows that CBLB bolsters innate immune responses and helps prevent the dissemination of NTM during compromised T cell immunity.
Collapse
Affiliation(s)
- Jaishree Sharma
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Srinivasu Mudalagiriyappa
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Hazem F M Abdelaal
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, United States
| | - Thomas C Kelly
- Integrative Biology Honors Program, University Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Woosuk Choi
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Miranda D Vieson
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Adel M Talaat
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, United States
| | - Som Gowda Nanjappa
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| |
Collapse
|
2
|
Zhou L, Yang J, Zhang K, Wang T, Jiang S, Zhang X. Rising Star in Immunotherapy: Development and Therapeutic Potential of Small-Molecule Inhibitors Targeting Casitas B Cell Lymphoma-b (Cbl-b). J Med Chem 2024; 67:816-837. [PMID: 38181380 DOI: 10.1021/acs.jmedchem.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Casitas B cell lymphoma-b (Cbl-b) is a vital negative regulator of TCR and BCR signaling pathways, playing a significant role in setting an appropriate threshold for the activation of T cells and controlling the tolerance of peripheral T cells via a variety of mechanisms. Overexpression of Cbl-b leads to immune hyporesponsiveness of T cells. Conversely, the deficiency of Cbl-b in T cells results in markedly increased production of IL-2, even in the lack of CD28 costimulation in vitro. And Cbl-b-/- mice spontaneously reject multifarious cancers. Therefore, Cbl-b may be associated with immune-mediated diseases, and blocking Cbl-b could be considered as a new antitumor immunotherapy strategy. In this review, the possible regulatory mechanisms and biological potential of Cbl-b for antitumor immunotherapy are summarized. Besides, the potential roles of Cbl-b in immune-mediated diseases are comprehensively discussed, with emphasis on Cbl-b immune-oncology agents in the preclinical stage and clinical trials.
Collapse
Affiliation(s)
- Lixin Zhou
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jiamei Yang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Jie Z. Role of Ubiquitin Signaling in Modulating Dendritic Cell Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:101-111. [PMID: 39546138 DOI: 10.1007/978-981-97-7288-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
As a professional antigen-presenting cell, dendritic cell (DC) plays an essential role in the connection of innate and adaptive immune responses. Ubiquitination is a post-translational mechanism of protein modification that plays a pivotal role in regulating DC maturation and function. To date, considerable progress has been made in understanding the underlying mechanisms of ubiquitination in modulating the function of DC in various diseases. Recent studies have emphasized that ubiquitin signaling in DCs plays crucial roles in regulating immune tolerance and functions, which can be promising targets for DC-based immunotherapy. In this chapter, we will focus on discussing the recent progress regarding the molecular mechanisms and functions of ubiquitination in DC-mediated immune homeostasis and responses.
Collapse
Affiliation(s)
- Zuliang Jie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
4
|
Henry CM, Castellanos CA, Buck MD, Giampazolias E, Frederico B, Cardoso A, Rogers NC, Schulz O, Lee S, Canton J, Faull P, Snijders AP, Mohapatra B, Band H, Reis E Sousa C. SYK ubiquitination by CBL E3 ligases restrains cross-presentation of dead cell-associated antigens by type 1 dendritic cells. Cell Rep 2023; 42:113506. [PMID: 38019655 DOI: 10.1016/j.celrep.2023.113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Cross-presentation of dead cell-associated antigens by conventional dendritic cells type 1 (cDC1s) is critical for CD8+ T cells response against many tumors and viral infections. It is facilitated by DNGR-1 (CLEC9A), an SYK-coupled cDC1 receptor that detects dead cell debris. Here, we report that DNGR-1 engagement leads to rapid activation of CBL and CBL-B E3 ligases to cause K63-linked ubiquitination of SYK and terminate signaling. Genetic deletion of CBL E3 ligases or charge-conserved mutation of target lysines within SYK abolishes SYK ubiquitination and results in enhanced DNGR-1-dependent antigen cross-presentation. We also find that cDC1 deficient in CBL E3 ligases are more efficient at cross-priming CD8+ T cells to dead cell-associated antigens and promoting host resistance to tumors. Our findings reveal a role for CBL-dependent ubiquitination in limiting cross-presentation of dead cell-associated antigens and highlight an axis of negative regulation of cDC1 activity that could be exploited to increase anti-tumor immunity.
Collapse
Affiliation(s)
- Conor M Henry
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carlos A Castellanos
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael D Buck
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Evangelos Giampazolias
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bruno Frederico
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Neil C Rogers
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Oliver Schulz
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sonia Lee
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Johnathan Canton
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Faull
- Protein Analysis and Proteomics Labaratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Labaratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bhopal Mohapatra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
5
|
Xu F, Liu C, Dong Y, Wu W, Xu J, Yan Y, Shao Y, Hao C, Yang Y, Zhang J. Ablation of Cbl-b and c-Cbl in dendritic cells causes spontaneous liver cirrhosis via altering multiple properties of CD103 + cDC1s. Cell Death Dis 2022; 8:142. [PMID: 35354799 PMCID: PMC8967913 DOI: 10.1038/s41420-022-00953-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 12/02/2022]
Abstract
The Casitas B-lineage lymphoma (Cbl) family proteins are E3 ubiquitin ligases implicated in the regulation of various immune cells. However, their function in dendritic cells (DCs) remains unclear. To investigate the role of Cbl family members in DCs, we created dendritic cell double-deficient Casitas B lymphoma-b (Cbl-b) and Casitas B lineage lymphoma (c-Cbl) mice by crossing Cbl-b−/− mice with c-Cblflox/flox CD11c-Cre+ mice. We found that specific deletion of Cbl-b and c-Cbl in CD11c+ cells, predominantly in DCs, led to liver fibrosis, cirrhosis, and accumulation of systemic conventional Type I DCs (cDC1s) due to enhanced cell proliferation and decreased cell apoptosis. In addition to a change in DC number, double knockout (dKO) cDC1s exhibited a partially activated status as indicated by high basal expression levels of certain cytokines and possessed an enhanced capacity to prime T cells. After adoptive transfer, dKO cDC1s could drive liver fibrosis too. In further experiments, we demonstrated that Cbl-b and c-Cbl could target signal transducer and activator of transcription 5 (STAT5), a transcriptional repressor for the pro-apoptotic protein Bim, to promote ubiquitination-mediated degradation and cell apoptosis in cDC1s. Further extensive experiments revealed that Cbl-b mediated K27-linked ubiquitination of lysine 164 of STAT5a while c-Cbl induced K29-linked ubiquitination of lysine 696 of STAT5a and K27-linked ubiquitination of lysine 140 and 694 of STAT5b. Thus, our findings indicate a functional redundancy of Cbl-b and c-Cbl in cDC homeostasis and maturation.
Collapse
Affiliation(s)
- Fei Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Chen Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Yongli Dong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Wenyan Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Jie Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Yunqiu Yan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Yu Shao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, People's Republic of China.
| | - Yi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China.
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
6
|
Kumar J, Kumar R, Kumar Singh A, Tsakem EL, Kathania M, Riese MJ, Theiss AL, Davila ML, Venuprasad K. Deletion of Cbl-b inhibits CD8 + T-cell exhaustion and promotes CAR T-cell function. J Immunother Cancer 2021; 9:jitc-2020-001688. [PMID: 33462140 PMCID: PMC7813298 DOI: 10.1136/jitc-2020-001688] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Background Chimeric antigen receptor (CAR) T-cell therapy is an emerging option for cancer treatment, but its efficacy is limited, especially in solid tumors. This is partly because the CAR T cells become dysfunctional and exhausted in the tumor microenvironment. However, the key pathways responsible for impaired function of exhausted cells remain unclear, which is essential to overcome CAR T-cell exhaustion. Methods Analysis of RNA-sequencing data from CD8+ tumor-infiltrating lymphocytes (TILs) led to identification of Cbl-b as a potential target. The sequencing data were validated using a syngeneic MC38 colon cancer model. To analyze the in vivo role of Cbl-b in T-cell exhaustion, tumor growth, % PD1+Tim3+ cells, and expression of effector cytokines were analyzed in cbl-b+/+ and cbl-b–/– mice. To evaluate the therapeutic potential of Cbl-b depletion, we generated a new CAR construct, hCEAscFv-CD28-CD3ζ.GFP, that recognizes human carcinoembryonic antigen (CEA). cbl-b+/+ and cbl-b–/– CEA-CAR T cells were generated by retroviral transduction. Rag–/– mice bearing MC38-CEA cells were injected with cbl-b+/+ and cbl-b–/–; CEA-CAR T cells, tumor growth, % PD1+Tim3+ cells and expression of effector cytokines were analyzed. Results Our results show that the E3 ubiquitin ligase Cbl-b is upregulated in exhausted (PD1+Tim3+) CD8+ TILs. CRISPR-Cas9-mediated inhibition of Cbl-b restores the effector function of exhausted CD8+ TILs. Importantly, the reduced growth of syngeneic MC38 tumors in cbl-b–/– mice was associated with a marked reduction of PD1+Tim3+ CD8+ TILs. Depletion of Cbl-b inhibited CAR T-cell exhaustion, resulting in reduced MC38-CEA tumor growth, reduced PD1+Tim3+ cells and increased expression of interferon gamma, tumor necrosis factor alpha, and increased tumor cell killing. Conclusion Our studies demonstrate that deficiency of Cbl-b overcomes endogenous CD8+ T-cell exhaustion, and deletion of Cbl-b in CAR T cells renders them resistant to exhaustion. Our results could facilitate the development of efficient CAR T-cell therapy for solid tumors by targeting Cbl-b.
Collapse
Affiliation(s)
- Jitendra Kumar
- Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.,Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ritesh Kumar
- Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.,Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Amir Kumar Singh
- Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.,Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Elviche L Tsakem
- Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.,Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mahesh Kathania
- Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.,Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew J Riese
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Marco L Davila
- Blood & Marrow Transplantation and Cellular Immunotherapy, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - K Venuprasad
- Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA .,Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Jafari D, Mousavi MJ, Keshavarz Shahbaz S, Jafarzadeh L, Tahmasebi S, Spoor J, Esmaeilzadeh A. E3 ubiquitin ligase Casitas B lineage lymphoma-b and its potential therapeutic implications for immunotherapy. Clin Exp Immunol 2021; 204:14-31. [PMID: 33306199 DOI: 10.1111/cei.13560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
The distinction of self from non-self is crucial to prevent autoreactivity and ensure protection from infectious agents and tumors. Maintaining the balance between immunity and tolerance of immune cells is strongly controlled by several sophisticated regulatory mechanisms of the immune system. Among these, the E3 ligase ubiquitin Casitas B cell lymphoma-b (Cbl-b) is a newly identified component in the ubiquitin-dependent protein degradation system, which is thought to be an important negative regulator of immune cells. An update on the current knowledge and new concepts of the relevant immune homeostasis program co-ordinated by Cbl-b in different cell populations could pave the way for future immunomodulatory therapies of various diseases, such as autoimmune and allergic diseases, infections, cancers and other immunopathological conditions. In the present review, the latest findings are comprehensively summarized on the molecular structural basis of Cbl-b and the suppressive signaling mechanisms of Cbl-b in physiological and pathological immune responses, as well as its emerging potential therapeutic implications for immunotherapy in animal models and human diseases.
Collapse
Affiliation(s)
- D Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Immunotherapy Research and Technology Group, Zanjan University of Medical Sciences, Zanjan, Iran
| | - M J Mousavi
- Department of Hematology, Faculty of Allied medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Keshavarz Shahbaz
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - L Jafarzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Tahmasebi
- Department of Immunology, School of public health, Tehran University of Medical Sciences, Tehran, Iran
| | - J Spoor
- Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - A Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Immunotherapy Research and Technology Group, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
8
|
Zhu B, Zhu L, Xia L, Xiong Y, Yin Q, Rui K. Roles of Ubiquitination and Deubiquitination in Regulating Dendritic Cell Maturation and Function. Front Immunol 2020; 11:586613. [PMID: 33329564 PMCID: PMC7717991 DOI: 10.3389/fimmu.2020.586613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that play a key role in immune homeostasis and the adaptive immune response. DC-induced immune tolerance or activation is strictly dependent on the distinct maturation stages and migration ability of DCs. Ubiquitination is a reversible protein post-translational modification process that has emerged as a crucial mechanism that regulates DC maturation and function. Recent studies have shown that ubiquitin enzymes, including E3 ubiquitin ligases and deubiquitinases (DUBs), are pivotal regulators of DC-mediated immune function and serve as potential targets for DC-based immunotherapy of immune-related disorders (e.g., autoimmune disease, infections, and tumors). In this review, we summarize the recent progress regarding the molecular mechanisms and function of ubiquitination in DC-mediated immune homeostasis and immune response.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| | - Yuyun Xiong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qing Yin
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
E3 Ubiquitin Ligase c-cbl Inhibits Microglia Activation After Chronic Constriction Injury. Neurochem Res 2018; 43:1631-1640. [PMID: 29934689 DOI: 10.1007/s11064-018-2578-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
Abstract
E3 ubiquitin ligase c-Caritas B cell lymphoma (c-cbl) is associated with negative regulation of receptor tyrosine kinases, signal transduction of antigens and cytokine receptors, and immune response. However, the expression and function of c-cbl in the regulation of neuropathic pain after chronic constriction injury (CCI) are unknown. In rat CCI model, c-cbl inhibited the activation of spinal cord microglia and the release of pro-inflammatory factors including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), which alleviated mechanical and heat pain through down-regulating extracellular signal-regulated kinase (ERK) pathway. Additionally, exogenous TNF-α inhibited c-cbl protein level vice versa. In the primary microglia transfected with c-cbl siRNA, when treated with TNF-α or TNF-α inhibitor, the corresponding secretion of IL-1β and IL-6 did not change. In summary, CCI down-regulated c-cbl expression and induced the activation of microglia, then activated microglia released inflammatory factors via ERK signaling to cause pain. Our data might supply a novel molecular target for the therapy of CCI-induced neuropathic pain.
Collapse
|
10
|
Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat Med 2016; 22:915-23. [PMID: 27428901 DOI: 10.1038/nm.4134] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 12/14/2022]
Abstract
Fungal infections claim an estimated 1.5 million lives each year. Mechanisms that protect from fungal infections are still elusive. Recognition of fungal pathogens relies on C-type lectin receptors (CLRs) and their downstream signaling kinase SYK. Here we report that the E3 ubiquitin ligase CBLB controls proximal CLR signaling in macrophages and dendritic cells. We show that CBLB associates with SYK and ubiquitinates SYK, dectin-1, and dectin-2 after fungal recognition. Functionally, CBLB deficiency results in increased inflammasome activation, enhanced reactive oxygen species production, and increased fungal killing. Genetic deletion of Cblb protects mice from morbidity caused by cutaneous infection and markedly improves survival after a lethal systemic infection with Candida albicans. On the basis of these findings, we engineered a cell-permeable CBLB inhibitory peptide that protects mice from lethal C. albicans infections. We thus describe a key role for Cblb in the regulation of innate antifungal immunity and establish a novel paradigm for the treatment of fungal sepsis.
Collapse
|
11
|
Zhu LL, Luo TM, Xu X, Guo YH, Zhao XQ, Wang TT, Tang B, Jiang YY, Xu JF, Lin X, Jia XM. E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor-mediated antifungal innate immunity. J Exp Med 2016; 213:1555-70. [PMID: 27432944 PMCID: PMC4986534 DOI: 10.1084/jem.20151932] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/15/2016] [Indexed: 12/19/2022] Open
Abstract
Innate immune responses mediated by C-type lectin receptors Dectin-2 and Dectin-3 against fungal infections are negatively regulated by Cbl-b ubiquitination. Activation of various C-type lectin receptors (CLRs) initiates potent proinflammatory responses against various microbial infections. However, how activated CLRs are negatively regulated remains unknown. In this study, we report that activation of CLRs Dectin-2 and Dectin-3 by fungi infections triggers them for ubiquitination and degradation in a Syk-dependent manner. Furthermore, we found that E3 ubiquitin ligase Casitas B–lineage lymphoma protein b (Cbl-b) mediates the ubiquitination of these activated CLRs through associating with each other via adapter protein FcR-γ and tyrosine kinase Syk, and then the ubiquitinated CLRs are sorted into lysosomes for degradation by an endosomal sorting complex required for transport (ESCRT) system. Therefore, the deficiency of either Cbl-b or ESCRT subunits significantly decreases the degradation of activated CLRs, thereby resulting in the higher expression of proinflammatory cytokines and inflammation. Consistently, Cbl-b–deficient mice are more resistant to fungi infections compared with wild-type controls. Together, our study indicates that Cbl-b negatively regulates CLR-mediated antifungal innate immunity, which provides molecular insight for designing antifungal therapeutic agents.
Collapse
Affiliation(s)
- Le-Le Zhu
- Institute for Immunology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Tian-Ming Luo
- Institute for Immunology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China
| | - Xia Xu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ya-Hui Guo
- Institute for Immunology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China
| | - Xue-Qiang Zhao
- Institute for Immunology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China
| | - Ting-Ting Wang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Bing Tang
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan-Ying Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jin-Fu Xu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xin Lin
- Institute for Immunology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xin-Ming Jia
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
12
|
Dong L, Li YZ, An HT, Wang YL, Chen SH, Qian YJ, Wang K, Zhen JL, Fan Z, Gong XL, Zheng Y, Wang XM. The E3 Ubiquitin Ligase c-Cbl Inhibits Microglia-Mediated CNS Inflammation by Regulating PI3K/Akt/NF-κB Pathway. CNS Neurosci Ther 2016; 22:661-9. [PMID: 27156691 DOI: 10.1111/cns.12557] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Microglia-mediated inflammation may play an important role in the pathophysiology progression of neurodegenerative diseases, such as Parkinson's disease (PD), but the molecular mechanisms are poorly understood. AIMS This study sought to determine whether E3 ubiquitin ligase c-Cbl plays a role in the brain inflammation and to explore the relevant molecular mechanism. METHODS After BV2 microglial cells and c-Cbl-deficient mice were treated with lipopolysaccharide (LPS), neuroinflammation and microglial activation were evaluated by immunohistochemistry, ELISA and Western blot. We further investigated the possible mechanism of c-Cbl in regulating microglial activation. RESULTS Here, we showed that the E3 ubiquitin ligase c-Cbl had high expression in brain tissues including substantia nigra pars compacta (SNc), striatum and hippocampus, and it was abundantly expressed in microglia. Systemic LPS administration resulted in more severe microglial activation in CNS and increased expression of brain proinflammatory factors (TNF-α, IL-6, IL-1β and MCP-1) in c-Cbl knockout mice than wild type mice (WT). Downregulation of c-Cbl expression with c-Cbl siRNA in BV-2 microglial cells demonstrated a more robust increase in the proinflammatory factors release and NF-κB p65 nuclear translocation than that in control siRNA. Interestingly, Akt phosphorylation induced by LPS was also significantly augmented after c-Cbl knockdown. Moreover, blockade of PI3K/Akt activation by LY294002 significantly reduced inflammation response and NF-κB p65 nuclear translocation. CONCLUSION In sum, c-Cbl inhibits expression of LPS-stimulated proinflammatory cytokines and chemokines in microglia. We demonstrate an unprecedented role for c-Cbl in microglia-mediated neuroinflammation involving PI3K/Akt/NF-κB pathway.
Collapse
Affiliation(s)
- Lin Dong
- Department of Neurobiology, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Yu-Zhen Li
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Ting An
- Department of Neurobiology, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Ya-Long Wang
- Department of Neurobiology, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Shi-Hao Chen
- Department of Neurobiology, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Yan-Jing Qian
- Department of Neurobiology, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Ke Wang
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Department of Physiology, Capital Medical University, Beijing, China
| | - Jun-Li Zhen
- Department of Neurobiology, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Zheng Fan
- Department of Pharmacology, Capital Medical University, Beijing, China
| | - Xiao-Li Gong
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Department of Physiology, Capital Medical University, Beijing, China
| | - Yan Zheng
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Department of Physiology, Capital Medical University, Beijing, China
| | - Xiao-Min Wang
- Department of Neurobiology, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
13
|
Lutz-Nicoladoni C, Wolf D, Sopper S. Modulation of Immune Cell Functions by the E3 Ligase Cbl-b. Front Oncol 2015; 5:58. [PMID: 25815272 PMCID: PMC4356231 DOI: 10.3389/fonc.2015.00058] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/24/2015] [Indexed: 01/10/2023] Open
Abstract
Maintenance of immunological tolerance is a critical hallmark of the immune system. Several signaling checkpoints necessary to balance activating and inhibitory input to immune cells have been described so far, among which the E3 ligase Cbl-b appears to be a central player. Cbl-b is expressed in all leukocyte subsets and regulates several signaling pathways in T cells, NK cells, B cells, and different types of myeloid cells. In most cases, Cbl-b negatively regulates activation signals through antigen or pattern recognition receptors and co-stimulatory molecules. In line with this function, cblb-deficient immune cells display lower activation thresholds and cblb knockout mice spontaneously develop autoimmunity and are highly susceptible to experimental autoimmunity. Interestingly, genetic association studies link CBLB-polymorphisms with autoimmunity also in humans. Vice versa, the increased activation potential of cblb-deficient cells renders them more potent to fight against malignancies or infections. Accordingly, several reports have shown that cblb knockout mice reject tumors, which mainly depends on cytotoxic T and NK cells. Thus, targeting Cbl-b may be an interesting strategy to enhance anti-cancer immunity. In this review, we summarize the findings on the molecular function of Cbl-b in different cell types and illustrate the potential of Cbl-b as target for immunomodulatory therapies.
Collapse
Affiliation(s)
- Christina Lutz-Nicoladoni
- Department of Hematology and Oncology, Medical University Innsbruck , Innsbruck , Austria ; Tumor Immunology Laboratory, Tyrolean Cancer Research Institute , Innsbruck , Austria
| | - Dominik Wolf
- Medical Clinic III for Oncology, Haematology and Rheumatology, University Clinic Bonn (UKB) , Bonn , Germany
| | - Sieghart Sopper
- Department of Hematology and Oncology, Medical University Innsbruck , Innsbruck , Austria ; Tumor Immunology Laboratory, Tyrolean Cancer Research Institute , Innsbruck , Austria
| |
Collapse
|
14
|
Zhang W, Du JY, Jiang Z, Okimura T, Oda T, Yu Q, Jin JO. Ascophyllan purified from Ascophyllum nodosum induces Th1 and Tc1 immune responses by promoting dendritic cell maturation. Mar Drugs 2014; 12:4148-64. [PMID: 25026264 PMCID: PMC4113820 DOI: 10.3390/md12074148] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/06/2014] [Accepted: 06/25/2014] [Indexed: 12/11/2022] Open
Abstract
Marine-derived sulfated polysaccharides have been shown to possess certain anti-virus, anti-tumor, anti-inflammatory and anti-coagulant activities. However, the in vivo immunomodulatory effects of marine-derived pure compounds have been less well characterized. In this study, we investigated the effect of ascophyllan, a sulfated polysaccharide purified from Ascophyllum nodosum, on the maturation of mouse dendritic cells (DCs) in vitro and in vivo. Ascophyllan induced up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in bone marrow-derived DCs (BMDCs). Moreover, in vivo administration of ascophyllan promotes up-regulation of CD40, CD80, CD86, MHC class I and MHC class II and production of IL-6, IL-12 and TNF-α in spleen cDCs. Interestingly, ascophyllan induced a higher degree of co-stimulatory molecule up-regulation and pro-inflammatory cytokine production than fucoidan, a marine-derived polysaccharide with well-defined effect for promoting DC maturation. Ascophyllan also promoted the generation of IFN-γ-producing Th1 and Tc1 cells in the presence of DCs in an IL-12-dependent manner. Finally, myeloid differentiation primary response 88 (MyD88) signaling pathway was essential for DC maturation induced by ascophyllan. Taken together, these results demonstrate that ascophyllan induces DC maturation, and consequently enhances Th1 and Tc1 responses in vivo. This knowledge could facilitate the development of novel therapeutic strategies to combat infectious diseases and cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China.
| | - Jiang-Yuan Du
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China.
| | - Zedong Jiang
- Division of Biochemistry, Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Takasi Okimura
- Research and Development Division, Hayashikane Sangyo Co., Ltd., Shimonoseki, Yamaguchi 750-8608, Japan.
| | - Tatsuya Oda
- Division of Biochemistry, Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Qing Yu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China.
| |
Collapse
|