1
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
2
|
Bakavayev S, Argueti S, Venkatachalam N, Yehezkel G, Stavsky A, Barak Z, Israelson A, Engel S. Exposure of β6/β7-Loop in Zn/Cu Superoxide Dismutase (SOD1) Is Coupled to Metal Loss and Is Transiently Reversible During Misfolding. ACS Chem Neurosci 2021; 12:49-62. [PMID: 33326235 DOI: 10.1021/acschemneuro.0c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upon losing its structural integrity (misfolding), SOD1 acquires neurotoxic properties to become a pathogenic protein in ALS, a neurodegenerative disease targeting motor neurons; understanding the mechanism of misfolding may enable new treatment strategies for ALS. Here, we reported a monoclonal antibody, SE21, targeting the β6/β7-loop region of SOD1. The exposure of this region is coupled to metal loss and is entirely reversible during the early stages of misfolding. By using SE21 mAb, we demonstrated that, in apo-SOD1 incubated under the misfolding-promoting conditions, the reversible phase, during which SOD1 is capable of restoring its nativelike conformation in the presence of metals, is followed by an irreversible structural transition, autocatalytic in nature, which takes place prior to the onset of SOD1 aggregation and results in the formation of atypical apo-SOD1 that is unable to bind metals. The reversible phase defines a window of opportunity for pharmacological intervention using metal mimetics that stabilize SOD1 structure in its nativelike conformation to attenuate the spreading of the misfolding signal and disease progression by preventing the exposure of pathogenic SOD1 epitopes. Phenotypically similar apo-SOD1 species with impaired metal binding properties may also be produced via oxidation of Cys111, underscoring the diversity of SOD1 misfolding pathways.
Collapse
Affiliation(s)
- Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nachiyappan Venkatachalam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
3
|
Xu WC, Liang JZ, Li C, He ZX, Yuan HY, Huang BY, Liu XL, Tang B, Pang DW, Du HN, Yang Y, Chen J, Wang L, Zhang M, Liang Y. Pathological hydrogen peroxide triggers the fibrillization of wild-type SOD1 via sulfenic acid modification of Cys-111. Cell Death Dis 2018; 9:67. [PMID: 29358575 PMCID: PMC5833406 DOI: 10.1038/s41419-017-0106-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) involves the abnormal posttranslational modifications and fibrillization of copper, zinc superoxide dismutase (SOD1) and TDP-43. However, how SOD1-catalyzed reaction product hydrogen peroxide affects amyloid formation of SOD1 and TDP-43 remains elusory. 90% of ALS cases are sporadic and the remaining cases are familial ALS. In this paper, we demonstrate that H2O2 at pathological concentrations triggers the fibrillization of wild-type SOD1 both in vitro and in SH-SY5Y cells. Using an anti-dimedone antibody that detects sulfenic acid modification of proteins, we found that Cys-111 in wild-type SOD1 is oxidized to C-SOH by pathological concentration of H2O2, followed by the formation of sulfenic acid modified SOD1 oligomers. Furthermore, we show that such SOD1 oligomers propagate in a prion-like manner, and not only drive wild-type SOD1 to form fibrils in the cytoplasm but also induce cytoplasm mislocalization and the subsequent fibrillization of wild-type TDP-43, thereby inducing apoptosis of living cells. Thus, we propose that H2O2 at pathological concentrations triggers the fibrillization of wild-type SOD1 and subsequently induces SOD1 toxicity and TDP-43 toxicity in neuronal cells via sulfenic acid modification of Cys-111 in SOD1. Our Western blot and ELISA data demonstrate that sulfenic acid modified wild-type SOD1 level in cerebrospinal fluid of 15 sporadic ALS patients is significantly increased compared with 6 age-matched control patients. These findings can explain how H2O2 at pathologic concentrations regulates the misfolding and toxicity of SOD1 and TDP-43 associated with ALS, and suggest that sulfenic acid modification of wild-type SOD1 should play pivotal roles in the pathogenesis of sporadic ALS.
Collapse
Affiliation(s)
- Wen-Chang Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jin-Zhao Liang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhi-Xin He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Han-Ye Yuan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ben-Yan Huang
- Department of Neurology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Ling Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi Yang
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhang
- Department of Neurology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Kim JM, Billington E, Reyes A, Notarianni T, Sage J, Agbas E, Taylor M, Monast I, Stanford JA, Agbas A. Impaired Cu-Zn Superoxide Dismutase (SOD1) and Calcineurin (Cn) Interaction in ALS: A Presumed Consequence for TDP-43 and Zinc Aggregation in Tg SOD1 G93A Rodent Spinal Cord Tissue. Neurochem Res 2018; 44:228-233. [PMID: 29299811 PMCID: PMC6345727 DOI: 10.1007/s11064-017-2461-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
Impaired interactions between Calcineurin (Cn) and (Cu/Zn) superoxide dismutase (SOD1) are suspected to be responsible for the formation of hyperphosphorylated protein aggregation in amyotrophic lateral sclerosis (ALS). Serine (Ser)- enriched phosphorylated TDP-43 protein aggregation appears in the spinal cord of ALS animal models, and may be linked to the reduced phosphatase activity of Cn. The mutant overexpressed SOD1G93A protein does not properly bind zinc (Zn) in animal models; hence, mutant SOD1G93A–Cn interaction weakens. Consequently, unstable Cn fails to dephosphorylate TDP-43 that yields hyperphosphorylated TDP-43 aggregates. Our previous studies had suggested that Cn and SOD1 interaction was necessary to keep Cn enzyme functional. We have observed low Cn level, increased Zn concentrations, and increased TDP-43 protein levels in cervical, thoracic, lumbar, and sacral regions of the spinal cord tissue homogenates. This study further supports our previously published work indicating that Cn stability depends on functional Cn–SOD1 interaction because Zn is crucial for maintaining the Cn stability. Less active Cn did not efficiently dephosphorylate TDP-43; hence TDP-43 aggregations appeared in the spinal cord tissue.
Collapse
Affiliation(s)
- Jolene M Kim
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - Elizabeth Billington
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - Ada Reyes
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - Tara Notarianni
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - Jessica Sage
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - Emre Agbas
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Michael Taylor
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - Ian Monast
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - John A Stanford
- University of Kansas Medical Center, 3901 Rainbow Blvd., 2096 HLSIC, Kansas City, KS, 66160, USA
| | - Abdulbaki Agbas
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA.
| |
Collapse
|
5
|
Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1 G93A rat. Neuroscience 2017; 357:37-55. [PMID: 28576725 DOI: 10.1016/j.neuroscience.2017.05.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology.
Collapse
|
6
|
Moderate modulation of disease in the G93A model of ALS by the compound 2-(2-hydroxyphenyl)-benzoxazole (HBX). Neurosci Lett 2016; 624:1-7. [DOI: 10.1016/j.neulet.2016.04.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/03/2023]
|
7
|
Structural and functional analysis of human SOD1 in amyotrophic lateral sclerosis. PLoS One 2013; 8:e81979. [PMID: 24312616 PMCID: PMC3846731 DOI: 10.1371/journal.pone.0081979] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/21/2013] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with familial inheritance (fALS) in 5% to 10% of cases; 25% of those are caused by mutations in the superoxide dismutase 1 (SOD1) protein. More than 100 mutations in the SOD1 gene have been associated with fALS, altering the geometry of the active site, protein folding and the interaction between monomers. We performed a functional analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in 124 fALS SOD1 mutants. Eleven different algorithms were used to estimate the functional impact of the replacement of one amino acid on protein structure: SNPs&GO, PolyPhen-2, SNAP, PMUT, Sift, PhD-SNP, nsSNPAnalyzer, TANGO, WALTZ, LIMBO and FoldX. For the structural analysis, theoretical models of 124 SNPs of SOD1 were created by comparative modeling using the MHOLline workflow, which includes Modeller and Procheck. Models were aligned with the native protein by the TM-align algorithm. A human-curated database was developed using the server side include in Java, JMOL. The results of this functional analysis indicate that the majority of the 124 natural mutants are harmful to the protein structure and thus corroborate the correlation between the reported mutations and fALS. In the structural analysis, all models showed conformational changes when compared to wild-type SOD1, and the degree of structural alignment varied between them. The SOD1 database converge structural and functional analyses of SOD1; it is a vast resource for the molecular analysis of amyotrophic lateral sclerosis, which allows the user to expand his knowledge on the molecular basis of the disease. The SOD1 database is available at http://bioinfogroup.com/database.
Collapse
|
8
|
Ma Q, Hu JY, Chen J, Liang Y. The role of crowded physiological environments in prion and prion-like protein aggregation. Int J Mol Sci 2013; 14:21339-52. [PMID: 24284393 PMCID: PMC3856008 DOI: 10.3390/ijms141121339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 01/07/2023] Open
Abstract
Prion diseases and prion- like protein misfolding diseases are related to the accumulation of abnormal aggregates of the normal host proteins including prion proteins and Tau protein. These proteins possess self-templating and transmissible characteristics. The crowded physiological environments where the aggregation of these amyloidogenic proteins takes place can be imitated in vitro by the addition of macromolecular crowding agents such as inert polysaccharides. In this review, we summarize the aggregation of prion proteins in crowded physiological environments and discuss the role of macromolecular crowding in prion protein aggregation. We also summarize the aggregation of prion- like proteins including human Tau protein, human α-synuclein, and human copper, zinc superoxide dismutase under macromolecular crowding environments and discuss the role of macromolecular crowding in prion- like protein aggregation. The excluded-volume effects caused by macromolecular crowding could accelerate the aggregation of neurodegenerative disease-associated proteins while inhibiting the aggregation of the proteins that are not neurodegenerative disease-associated.
Collapse
Affiliation(s)
- Qian Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | |
Collapse
|
9
|
Tokuda E, Okawa E, Watanabe S, Ono SI. Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1. Hum Mol Genet 2013; 23:1271-85. [PMID: 24163136 DOI: 10.1093/hmg/ddt517] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over 170 mutations in superoxide dismutase-1 (SOD1) cause familial amyotrophic lateral sclerosis (ALS), a lethal motor neuron disease. Although the molecular properties of SOD1 mutants differ considerably, we have recently shown that intracellular copper dyshomeostasis is a common pathogenic feature of different SOD1 mutants. Thus, the potentiation of endogenous copper regulation could be a therapeutic strategy. In this study, we investigated the effects of the overexpression of metallothionein-I (MT-I), a major copper-regulating protein, on the disease course of a mouse model of ALS (SOD1(G93A)). Using double transgenic techniques, we found that the overexpression of MT-I in SOD1(G93A) mice significantly extended the lifespan and slowed disease progression, but the effects on disease onset were modest. Genetically induced MT-I normalized copper dyshomeostasis in the spinal cord without influencing SOD1 enzymatic activity. The overexpression of MT-I in SOD1(G93A) mice markedly attenuated the pathological features of the mice, including the death of motor neurons, the degeneration of ventral root axons, the atrophy of skeletal muscles, and the activation of glial cells. Double transgenic mice also showed a decreased level of SOD1 aggregates within the glial cells of the spinal cord. Furthermore, the overexpression of MT-I in SOD1(G93A) mice reduced the number of spheroid-shaped astrocytes cleaved by active caspase-3. We concluded that therapeutic strategies aimed at the potentiation of copper regulation by MT-I could be of benefit in cases of ALS caused by SOD1 mutations.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | | | | | | |
Collapse
|