1
|
Martin-Moya D, Ribot I. Investigating temporal bone variation of colonial populations from St-Lawrence Valley, Quebec: A 3D geometric morphometric approach. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24885. [PMID: 38146128 DOI: 10.1002/ajpa.24885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVES In Quebec, genetic and genealogical research are used to document migratory events and family structures since colonial times, because bioarchaeological analysis is limited by poor skeletal preservation. This article aims to fill this gap by exploring past population structure in the St-Lawrence Valley from the French (1683-1760) and British (1760-1867) regimes using morphological variation of well-preserved temporal bones. MATERIALS AND METHODS 3D geometric morphometrics shape data from seven populations (five Catholics of French descent and two Protestants of British descent; n = 214) were collected from temporal bones. Using Procrustes distances and both MANOVA and Discriminant Function Analysis, morphological differences were measured to calculate affinities patterns among populations. Shape variations were explored with between-group analysis, Mahalanobis distances and quantified by means of Fst estimates using Relethford-Blangero analysis. RESULTS Despite strong affinities between all Catholic cemeteries, all show divergent morphological regional diversity -especially Montreal and the fortified villages dedicated to its defense. Montreal exhibits low increase in morphological variance over three centuries. As our results show no morphological differences between the Catholic and the Protestant cemeteries in Montreal, this fact may highlight the potential presence of Irish or admixed individuals in Montreal cemeteries after the British takeover. DISCUSSION Patterns of morphological diversity highlighted that French colonists did not equally contribute to the descendant populations as reflected by significant interregional variation. Although historical records show that French and English-speaking populations did not tend to admix, morphological affinities between Protestants and Catholics in the beginning of the industrial era in Montreal could reflect the genetic contribution of Catholic Irish migrants. RESEARCH HIGHLIGHTS All Catholic cemeteries display distinct morphologies, highlighting differential contributions from French colonists and founder effects, which have increased regional differences. Montreal Catholic (French descent) and Protestant (English colonists) cemeteries show significant morphological affinities at the beginning of the industrial era. The Irish migration following the British conquest may explain morphological similarities observed between Catholic and Protestant cemeteries.
Collapse
Affiliation(s)
- Diane Martin-Moya
- Département d'Anthropologie, Laboratoire de Bioarchéologie Humaine, Université de Montréal, Montréal, Québec, Canada
| | - Isabelle Ribot
- Département d'Anthropologie, Laboratoire de Bioarchéologie Humaine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Anderson-Trocmé L, Nelson D, Zabad S, Diaz-Papkovich A, Kryukov I, Baya N, Touvier M, Jeffery B, Dina C, Vézina H, Kelleher J, Gravel S. On the genes, genealogies, and geographies of Quebec. Science 2023; 380:849-855. [PMID: 37228217 DOI: 10.1126/science.add5300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Population genetic models only provide coarse representations of real-world ancestry. We used a pedigree compiled from 4 million parish records and genotype data from 2276 French and 20,451 French Canadian individuals to finely model and trace French Canadian ancestry through space and time. The loss of ancestral French population structure and the appearance of spatial and regional structure highlights a wide range of population expansion models. Geographic features shaped migrations, and we find enrichments for migration, genetic, and genealogical relatedness patterns within river networks across regions of Quebec. Finally, we provide a freely accessible simulated whole-genome sequence dataset with spatiotemporal metadata for 1,426,749 individuals reflecting intricate French Canadian population structure. Such realistic population-scale simulations provide opportunities to investigate population genetics at an unprecedented resolution.
Collapse
Affiliation(s)
- Luke Anderson-Trocmé
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Dominic Nelson
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Shadi Zabad
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - Alex Diaz-Papkovich
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Ivan Kryukov
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Nikolas Baya
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Mathilde Touvier
- Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, University Paris Cité (CRESS), Bobigny, France
| | - Ben Jeffery
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Christian Dina
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Hélène Vézina
- BALSAC Project, Université du Québec á Chicoutimi, Chicoutimi, QC, Canada
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Simon Gravel
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| |
Collapse
|
3
|
Labuda D, Harding T, Milot E, Vézina H. The effective family size of immigrant founders predicts their long-term demographic outcome: From Québec settlers to their 20th-century descendants. PLoS One 2022; 17:e0266079. [PMID: 35507549 PMCID: PMC9067642 DOI: 10.1371/journal.pone.0266079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Population history reconstruction, using extant genetic diversity data, routinely relies on simple demographic models to project the past through ascending genealogical-tree branches. Because genealogy and genetics are intimately related, we traced descending genealogies of the Québec founders to pursue their fate and to assess their contribution to the present-day population. Focusing on the female and male founder lines, we observed important sex-biased immigration in the early colony years and documented a remarkable impact of these early immigrants on the genetic make-up of 20th-century Québec. We estimated the immigrants’ survival ratio as a proportion of lineages found in the 1931–60 Québec to their number introduced within the immigration period. We assessed the effective family size, EFS, of all immigrant parents and their Québec-born descendants. The survival ratio of the earliest immigrants was the highest and declined over centuries in association with the immigrants’ EFS. Parents with high EFS left plentiful married descendants, putting EFS as the most important variable determining the parental demographic success throughout time for generations ahead. EFS of immigrant founders appears to predict their long-term demographic and, consequently, their genetic outcome. Genealogically inferred immigrants’ "autosomal" genetic contribution to 1931–60 Québec from consecutive immigration periods follow the same yearly pattern as the corresponding maternal and paternal lines. Québec genealogical data offer much broader information on the ancestral diversity distribution than genetic scrutiny of a limited population sample. Genealogically inferred population history could assist studies of evolutionary factors shaping population structure and provide tools to target specific health interventions.
Collapse
Affiliation(s)
- Damian Labuda
- Centre de Recherche, CHU Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
- Département de Pédiatrie, Université de Montréal, Montreal, Québec, Canada
- * E-mail:
| | - Tommy Harding
- Centre de Recherche, CHU Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
- Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Emmanuel Milot
- Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Hélène Vézina
- Projet BALSAC, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| |
Collapse
|
4
|
Tremblay BL, Guénard F, Lamarche B, Pérusse L, Vohl MC. Weighted gene co-expression network analysis to explain the relationship between plasma total carotenoids and lipid profile. GENES AND NUTRITION 2019; 14:16. [PMID: 31086608 PMCID: PMC6505263 DOI: 10.1186/s12263-019-0639-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
Background Variability in circulating carotenoids may be attributable to several factors including, among others, genetic variants and lipid profile. However, relatively few studies have considered the impact of gene expression in the inter-individual variability in circulating carotenoids. Most studies considered expression of genes individually and ignored their high degree of interconnection. Weighted gene co-expression network analysis (WGCNA) is a systems biology method used for finding gene clusters with highly correlated expression levels and for relating them to phenotypic traits. The objective of the present observational study is to examine the relationship between plasma total carotenoid concentrations and lipid profile using WGCNA. Results Whole blood expression levels of 533 probes were associated with plasma total carotenoids. Among the four WGCNA distinct modules identified, turquoise, blue, and brown modules correlated with plasma high-density lipoprotein cholesterol (HDL-C) and total cholesterol. Probes showing a strong association with HDL-C and total cholesterol were also the most important elements of the brown and blue modules. A total of four and 29 hub genes associated with total carotenoids were potentially related to HDL-C and total cholesterol, respectively. Conclusions Expression levels of 533 probes were associated with plasma total carotenoid concentrations. Using WGCNA, four modules and several hub genes related to lipid and carotenoid metabolism were identified. This integrative analysis provides evidence for the potential role of gene co-expression in the relationship between carotenoids and lipid concentrations. Further studies and validation of the hub genes are needed. Electronic supplementary material The online version of this article (10.1186/s12263-019-0639-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bénédicte L Tremblay
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Frédéric Guénard
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Benoît Lamarche
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Louis Pérusse
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,3Department of Kinesiology, Laval University, 2300 rue de la Terrasse, Quebec City, QC G1V 0A6 Canada
| | - Marie-Claude Vohl
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| |
Collapse
|
5
|
Nelson D, Moreau C, de Vriendt M, Zeng Y, Preuss C, Vézina H, Milot E, Andelfinger G, Labuda D, Gravel S. Inferring Transmission Histories of Rare Alleles in Population-Scale Genealogies. Am J Hum Genet 2018; 103:893-906. [PMID: 30526866 DOI: 10.1016/j.ajhg.2018.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
Learning the transmission history of alleles through a family or population plays an important role in evolutionary, demographic, and medical genetic studies. Most classical models of population genetics have attempted to do so under the assumption that the genealogy of a population is unavailable and that its idiosyncrasies can be described by a small number of parameters describing population size and mate choice dynamics. Large genetic samples have increased sensitivity to such modeling assumptions, and large-scale genealogical datasets become a useful tool to investigate realistic genealogies. However, analyses in such large datasets are often intractable using conventional methods. We present an efficient method to infer transmission paths of rare alleles through population-scale genealogies. Based on backward-time Monte Carlo simulations of genetic inheritance, we use an importance sampling scheme to dramatically speed up convergence. The approach can take advantage of available genotypes of subsets of individuals in the genealogy including haplotype structure as well as information about the mode of inheritance and general prevalence of a mutation or disease in the population. Using a high-quality genealogical dataset of more than three million married individuals in the Quebec founder population, we apply the method to reconstruct the transmission history of chronic atrial and intestinal dysrhythmia (CAID), a rare recessive disease. We identify the most likely early carriers of the mutation and geographically map the expected carrier rate in the present-day French-Canadian population of Quebec.
Collapse
|
6
|
Tremblay BL, Guénard F, Lamarche B, Pérusse L, Vohl MC. Familial resemblances in human plasma metabolites are attributable to both genetic and common environmental effects. Nutr Res 2018; 61:22-30. [PMID: 30683436 DOI: 10.1016/j.nutres.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
Metabolites are of great importance for understanding the pathogenesis of several diseases. Understanding the genetic contribution to metabolite concentrations may provide insights into mechanisms of complex diseases. Several studies have investigated heritability of metabolites but none investigated potential influences of genetic and environmental factors on the relationship between metabolites and cardiometabolic (CM) risk factors. Thus, we tested the hypothesis that both genetic and common environmental effects contribute to the variance of plasma metabolite concentrations and that shared genetic and environmental effects explain their phenotypic correlations with CM risk factors. To test this hypothesis, variance component method and bivariate genetic analysis were performed in a family-based sample of 48 French Canadians from 16 families. Familial resemblances were computed for all 147 detected metabolites and 9 (acetylornithine, acylcarnitine C9, arginine, phosphatidylcholine acyl-alkyl C36:4, serotonin, lysophosphatidylcholine acyl C20:4, citrulline, asymmetric dimethylarginine, phosphatidylcholine acyl-alkyl C36:5) showed a significant familial effect (55.7%, 18.7%, and 37.0% for maximal heritability, genetic heritability, and common environmental effect, respectively). Citrulline, phosphatidylcholine acyl-alkyl C36:4, phosphatidylcholine acyl-alkyl C36:5, and serotonin had significant phenotypic correlations with CM risk factors. Citrulline had a positive genetic correlation with apolipoprotein B100, while phosphatidylcholine acyl-alkyl C36:5 had a positive environmental correlation with total cholesterol. In conclusion, familial resemblances in metabolite concentrations were mainly attributable to common environmental effect when considering metabolites with a significant familial effect. Common genetic and environmental factors may also influence the relationship between metabolites and CM risk factors.
Collapse
Affiliation(s)
- Bénédicte L Tremblay
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC, G1V 0A6, Canada.
| | - Frédéric Guénard
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC, G1V 0A6, Canada.
| | - Benoît Lamarche
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC, G1V 0A6, Canada.
| | - Louis Pérusse
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC, G1V 0A6, Canada; CHU de Québec Research Center - Endocrinology and Nephrology, 2705 Laurier Blvd, Quebec City, QC, G1V 4G2, Canada.
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC, G1V 0A6, Canada; CHU de Québec Research Center - Endocrinology and Nephrology, 2705 Laurier Blvd, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
7
|
Genetic and Common Environmental Contributions to Familial Resemblances in Plasma Carotenoid Concentrations in Healthy Families. Nutrients 2018; 10:nu10081002. [PMID: 30065157 PMCID: PMC6116158 DOI: 10.3390/nu10081002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 11/16/2022] Open
Abstract
Carotenoids have shown an interindividual variability that may be due to genetic factors. The only study that has reported heritability of serum α- and β-carotene has not considered the environmental component. This study aimed to estimate the contribution of both genetic and common environmental effects to the variance of carotenoid concentrations and to test whether their phenotypic correlations with cardiometabolic risk factors are explained by shared genetic and environmental effects. Plasma carotenoid concentrations (α-carotene, β-carotene, β-cryptoxanthin, lutein, lycopene, zeaxanthin, and total carotenoids) of 48 healthy subjects were measured. Heritability estimates of carotenoid concentrations were calculated using the variance component method. Lutein and lycopene showed a significant familial effect (p = 6 × 10-6 and 0.0043, respectively). Maximal heritability, genetic heritability, and common environmental effect were computed for lutein (88.3%, 43.8%, and 44.5%, respectively) and lycopene (45.2%, 0%, and 45.2%, respectively). Significant phenotypic correlations between carotenoid concentrations and cardiometabolic risk factors were obtained for β-cryptoxanthin, lycopene, and zeaxanthin. Familial resemblances in lycopene concentrations were mainly attributable to common environmental effects, while for lutein concentrations they were attributable to genetic and common environmental effects. Common genetic and environmental factors may influence carotenoids and cardiometabolic risk factors, but further studies are needed to better understand the potential impact on disease development.
Collapse
|
8
|
Leroux D. 'We've been here for 2,000 years': White settlers, Native American DNA and the phenomenon of indigenization. SOCIAL STUDIES OF SCIENCE 2018; 48:80-100. [PMID: 29316862 DOI: 10.1177/0306312717751863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Relying on a populace well-educated in family history based in ancestral genealogy, a robust national genomics sector has developed in Québec over the past decade-and-a-half. The same period roughly coincides with a fourfold increase in the number of individuals and organizations in the region self-identifying with a mixed-race form of indigeneity that is counter to existing Indigenous understandings of kinship and citizenship. This paper examines how recent efforts by genetic scientists, working on a multi-year research project on the 'diversity' of the Québec gene pool, intervene in complex settler-Indigenous relations by redefining indigeneity according to the logics of 'Native American DNA'. Specifically, I demonstrate how genetic scientists mobilize genes associated with Indigenous peoples in ways that support regional efforts to govern settler-Indigenous relations in favour of otherwise white settler claims to Indigenous lands.
Collapse
Affiliation(s)
- Darryl Leroux
- Department of Social Justice & Community Studies, Saint Mary's University, Halifax, NS, Canada
| |
Collapse
|
9
|
Gauvin H, Lefebvre JF, Moreau C, Lavoie EM, Labuda D, Vézina H, Roy-Gagnon MH. GENLIB: an R package for the analysis of genealogical data. BMC Bioinformatics 2015; 16:160. [PMID: 25971991 PMCID: PMC4431039 DOI: 10.1186/s12859-015-0581-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/22/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Founder populations have an important role in the study of genetic diseases. Access to detailed genealogical records is often one of their advantages. These genealogical data provide unique information for researchers in evolutionary and population genetics, demography and genetic epidemiology. However, analyzing large genealogical datasets requires specialized methods and software. The GENLIB software was developed to study the large genealogies of the French Canadian population of Quebec, Canada. These genealogies are accessible through the BALSAC database, which contains over 3 million records covering the whole province of Quebec over four centuries. Using this resource, extended pedigrees of up to 17 generations can be constructed from a sample of present-day individuals. RESULTS We have extended and implemented GENLIB as a package in the R environment for statistical computing and graphics, thus allowing optimal flexibility for users. The GENLIB package includes basic functions to manage genealogical data allowing, for example, extraction of a part of a genealogy or selection of specific individuals. There are also many functions providing information to describe the size and complexity of genealogies as well as functions to compute standard measures such as kinship, inbreeding and genetic contribution. GENLIB also includes functions for gene-dropping simulations. The goal of this paper is to present the full functionalities of GENLIB. We used a sample of 140 individuals from the province of Quebec (Canada) to demonstrate GENLIB's functions. Ascending genealogies for these individuals were reconstructed using BALSAC, yielding a large pedigree of 41,523 individuals. Using GENLIB's functions, we provide a detailed description of these genealogical data in terms of completeness, genetic contribution of founders, relatedness, inbreeding and the overall complexity of the genealogical tree. We also present gene-dropping simulations based on the whole genealogy to investigate identical-by-descent sharing of alleles and chromosomal segments of different lengths and estimate probabilities of identical-by-descent sharing. CONCLUSIONS The R package GENLIB provides a user friendly and flexible environment to analyze extensive genealogical data, allowing an efficient and easy integration of different types of data, analytical methods and additional developments and making this tool ideal for genealogical analysis.
Collapse
Affiliation(s)
- Héloïse Gauvin
- Département de médecine sociale et préventive, Université de Montréal, Montréal, Québec, Canada.
- Centre de recherche, Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada.
| | - Jean-François Lefebvre
- Centre de recherche, Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada.
| | - Claudia Moreau
- Centre de recherche, Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada.
| | - Eve-Marie Lavoie
- BALSAC Project, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada.
| | - Damian Labuda
- Centre de recherche, Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada.
- Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada.
| | - Hélène Vézina
- BALSAC Project, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada.
| | - Marie-Hélène Roy-Gagnon
- Centre de recherche, Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada.
- School of Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cres, Room 101E, Ottawa, ON, K1G 5Z3, Canada.
| |
Collapse
|