1
|
Mohamed MA, Awadalla MKA, Mohamed MS, Elsaman T, Eltayib EM. Repurposing FDA-Approved Drugs for Eumycetoma Treatment: Homology Modeling and Computational Screening of CYP51 Inhibitors. Int J Mol Sci 2025; 26:315. [PMID: 39796172 PMCID: PMC11720416 DOI: 10.3390/ijms26010315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Eumycetoma, a chronic fungal infection caused by Madurella mycetomatis, is a neglected tropical disease characterized by tumor-like growths that can lead to permanent disability and deformities if untreated. Predominantly affecting regions in Africa, South America, and Asia, it imposes significant physical, social, and economic burdens. Current treatments, including antifungal drugs like itraconazole, often show variable efficacy, with severe cases necessitating surgical intervention or amputation. Drug discovery for eumycetoma faces challenges due to limited understanding of the disease's molecular mechanisms and the lack of 3D structures for key targets such as Madurella mycetomatis CYP51, a well-known target for azoles' antifungal agents. To address these challenges, this study employed computational approaches, including homology modeling, virtual screening, free energy calculations, and molecular dynamics simulations, to repurpose FDA-approved drugs as potential treatments for eumycetoma targeting Madurella mycetomatis CYP51. To this end, a library of 2619 FDA-approved drugs was screened, identifying three promising candidates: montelukast, vilanterol, and lidoflazine. These compounds demonstrated favorable binding affinities, strong interactions with critical residues of the homology model of Madurella mycetomatis CYP51, and stability in molecular dynamics simulations, offering potential for further investigation as effective therapeutic options for eumycetoma.
Collapse
Affiliation(s)
- Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | | | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (M.S.M.); (E.M.E.)
| | - Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (M.S.M.); (E.M.E.)
| |
Collapse
|
2
|
Zhang R, Wang Y, Wu A, Wang J, Zhang J. Strategies of targeting CYP51 for IFIs therapy: Emerging prospects, opportunities and challenges. Eur J Med Chem 2023; 259:115658. [PMID: 37480712 DOI: 10.1016/j.ejmech.2023.115658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
CYP51, a monooxygenase associated with the sterol synthesis pathway, is responsible for the catalysis of the 14-methyl hydroxylation reaction of lanosterol precursors. This enzyme is widely present in microorganisms, plants, and mammals. In mammals, CYP51 plays a role in cholesterol production, oligodendrocyte formation, oocyte maturation, and spermatogenesis. In fungal cells, CYP51 is an enzyme that synthesizes membrane sterols. By inhibiting fungal CYP51, ergosterol synthesis can be inhibited and ergosterol membrane fluidity is altered, resulting in fungal cell apoptosis. Thus, targeting CYP51 is a reliable antifungal strategy with important implications for the treatment of invasive fungal infections (IFIs). Many CYP51 inhibitors have been approved by the FDA for clinical treatment. However, several limitations of CYP51 inhibitors remain to be resolved, including fungal resistance, hepatotoxicity, and drug-drug interactions. New broad-spectrum, anti-resistant, highly selective CYP51 inhibitors are expected to be developed to enhance clinical efficacy and minimize adverse effects. Herein, we summarize the structural features and biological functions of CYP51 and emphatically analyze the structure-activity relationship (SAR) and therapeutic potential of different chemical types of small-molecule CYP51 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CYP51 for clinical practice.
Collapse
Affiliation(s)
- Ruofei Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Aijia Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Liang L, Zhang W, Hao J, Wang Y, Wei S, Zhang S, Hu Y, Lv Y. Estragole Inhibits Growth and Aflatoxin Biosynthesis of Aspergillus flavus by Affecting Reactive Oxygen Species Homeostasis. Microbiol Spectr 2023; 11:e0134823. [PMID: 37289093 PMCID: PMC10434025 DOI: 10.1128/spectrum.01348-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023] Open
Abstract
A variety of essential oils and edible compounds have been widely recognized for their antifungal activity in recent years. In this study, we explored the antifungal activity of estragole from Pimenta racemosa against Aspergillus flavus and investigated the underlying mechanism of action. The results showed that estragole had significant antifungal activity against A. flavus, with a minimum inhibitory concentration of 0.5 μL/mL against spore germination. Additionally, estragole inhibited the biosynthesis of aflatoxin in a dose-dependent manner, and aflatoxin biosynthesis was significantly inhibited at 0.125 μL/mL. Pathogenicity assays showed that estragole had potential antifungal activity against A. flavus in peanut and corn grains by inhibiting conidia and aflatoxin production. Transcriptomic analysis showed that the differentially expressed genes (DEGs) were mainly related to oxidative stress, energy metabolism, and secondary metabolite synthesis following estragole treatment. Importantly, we experimentally verified reactive oxidative species accumulation following downregulation of antioxidant enzymes, including catalase, superoxide dismutase, and peroxidase. These results suggest that estragole inhibits the growth and aflatoxin biosynthesis of A. flavus by modulating intracellular redox homeostasis. These findings expand our knowledge on the antifungal activity and molecular mechanisms of estragole, and provide a basis for estragole as a potential agent against A. flavus contamination. IMPORTANCE Aspergillus flavus contaminates crops and produces aflatoxins, carcinogenic secondary metabolites which pose a serious threat to agricultural production and animal and human health. Currently, control of A. flavus growth and mycotoxin contamination mainly relies on antimicrobial chemicals, agents with side effects such as toxic residues and the emergence of resistance. With their safety, environmental friendliness, and high efficiency, essential oils and edible compounds have become promising antifungal agents to control growth and mycotoxin biosynthesis in hazardous filamentous fungi. In this study, we explored the antifungal activity of estragole from Pimenta racemosa against A. flavus and investigated its underlying mechanism. The results demonstrated that estragole inhibits the growth and aflatoxin biosynthesis of A. flavus by modulating intracellular redox homeostasis.
Collapse
Affiliation(s)
- Liuke Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Wei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jing Hao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yanyu Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Havrylyuk D, Hachey AC, Fenton A, Heidary DK, Glazer EC. Ru(II) photocages enable precise control over enzyme activity with red light. Nat Commun 2022; 13:3636. [PMID: 35752630 PMCID: PMC9233675 DOI: 10.1038/s41467-022-31269-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
The cytochrome P450 family of enzymes (CYPs) are important targets for medicinal chemistry. Recently, CYP1B1 has emerged as a key player in chemotherapy resistance in the treatment of cancer. This enzyme is overexpressed in a variety of tumors, and is correlated with poor treatment outcomes; thus, it is desirable to develop CYP1B1 inhibitors to restore chemotherapy efficacy. However, possible off-target effects, such as inhibition of liver CYPs responsible for first pass metabolism, make selective inhibition a high priority to avoid possible drug-drug interactions and toxicity. Here we describe the creation of light-triggered CYP1B1 inhibitors as "prodrugs", and achieve >6000-fold improvement in potency upon activation with low energy (660 nm) light. These systems provide a selectivity index of 4,000-100,000 over other off-target CYPs. One key to the design was the development of coordinating CYP1B1 inhibitors, which suppress enzyme activity at pM concentrations in live cells. The metal binding group enforces inhibitor orientation in the active site by anchoring to the iron. The second essential component was the biologically compatible Ru(II) scaffold that cages the inhibitors before photochemical release. These Ru(II) photocages are anticipated to provide similar selectivity and control for any coordinating CYP inhibitors.
Collapse
Affiliation(s)
- Dmytro Havrylyuk
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Austin C Hachey
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Alexander Fenton
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - David K Heidary
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA.
| | - Edith C Glazer
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA.
| |
Collapse
|
5
|
New Zileuton-Hydroxycinnamic Acid Hybrids: Synthesis and Structure-Activity Relationship towards 5-Lipoxygenase Inhibition. Molecules 2020; 25:molecules25204686. [PMID: 33066378 PMCID: PMC7587396 DOI: 10.3390/molecules25204686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
A novel series of zileuton-hydroxycinnamic acid hybrids were synthesized and screened as 5-lipoxygenase (5-LO) inhibitors in stimulated HEK293 cells and polymorphonuclear leukocytes (PMNL). Zileuton’s (1) benzo[b]thiophene and hydroxyurea subunits combined with hydroxycinnamic acid esters’ ester linkage and phenolic acid moieties were investigated. Compound 28, bearing zileuton’s (1) benzo[b]thiophene and sinapic acid phenethyl ester’s (2) α,β-unsaturated phenolic acid moiety 28, was shown to be equipotent to zileuton (1), the only clinically approved 5-LO inhibitor, in stimulated HEK293 cells. Compound 28 was three times as active as zileuton (1) for the inhibition of 5-LO in PMNL. Compound 37, bearing the same sinapic acid (3,5-dimethoxy-4-hydroxy substitution) moiety as 28, combined with zileuton’s (1) hydroxyurea subunit was inactive. This result shows that the zileuton’s (1) benzo[b]thiophene moiety is essential for the inhibition of 5-LO product biosynthesis with our hydrids. Unlike zileuton (1), Compound 28 formed two π–π interactions with Phe177 and Phe421 as predicted when docked into 5-LO. Compound 28 was the only docked ligand that showed a π–π interaction with Phe177 which may play a part in product specificity as reported.
Collapse
|
6
|
Sinha S, Doble M, Manju SL. 5-Lipoxygenase as a drug target: A review on trends in inhibitors structural design, SAR and mechanism based approach. Bioorg Med Chem 2019; 27:3745-3759. [PMID: 31331653 DOI: 10.1016/j.bmc.2019.06.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/22/2023]
Abstract
The most common inflammatory disease of the airways is asthma among children affecting around 235 million people worldwide. 5-Lipoxygenase (5-LOX) is a crucial enzyme which helps in the conversion of arachidonic acid (AA) to leukotrienes (LTs), the lipid mediators. It is associated with several inflammation related disorders such as asthma, allergy, and atherosclerosis. Therefore, it is considered as a promising target against inflammation and asthma. Currently, the only drug against 5-LOX which is available is Zileuton, while a few inhibitors are in clinical trial stages such as Atreleuton and Setileuton. So, there is a dire requirement in the area of progress of novel 5-LOX inhibitors which necessitates an understanding of their structure activity relationship and mode of action. In this review, novel 5-LOX inhibitors reported so far, their structural design, SAR and developmental strategies along with clinical updates are discussed over the last two decades.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu 600036, India.
| | - S L Manju
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
7
|
Muthuraman S, Sinha S, Vasavi CS, Waidha KM, Basu B, Munussami P, Balamurali MM, Doble M, Saravana Kumar R. Design, synthesis and identification of novel coumaperine derivatives for inhibition of human 5-LOX: Antioxidant, pseudoperoxidase and docking studies. Bioorg Med Chem 2019; 27:604-619. [PMID: 30638966 DOI: 10.1016/j.bmc.2018.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/14/2018] [Accepted: 12/31/2018] [Indexed: 01/09/2023]
Abstract
5-Lipoxygenase (5-LOX) is a key enzyme involved in the biosynthesis of pro-inflammatory leukotrienes, leading to asthma. Developing potent 5-LOX inhibitors especially, natural product based ones, are highly attractive. Coumaperine, a natural product found in white pepper and its derivatives were herein developed as 5-LOX inhibitors. We have synthesized twenty four derivatives, characterized and evaluated their 5-LOX inhibition potential. Coumaperine derivatives substituted with multiple hydroxy and multiple methoxy groups exhibited best 5-LOX inhibition. CP-209, a catechol type dihydroxyl derivative and CP-262-F2, a vicinal trihydroxyl derivative exhibited, 82.7% and 82.5% inhibition of 5-LOX respectively at 20 µM. Their IC50 values are 2.1 ± 0.2 µM and 2.3 ± 0.2 µM respectively, and are comparable to zileuton, IC50 = 1.4 ± 0.2 µM. CP-155, a methylenedioxy derivative (a natural product) and CP-194, a 2,4,6-trimethoxy derivative showed 76.0% and 77.1% inhibition of 5-LOX respectively at 20 µM. Antioxidant study revealed that CP-209 and 262-F2 (at 20 µM) scavenged DPPH radical by 76.8% and 71.3% respectively. On the other hand, CP-155 and 194 showed very poor DPPH radical scavenging activity. Pseudo peroxidase assay confirmed that the mode of action of CP-209 and 262-F2 were by redox process, similar to zileuton, affecting the oxidation state of the metal ion in the enzyme. On the contrary, CP-155 and 194 probably act through some other mechanism which does not involve the disruption of the oxidation state of the metal in the enzyme. Molecular docking of CP-155 and 194 to the active site of 5-LOX and binding energy calculation suggested that they are non-competitive inhibitors. The In-Silico ADME/TOX analysis shows the active compounds (CP-155, 194, 209 and 262-F2) are with good drug likeliness and reduced toxicity compared to existing drug. These studies indicate that there is a great potential for coumaperine derivatives to be developed as anti-inflammatory drug.
Collapse
Affiliation(s)
- Subramani Muthuraman
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai 600127, Tamilnadu, India
| | - Shweta Sinha
- Department of Chemistry, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India; Department of Biotechnology, Indian Institute of Technology, Madras, Tamilnadu 600036, India.
| | - C S Vasavi
- Bioinformatics Division, School of Biosciences and Technology, VIT University, Vellore, Tamilnadu 632 014, India
| | - Kamran Manzoor Waidha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, sector-125, Noida 201303, India
| | - Biswarup Basu
- Department of Neuroendocrinology, Chittaranjan National Cancer Institute, 37 S P Mukherjee Road, Kolkata 700026,India
| | - Punnagai Munussami
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad 500 032, India
| | - M M Balamurali
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai 600127, Tamilnadu, India
| | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology, Madras, Tamilnadu 600036, India
| | - Rajendran Saravana Kumar
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai 600127, Tamilnadu, India.
| |
Collapse
|
8
|
Kaur G, Silakari O. Benzimidazole scaffold based hybrid molecules for various inflammatory targets: Synthesis and evaluation. Bioorg Chem 2018; 80:24-35. [DOI: 10.1016/j.bioorg.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
|
9
|
Design, synthesis and identification of novel substituted 2-amino thiazole analogues as potential anti-inflammatory agents targeting 5-lipoxygenase. Eur J Med Chem 2018; 158:34-50. [PMID: 30199704 DOI: 10.1016/j.ejmech.2018.08.098] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/25/2022]
Abstract
Human 5-Lipoxygenase (5-LOX) is a key enzyme targeted for asthma and inflammation. Zileuton, the only drug against 5-LOX, was withdrawn from the market due to several problems. In the present study, the performance of rationally designed conjugates of thiazole (2) and thiourea (3) scaffolds from our previously reported 2-amino-4-aryl thiazole (1) is reported. They are synthesized (total 31 derivatives), characterized, and tested against the 5-LOX enzyme in vitro and the mode of action of the most active ones are determined. Compound 2m exhibited an IC50 of 0.9 ± 0.1 μM acting through competitive (non-redox) mechanism, unlike Zileuton, and found to be devoid of radical scavenging properties. Computational studies are in good agreement with the experimental data supporting its mechanism of action. Another lead molecule from the thiourea series (3), 3f, exhibited an IC50 of 1.4 ± 0.1 μM against 5-LOX whose mode of action is redox type (non-competitive). It is promising to note that the activities displayed by both the lead inhibitors, 2m and 3f, are better than the commercial drug, Zileuton (IC50 = 1.5 ± 0.3 μM). These inhibitors could be further developed as drugs against inflammation.
Collapse
|
10
|
Gousiadou C, Kouskoumvekaki I. Computational Analysis of LOX1 Inhibition Identifies Descriptors Responsible for Binding Selectivity. ACS OMEGA 2018; 3:2261-2272. [PMID: 30023828 PMCID: PMC6044675 DOI: 10.1021/acsomega.7b01622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Lipoxygenases are a family of cytosolic, peripheral membrane enzymes, which catalyze the hydroperoxidation of polyunsaturated fatty acids and are implicated in the pathogenesis of major human diseases. Over the years, a substantial number of scientific reports have introduced inhibitors active against one or another subtype of the enzyme, but the selectivity issue has proved to be a major challenge for drug design. In the present work, we assembled a dataset of 317 structurally diverse molecules hitherto reported as active against 15S-LOX1, 12S-LOX1, and 15S-LOX2 and identified, using supervised machine learning, a set of structural descriptors responsible for the binding selectivity toward the enzyme 15S-LOX1. We subsequently incorporated these descriptors in the training of QSAR models for LOX1 activity and selectivity. The best performing classifiers are two stacked models that include an ensemble of support vector machine, random forest, and k-nearest neighbor algorithms. These models not only can predict LOX1 activity/inactivity but also can discriminate with high accuracy between molecules that exhibit selective activity toward either one of the isozymes 15S-LOX1 and 12S-LOX1.
Collapse
|
11
|
Zhang M, Xia Z, Yan A. Computer modeling in predicting the bioactivity of human 5-lipoxygenase inhibitors. Mol Divers 2016; 21:235-246. [PMID: 27904990 DOI: 10.1007/s11030-016-9709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/14/2016] [Indexed: 01/04/2023]
Abstract
5-Lipoxygenase (5-LOX) is a key enzyme in the inflammatory path. Inhibitors of 5-LOX are useful for the treatment of diseases like arthritis, cancer, and asthma. We have collected a dataset including 220 human 5-LOX inhibitors for classification. A self-organizing map (SOM), a support vector machine (SVM), and a multilayer perceptron (MLP) algorithm were used to build models with selected descriptors for classifying 5-LOX inhibitors into active and weakly active ones. MACCS fingerprints were used in this model building process. The accuracy (Q) and Matthews correlation coefficient (MCC) of the best SOM model (Model 1A) were 86.49% and 0.73 on the test set, respectively. The Q and MCC of the best SVM model (Model 2A) were 82.67% and 0.64 on the test set, respectively. The Q and MCC of the best MLP model (Model 3B) were 84.00% and 0.67 on the test set, respectively. In addition, 180 inhibitors with bioactivities measured by fluorescence method were further used for a quantitative prediction. Multiple linear regression (MLR) and SVM algorithms were used to build models to predict the [Formula: see text] values. The correlation coefficients (R) of the MLR model (Model Q1) and the SVM model (Model Q2) were 0.72 and 0.74 on the test set, respectively.
Collapse
Affiliation(s)
- Mengdi Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Zhonghua Xia
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China. .,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Durairaj P, Hur JS, Yun H. Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microb Cell Fact 2016; 15:125. [PMID: 27431996 PMCID: PMC4950769 DOI: 10.1186/s12934-016-0523-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/10/2016] [Indexed: 11/19/2022] Open
Abstract
Cytochrome P450 (CYP) monooxygenases, the nature’s most versatile biological catalysts have unique ability to catalyse regio-, chemo-, and stereospecific oxidation of a wide range of substrates under mild reaction conditions, thereby addressing a significant challenge in chemocatalysis. Though CYP enzymes are ubiquitous in all biological kingdoms, the divergence of CYPs in fungal kingdom is manifold. The CYP enzymes play pivotal roles in various fungal metabolisms starting from housekeeping biochemical reactions, detoxification of chemicals, and adaptation to hostile surroundings. Considering the versatile catalytic potentials, fungal CYPs has gained wide range of attraction among researchers and various remarkable strategies have been accomplished to enhance their biocatalytic properties. Numerous fungal CYPs with multispecialty features have been identified and the number of characterized fungal CYPs is constantly increasing. Literature reveals ample reviews on mammalian, plant and bacterial CYPs, however, modest reports on fungal CYPs urges a comprehensive review highlighting their novel catalytic potentials and functional significances. In this review, we focus on the diversification and functional diversity of fungal CYPs and recapitulate their unique and versatile biocatalytic properties. As such, this review emphasizes the crucial issues of fungal CYP systems, and the factors influencing efficient biocatalysis.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Hyungdon Yun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea.
| |
Collapse
|
13
|
Warrilow AGS, Price CL, Parker JE, Rolley NJ, Smyrniotis CJ, Hughes DD, Thoss V, Nes WD, Kelly DE, Holman TR, Kelly SL. Azole Antifungal Sensitivity of Sterol 14α-Demethylase (CYP51) and CYP5218 from Malassezia globosa. Sci Rep 2016; 6:27690. [PMID: 27291783 PMCID: PMC4904373 DOI: 10.1038/srep27690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022] Open
Abstract
Malassezia globosa cytochromes P450 CYP51 and CYP5218 are sterol 14α-demethylase (the target of azole antifungals) and a putative fatty acid metabolism protein (and a potential azole drug target), respectively. Lanosterol, eburicol and obtusifoliol bound to CYP51 with Kd values of 32, 23 and 28 μM, respectively, catalyzing sterol 14α-demethylation with respective turnover numbers of 1.7 min−1, 5.6 min−1 and 3.4 min−1. CYP5218 bound a range of fatty acids with linoleic acid binding strongest (Kd 36 μM), although no metabolism could be detected in reconstitution assays or role in growth on lipids. Clotrimazole, fluconazole, itraconazole, ketoconazole, voriconazole and ketaminazole bound tightly to CYP51 (Kd ≤ 2 to 11 nM). In contrast, fluconazole did not bind to CYP5218, voriconazole and ketaminazole bound weakly (Kd ~107 and ~12 μM), whereas ketoconazole, clotrimazole and itraconazole bound strongest to CYP5218 (Kd ~1.6, 0.5 and 0.4 μM) indicating CYP5218 to be only a secondary target of azole antifungals. IC50 determinations confirmed M. globosa CYP51 was strongly inhibited by azole antifungals (0.15 to 0.35 μM). MIC100 studies showed itraconazole should be considered as an alternative to ketoconazole given the potency and safety profiles and the CYP51 assay system can be used in structure-activity studies in drug development.
Collapse
Affiliation(s)
- Andrew G S Warrilow
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, United Kingdom
| | - Claire L Price
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, United Kingdom
| | - Josie E Parker
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, United Kingdom
| | - Nicola J Rolley
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, United Kingdom
| | | | - David D Hughes
- Plant Chemistry Group, School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, LL57 2UW, United Kingdom
| | - Vera Thoss
- Plant Chemistry Group, School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, LL57 2UW, United Kingdom
| | - W David Nes
- Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Diane E Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, United Kingdom
| | - Theodore R Holman
- Chemistry and Biochemistry Department, University of California, Santa Cruz, CA 95064 USA
| | - Steven L Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, United Kingdom
| |
Collapse
|
14
|
Deschamps JD, Ogunsola AF, Jameson JB, Yasgar A, Flitter BA, Freedman CJ, Melvin JA, Nguyen JVMH, Maloney DJ, Jadhav A, Simeonov A, Bomberger JM, Holman TR. Biochemical and Cellular Characterization and Inhibitor Discovery of Pseudomonas aeruginosa 15-Lipoxygenase. Biochemistry 2016; 55:3329-40. [PMID: 27226387 DOI: 10.1021/acs.biochem.6b00338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause nosocomial and chronic infections in immunocompromised patients. P. aeruginosa secretes a lipoxygenase, LoxA, but the biological role of this enzyme is currently unknown. LoxA is poorly similar in sequence to both soybean LOX-1 (s15-LOX-1) and human 15-LOX-1 (37 and 39%, respectively) yet has kinetics comparably fast versus those of s15-LOX-1 (at pH 6.5, Kcat = 181 ± 6 s(-1) and Kcat/KM = 16 ± 2 μM(-1) s(-1)). LoxA is capable of efficiently catalyzing the peroxidation of a broad range of free fatty acid (FA) substrates (e.g., AA and LA) with high positional specificity, indicating a 15-LOX. Its mechanism includes hydrogen atom abstraction [a kinetic isotope effect (KIE) of >30], yet LoxA is a poor catalyst against phosphoester FAs, suggesting that LoxA is not involved in membrane decomposition. LoxA also does not react with 5- or 15-HETEs, indicating poor involvement in lipoxin production. A LOX high-throughput screen of the LOPAC library yielded a variety of low-micromolar inhibitors; however, none selectively targeted LoxA over the human LOX isozymes. With respect to cellular activity, the level of LoxA expression is increased when P. aeruginosa undergoes the transition to a biofilm mode of growth, but LoxA is not required for biofilm growth on abiotic surfaces. However, LoxA does appear to be required for biofilm growth in association with the host airway epithelium, suggesting a role for LoxA in mediating bacterium-host interactions during colonization.
Collapse
Affiliation(s)
- Joshua D Deschamps
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Abiola F Ogunsola
- Department of Microbiology and Molecular Genetics, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - J Brian Jameson
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, MSC 3370, Bethesda, Maryland 20892, United States
| | - Becca A Flitter
- Department of Microbiology and Molecular Genetics, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - Cody J Freedman
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Jeffrey A Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - Jason V M H Nguyen
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, MSC 3370, Bethesda, Maryland 20892, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, MSC 3370, Bethesda, Maryland 20892, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, MSC 3370, Bethesda, Maryland 20892, United States
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| |
Collapse
|
15
|
Gousiadou C, Kouskoumvekaki I. LOX1 inhibition with small molecules. J Mol Graph Model 2016; 63:99-109. [PMID: 26722761 DOI: 10.1016/j.jmgm.2015.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/19/2015] [Accepted: 12/03/2015] [Indexed: 01/13/2023]
Abstract
Lipoxygenases (LOXs) are nonheme, iron-containing dioxygenases that catalyze the dioxygenation of polyunsaturated fatty acids and are widely distributed among plant and animal species. Human LOXs, now identified as key enzymes in the pathogenesis of major disorders, have increasingly drawn the attention as targets and great effort has been made for the discovery and design of suitable inhibitors, to which end both pharmacological and computational methods have been employed. In the present work, using pharmacophore modeling and docking, we attempt to elucidate the inhibition of LOX1 with a new inhibitor, albidoside, an iridoid glucoside isolated from plants of the Scutellaria genus. Through a pharmacophore approach, complementarities between the ligand and the binding site are explored and a plausible mode of binding with the protein is suggested for albidoside.
Collapse
Affiliation(s)
- Chrysoula Gousiadou
- Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | - Irene Kouskoumvekaki
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
16
|
De Lucia D, Lucio OM, Musio B, Bender A, Listing M, Dennhardt S, Koeberle A, Garscha U, Rizzo R, Manfredini S, Werz O, Ley SV. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors. Eur J Med Chem 2015. [DOI: 10.1016/j.ejmech.2015.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|