1
|
Zhang Y, Lin G, Xue N, Wang Y, Du T, Liu H, Xiong W, Shang W, Wu H, Song L. Differential outcomes of high-fat diet on age-related rescaling of cochlear frequency place coding. FASEB J 2023; 37:e23167. [PMID: 37651093 DOI: 10.1096/fj.202300457rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Auditory frequency coding is place-specific, which depends on the mechanical coupling of the basilar membrane-outer hair cell (OHC)-tectorial membrane network. Prestin-based OHC electromotility improves cochlear frequency selectivity and sensitivity. Cochlear amplification determines the frequency coding wherein discrete sound frequencies find a 'best' place along the cochlear length. Loss of OHC is the leading cause of age-related hearing loss (ARHL) and is the most common cause of sensorineural hearing loss and compromised speech perception. Lipid interaction with Prestin impacts OHC function. It has been established that high-fat diet (HFD) is associated with ARHL. To determine whether genetic background and metabolism preserve cochlear frequency place coding, we examined the effect of HFD in C57BL/6J (B6) and CBA/CaJ (CBA) on ARHL.We found a significant rescuing effect on ARHL in aged B6 HFD cohort. Prestin levels and cell sizes were better maintained in the experimental B6-HFD group. We also found that distortion product otoacoustic emission (DPOAE) group delay measurement was preserved, which suggested stable frequency place coding. In contrast, the response to HFD in the CBA cohort was modest with no appreciable benefit to hearing threshold. Notably, group delay was shortened with age along with the control. In addition, the frequency dependent OHC nonlinear capacitance gradient was most pronounced at young age but decreased with age. Cochlear RNA-seq analysis revealed differential TRPV1 expression and lipid homeostasis. Activation of TRPV1 and downregulation of arachidonic acid led to downregulation of inflammatory response in B6 HFD, which protects the cochlea from ARHL. The genetic background and metabolic state-derived changes in OHC morphology and function collectively contribute to a redefined cochlear frequency place coding and improved age-related pitch perception.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Guotong Lin
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Na Xue
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yi Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tingting Du
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huihui Liu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing, China
| | - Wei Shang
- Navy Clinical Medical School, Anhui Medical University, Hefei, China
- In Vitro Fertility (IVF) Center Department of Obstetrics and Gynecology, the Sixth Medical Center of PLA General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Hao Wu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Song
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
2
|
Butan C, Song Q, Bai JP, Tan WJT, Navaratnam D, Santos-Sacchi J. Single particle cryo-EM structure of the outer hair cell motor protein prestin. Nat Commun 2022; 13:290. [PMID: 35022426 PMCID: PMC8755724 DOI: 10.1038/s41467-021-27915-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
The mammalian outer hair cell (OHC) protein prestin (Slc26a5) differs from other Slc26 family members due to its unique piezoelectric-like property that drives OHC electromotility, the putative mechanism for cochlear amplification. Here, we use cryo-electron microscopy to determine prestin’s structure at 3.6 Å resolution. Prestin is structurally similar to the anion transporter Slc26a9. It is captured in an inward-open state which may reflect prestin’s contracted state. Two well-separated transmembrane (TM) domains and two cytoplasmic sulfate transporter and anti-sigma factor antagonist (STAS) domains form a swapped dimer. The transmembrane domains consist of 14 transmembrane segments organized in two 7+7 inverted repeats, an architecture first observed in the bacterial symporter UraA. Mutation of prestin’s chloride binding site removes salicylate competition with anions while retaining the prestin characteristic displacement currents (Nonlinear Capacitance), undermining the extrinsic voltage sensor hypothesis for prestin function. Prestin, expressed in outer hair cell (OHC), belongs to the Slc26 transporter family and functions as a voltage-driven motor that drives OHC electromotility. Here, the authors report cryo-EM structure and characterization of gerbil prestin, with insights into its mechanism of action.
Collapse
Affiliation(s)
- Carmen Butan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
| | - Qiang Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
| | - Jun-Ping Bai
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Winston J T Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
| | - Dhasakumar Navaratnam
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA. .,Department of Neurology, Yale University School of Medicine, New Haven, CT, USA. .,Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA. .,Neuroscience, Yale University School of Medicine, New Haven, CT, USA. .,Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Progress in understanding the structural mechanism underlying prestin's electromotile activity. Hear Res 2021; 423:108423. [PMID: 34987017 DOI: 10.1016/j.heares.2021.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022]
Abstract
Prestin (SLC26A5), a member of the SLC26 transporter family, is the molecular actuator that drives OHC electromotility (eM). A wealth of biophysical data indicates that eM is mediated by an area motor mechanism, in which prestin molecules act as elementary actuators by changing their area in the membrane in response to changes in membrane potential. The area changes of a large and densely packed population of prestin molecules sum up, resulting in macroscopic cellular movement. At the single protein level, this model implies major voltage-driven conformational rearrangements. However, the nature of these structural dynamics remained unknown. A main obstacle in elucidating the eM mechanism has been the lack of structural information about SLC26 transporters. The recent emergence of several high-resolution cryo-EM structures of prestin as well as other SLC26 transporter family members now provides a reliable picture of prestin's molecular architecture. Thus, SLC26 transporters including prestin generally are dimers, and each protomer is folded according to a 7+7 transmembrane domain inverted repeat (7TMIR) architecture. Here, we review these structural findings and discuss insights into a potential molecular mechanism. Most important, distinct conformations were observed when purifying and imaging prestin bound to either its physiological ligand, chloride, or to competitively inhibitory anions, sulfate or salicylate. Despite differences in detail, these structural snapshots indicate that the conformational landscape of prestin includes rearrangements between the two major domains of prestin's transmembrane region (TMD), core and scaffold ('gate') domains. Notably, distinct conformations differ in the area the TMD occupies in the membrane and in their impact on the immediate lipid environment. Both effects can contribute to generate membrane deformation and thus may underly electromotility. Further functional studies will be necessary to determine whether these or similar structural rearrangements are driven by membrane potential to mediate piezoelectric activity. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
|
4
|
Zhang XD, Thai PN, Ren L, Perez Flores MC, Ledford HA, Park S, Lee JH, Sihn CR, Chang CW, Chen WC, Timofeyev V, Zuo J, Chan JW, Yamoah EN, Chiamvimonvat N. Prestin amplifies cardiac motor functions. Cell Rep 2021; 35:109097. [PMID: 33951436 PMCID: PMC8720583 DOI: 10.1016/j.celrep.2021.109097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/27/2020] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac cells generate and amplify force in the context of cardiac load, yet the membranous sheath enclosing the muscle fibers-the sarcolemma-does not experience displacement. That the sarcolemma sustains beat-to-beat pressure changes without experiencing significant distortion is a muscle-contraction paradox. Here, we report that an elastic element-the motor protein prestin (Slc26a5)-serves to amplify actin-myosin force generation in mouse and human cardiac myocytes, accounting partly for the nonlinear capacitance of cardiomyocytes. The functional significance of prestin is underpinned by significant alterations of cardiac contractility in Prestin-knockout mice. Prestin was previously considered exclusive to the inner ear's outer hair cells; however, our results show that prestin serves a broader cellular motor function.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Veterans Affairs, VA Northern California Health Care System, Mather, CA 95655, USA.
| | - Phung N Thai
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Lu Ren
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Maria Cristina Perez Flores
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hannah A Ledford
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Jeong Han Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Choong-Ryoul Sihn
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Che-Wei Chang
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Wei Chun Chen
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Valeriy Timofeyev
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Jian Zuo
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - James W Chan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Veterans Affairs, VA Northern California Health Care System, Mather, CA 95655, USA.
| |
Collapse
|
5
|
Zhai F, Song L, Bai JP, Dai C, Navaratnam D, Santos-Sacchi J. Maturation of Voltage-induced Shifts in SLC26a5 (Prestin) Operating Point during Trafficking and Membrane Insertion. Neuroscience 2020; 431:128-133. [PMID: 32061780 DOI: 10.1016/j.neuroscience.2020.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022]
Abstract
Prestin (SLC26a5) is an integral membrane motor protein in outer hair cells (OHC) that underlies cochlear amplification. As a voltage-dependent protein, it relies on intrinsic sensor charge to respond to transmembrane voltage (receptor potentials), thereby effecting conformational changes. The protein's electromechanical actively is experimentally monitored as a bell-shaped nonlinear capacitance (NLC), whose magnitude peaks at a characteristic voltage, Vh. This voltage denotes the midpoint of prestin's charge-voltage (Q-V) Boltzmann distribution and region of maximum gain of OHC electromotility. It is an important factor in hearing capabilities for mammals. A variety of biophysical forces can influence the distribution of charge, gauged by shifts in Vh, including prior holding voltage or membrane potential. Here we report that the effectiveness of prior voltage augments during the delivery of prestin to the membranes in an inducible HEK cell line. The augmentation coincides with an increase in prestin density, maturing at a characteristic membrane areal density of 870 functional prestin units per square micrometer, and is likely indicative of prestin-prestin cooperative interactions.
Collapse
Affiliation(s)
- Feng Zhai
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA; Department of Otolaryngology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA; Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jun-Ping Bai
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Chunfu Dai
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Dhasakumar Navaratnam
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Bai JP, Moeini-Naghani I, Zhong S, Li FY, Bian S, Sigworth FJ, Santos-Sacchi J, Navaratnam D. Current carried by the Slc26 family member prestin does not flow through the transporter pathway. Sci Rep 2017; 7:46619. [PMID: 28422190 PMCID: PMC5395958 DOI: 10.1038/srep46619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/21/2017] [Indexed: 01/01/2023] Open
Abstract
Prestin in the lateral membrane of outer hair cells, is responsible for electromotility (EM) and a corresponding nonlinear capacitance (NLC). Prestin’s voltage sensitivity is influenced by intracellular chloride. A regulator of intracellular chloride is a stretch-sensitive, non-selective conductance within the lateral membrane, GmetL. We determine that prestin itself possesses a stretch-sensitive, non-selective conductance that is largest in the presence of thiocyanate ions. This conductance is independent of the anion transporter mechanism. Prestin has been modeled, based on structural data from related anion transporters (SLC26Dg and UraA), to have a 7 + 7 inverted repeat structure with anion transport initiated by chloride binding at the intracellular cleft. Mutation of residues that bind intracellular chloride, and salicylate treatment which prevents chloride binding, have no effect on thiocyanate conductance. In contrast, other mutations reduce the conductance while preserving NLC. When superimposed on prestin’s structure, the location of these mutations indicates that the ion permeation pathway lies between the core and gate ring of helices, distinct from the transporter pathway. The uncoupled current is reminiscent of an omega current in voltage-gated ion channels. We suggest that prestin itself is the main regulator of intracellular chloride concentration via a route distinct from its transporter pathway.
Collapse
Affiliation(s)
- Jun-Ping Bai
- Dept. of Neurology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510 USA
| | - Iman Moeini-Naghani
- Dept. of Neurology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510 USA
| | - Sheng Zhong
- Dept. of Surgery, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510 USA
| | - Fang-Yong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, 300 George St., Ste Suite 555, New Haven, CT 06511, USA
| | - Shumin Bian
- Dept. of Neurology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510 USA
| | - Fred J Sigworth
- Dept. of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Joseph Santos-Sacchi
- Dept. of Surgery, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510 USA.,Dept. of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.,Dept. of, Neuroscience, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Dhasakumar Navaratnam
- Dept. of Neurology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510 USA.,Dept. of Surgery, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510 USA.,Dept. of, Neuroscience, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| |
Collapse
|
7
|
Membrane prestin expression correlates with the magnitude of prestin-associated charge movement. Hear Res 2016; 339:50-9. [PMID: 27262187 DOI: 10.1016/j.heares.2016.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/14/2016] [Accepted: 05/26/2016] [Indexed: 11/20/2022]
Abstract
Full expression of electromotility, generation of non-linear capacitance (NLC), and high-acuity mammalian hearing require prestin function in the lateral wall of cochlear outer hair cells (OHCs). Estimates of the number of prestin molecules in the OHC membrane vary, and a consensus has not emerged about the correlation between prestin expression and prestin-associated charge movement in the OHC. Using an inducible prestin-expressing cell line, we demonstrate that the charge density, but not the voltage at peak capacitance, directly correlates with the amount of prestin in the plasma membrane. This correlation is evident in studies involving a controlled increase of prestin expression with time after induction and inducer dose-response. Conversely, membrane prestin levels and charge density gradually decline together following the reduction of prestin levels from a steady state by removal of the inducer. Thus, charge density directly correlates with the level of membrane prestin expression, whereas changing membrane levels of prestin have no effect on the voltage at peak capacitance in this inducible prestin-expressing cell line.
Collapse
|
8
|
Extracellular Cl(-) regulates human SO4 (2-)/anion exchanger SLC26A1 by altering pH sensitivity of anion transport. Pflugers Arch 2016; 468:1311-32. [PMID: 27125215 DOI: 10.1007/s00424-016-1823-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/03/2016] [Accepted: 04/07/2016] [Indexed: 12/16/2022]
Abstract
Genetic deficiency of the SLC26A1 anion exchanger in mice is known to be associated with hyposulfatemia and hyperoxaluria with nephrolithiasis, but many aspects of human SLC26A1 function remain to be explored. We report here the functional characterization of human SLC26A1, a 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS)-sensitive, electroneutral sodium-independent anion exchanger transporting sulfate, oxalate, bicarbonate, thiosulfate, and (with divergent properties) chloride. Human SLC26A1-mediated anion exchange differs from that of its rodent orthologs in its stimulation by alkaline pHo and inhibition by acidic pHo but not pHi and in its failure to transport glyoxylate. SLC26A1-mediated transport of sulfate and oxalate is highly dependent on allosteric activation by extracellular chloride or non-substrate anions. Extracellular chloride stimulates apparent V max of human SLC26A1-mediated sulfate uptake by conferring a 2-log decrease in sensitivity to inhibition by extracellular protons, without changing transporter affinity for extracellular sulfate. In contrast to SLC26A1-mediated sulfate transport, SLC26A1-associated chloride transport is activated by acid pHo, shows reduced sensitivity to DIDS, and exhibits cation dependence of its DIDS-insensitive component. Human SLC26A1 resembles SLC26 paralogs in its inhibition by phorbol ester activation of protein kinase C (PKC), which differs in its undiminished polypeptide abundance at or near the oocyte surface. Mutation of SLC26A1 residues corresponding to candidate anion binding site-associated residues in avian SLC26A5/prestin altered anion transport in patterns resembling those of prestin. However, rare SLC26A1 polymorphic variants from a patient with renal Fanconi Syndrome and from a patient with nephrolithiasis/calcinosis exhibited no loss-of-function phenotypes consistent with disease pathogenesis.
Collapse
|
9
|
Lamas V, Arévalo JC, Juiz JM, Merchán MA. Acoustic input and efferent activity regulate the expression of molecules involved in cochlear micromechanics. Front Syst Neurosci 2015; 8:253. [PMID: 25653600 PMCID: PMC4299405 DOI: 10.3389/fnsys.2014.00253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/24/2014] [Indexed: 11/13/2022] Open
Abstract
Electromotile activity in auditory outer hair cells (OHCs) is essential for sound amplification. It relies on the highly specialized membrane motor protein prestin, and its interactions with the cytoskeleton. It is believed that the expression of prestin and related molecules involved in OHC electromotility may be dynamically regulated by signals from the acoustic environment. However little is known about the nature of such signals and how they affect the expression of molecules involved in electromotility in OHCs. We show evidence that prestin oligomerization is regulated, both at short and relatively long term, by acoustic input and descending efferent activity originating in the cortex, likely acting in concert. Unilateral removal of the middle ear ossicular chain reduces levels of trimeric prestin, particularly in the cochlea from the side of the lesion, whereas monomeric and dimeric forms are maintained or even increased in particular in the contralateral side, as shown in Western blots. Unilateral removal of the auditory cortex (AC), which likely causes an imbalance in descending efferent activity on the cochlea, also reduces levels of trimeric and tetrameric forms of prestin in the side ipsilateral to the lesion, whereas in the contralateral side prestin remains unaffected, or even increased in the case of trimeric and tetrameric forms. As far as efferent inputs are concerned, unilateral ablation of the AC up-regulates the expression of α10 nicotinic Ach receptor (nAChR) transcripts in the cochlea, as shown by RT-Quantitative real-time PCR (qPCR). This suggests that homeostatic synaptic scaling mechanisms may be involved in dynamically regulating OHC electromotility by medial olivocochlear efferents. Limited, unbalanced efferent activity after unilateral AC removal, also affects prestin and β-actin mRNA levels. These findings support that the concerted action of acoustic and efferent inputs to the cochlea is needed to regulate the expression of major molecules involved in OHC electromotility, both at the transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Veronica Lamas
- Laboratory of Neurobiology of Hearing, Institute for Neuroscience of Castilla y Leon, University of Salamanca Salamanca, Spain
| | - Juan C Arévalo
- Laboratory of Neurobiology of Hearing, Institute for Neuroscience of Castilla y Leon, University of Salamanca Salamanca, Spain
| | - José M Juiz
- Facultad de Medicina de Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla La Mancha Albacete, Spain
| | - Miguel A Merchán
- Laboratory of Neurobiology of Hearing, Institute for Neuroscience of Castilla y Leon, University of Salamanca Salamanca, Spain
| |
Collapse
|
10
|
Zhang Y, Moeini-Naghani I, Bai J, Santos-Sacchi J, Navaratnam DS. Tyrosine motifs are required for prestin basolateral membrane targeting. Biol Open 2015; 4:197-205. [PMID: 25596279 PMCID: PMC4365488 DOI: 10.1242/bio.201410629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Prestin is targeted to the lateral wall of outer hair cells (OHCs) where its electromotility is critical for cochlear amplification. Using MDCK cells as a model system for polarized epithelial sorting, we demonstrate that prestin uses tyrosine residues, in a YXXΦ motif, to target the basolateral surface. Both Y520 and Y667 are important for basolateral targeting of prestin. Mutation of these residues to glutamine or alanine resulted in retention within the Golgi and delayed egress from the Golgi in Y667Q. Basolateral targeting is restored upon mutation to phenylalanine suggesting the importance of a phenol ring in the tyrosine side chain. We also demonstrate that prestin targeting to the basolateral surface is dependent on AP1B (μ1B), and that prestin uses transferrin containing early endosomes in its passage from the Golgi to the basolateral plasma membrane. The presence of AP1B (μ1B) in OHCs, and parallels between prestin targeting to the basolateral surface of OHCs and polarized epithelial cells suggest that outer hair cells resemble polarized epithelia rather than neurons in this important phenotypic measure.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - JunPing Bai
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joseph Santos-Sacchi
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dhasakumar S Navaratnam
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
11
|
He DZZ, Lovas S, Ai Y, Li Y, Beisel KW. Prestin at year 14: progress and prospect. Hear Res 2013; 311:25-35. [PMID: 24361298 DOI: 10.1016/j.heares.2013.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/08/2013] [Accepted: 12/03/2013] [Indexed: 02/01/2023]
Abstract
Prestin, the motor protein of cochlear outer hair cells, was identified 14 years ago. Prestin-based outer hair cell motility is responsible for the exquisite sensitivity and frequency selectivity seen in the mammalian cochlea. Prestin is the 5th member of an eleven-member membrane transporter superfamily of SLC26A proteins. Unlike its paralogs, which are capable of transporting anions across the cell membrane, prestin primarily functions as a motor protein with unique capability of performing direct and reciprocal electromechanical conversion on microsecond time scale. Significant progress in the understanding of its structure and the molecular mechanism has been made in recent years using electrophysiological, biochemical, comparative genomics, structural bioinformatics, molecular dynamics simulation, site-directed mutagenesis and domain-swapping techniques. This article reviews recent advances of the structural and functional properties of prestin with focus on the areas that are critical but still controversial in understanding the molecular mechanism of how prestin works: The structural domains for voltage sensing and interaction with anions and for conformational change. Future research directions and potential application of prestin are also discussed. This article is part of a Special Issue entitled <Annual Reviews 2014>.
Collapse
Affiliation(s)
- David Z Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68175, USA; Neuroscience Center, Ningbo University School of Medicine, Ningbo 315211, China.
| | - Sándor Lovas
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68175, USA
| | - Yu Ai
- Department of Otolaryngology, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Yi Li
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68175, USA; Department of Otolaryngology, Beijing Tongren Hospital, Beijing 100730, PR China
| | - Kirk W Beisel
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68175, USA
| |
Collapse
|