1
|
Wang Q, Wang Z, Xu M, Tu W, Hsin IF, Stotland A, Kim JH, Liu P, Naiki M, Gottlieb RA, Seki E. Neurotropin Inhibits Lipid Accumulation by Maintaining Mitochondrial Function in Hepatocytes via AMPK Activation. Front Physiol 2020; 11:950. [PMID: 32848877 PMCID: PMC7424056 DOI: 10.3389/fphys.2020.00950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/14/2020] [Indexed: 11/27/2022] Open
Abstract
The accumulation of lipid droplets in the cytoplasm of hepatocytes, known as hepatic steatosis, is a hallmark of non-alcoholic fatty liver disease (NAFLD). Inhibiting hepatic steatosis is suggested to be a therapeutic strategy for NAFLD. The present study investigated the actions of Neurotropin (NTP), a drug used for chronic pain in Japan and China, on lipid accumulation in hepatocytes as a possible treatment for NAFLD. NTP inhibited lipid accumulation induced by palmitate and linoleate, the two major hepatotoxic free fatty acids found in NAFLD livers. An RNA sequencing analysis revealed that NTP altered the expression of mitochondrial genes. NTP ameliorated palmitate-and linoleate-induced mitochondrial dysfunction by reversing mitochondrial membrane potential, respiration, and β-oxidation, suppressing mitochondrial oxidative stress, and enhancing mitochondrial turnover. Moreover, NTP increased the phosphorylation of AMPK, a critical factor in the regulation of mitochondrial function, and induced PGC-1β expression. Inhibition of AMPK activity and PGC-1β expression diminished the anti-steatotic effect of NTP in hepatocytes. JNK inhibition could also be associated with NTP-mediated inhibition of lipid accumulation, but we did not find the association between AMPK and JNK. These results suggest that NTP inhibits lipid accumulation by maintaining mitochondrial function in hepatocytes via AMPK activation, or by inhibiting JNK.
Collapse
Affiliation(s)
- Qinglan Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijun Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mingyi Xu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wei Tu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - I-Fang Hsin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Aleksandr Stotland
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jeong Han Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ping Liu
- E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mitsuru Naiki
- Department of Pharmacological Research, Institute of Bio-Active Science, Nippon Zoki Pharmaceutical Co., Ltd., Osaka, Japan
| | - Roberta A. Gottlieb
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ekihiro Seki
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
2
|
Identifying and annotating human bifunctional RNAs reveals their versatile functions. SCIENCE CHINA-LIFE SCIENCES 2016; 59:981-992. [PMID: 27650948 DOI: 10.1007/s11427-016-0054-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
Bifunctional RNAs that possess both protein-coding and noncoding functional properties were less explored and poorly understood. Here we systematically explored the characteristics and functions of such human bifunctional RNAs by integrating tandem mass spectrometry and RNA-seq data. We first constructed a pipeline to identify and annotate bifunctional RNAs, leading to the characterization of 132 high-confidence bifunctional RNAs. Our analyses indicate that bifunctional RNAs may be involved in human embryonic development and can be functional in diverse tissues. Moreover, bifunctional RNAs could interact with multiple miRNAs and RNA-binding proteins to exert their corresponding roles. Bifunctional RNAs may also function as competing endogenous RNAs to regulate the expression of many genes by competing for common targeting miRNAs. Finally, somatic mutations of diverse carcinomas may generate harmful effect on corresponding bifunctional RNAs. Collectively, our study not only provides the pipeline for identifying and annotating bifunctional RNAs but also reveals their important gene-regulatory functions.
Collapse
|
3
|
Tarazona S, Furió-Tarí P, Turrà D, Pietro AD, Nueda MJ, Ferrer A, Conesa A. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res 2015; 43:e140. [PMID: 26184878 PMCID: PMC4666377 DOI: 10.1093/nar/gkv711] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/01/2015] [Indexed: 12/14/2022] Open
Abstract
As the use of RNA-seq has popularized, there is an increasing consciousness of the importance of experimental design, bias removal, accurate quantification and control of false positives for proper data analysis. We introduce the NOISeq R-package for quality control and analysis of count data. We show how the available diagnostic tools can be used to monitor quality issues, make pre-processing decisions and improve analysis. We demonstrate that the non-parametric NOISeqBIO efficiently controls false discoveries in experiments with biological replication and outperforms state-of-the-art methods. NOISeq is a comprehensive resource that meets current needs for robust data-aware analysis of RNA-seq differential expression.
Collapse
Affiliation(s)
- Sonia Tarazona
- Genomics of Gene Expression Lab, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain Department of Applied Statistics, Operations Research and Quality, Universidad Politécnica de Valencia, Camí de Vera, 46022, Valencia, Spain
| | - Pedro Furió-Tarí
- Genomics of Gene Expression Lab, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - David Turrà
- Department of Genetics, Universidad de Córdoba, Campus de Rabanales Edificio Gregor Mendel, 14071, Córdoba, Spain
| | - Antonio Di Pietro
- Department of Genetics, Universidad de Córdoba, Campus de Rabanales Edificio Gregor Mendel, 14071, Córdoba, Spain
| | - María José Nueda
- Statistics and Operational Research Department, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, 03690, Alicante, Spain
| | - Alberto Ferrer
- Department of Applied Statistics, Operations Research and Quality, Universidad Politécnica de Valencia, Camí de Vera, 46022, Valencia, Spain
| | - Ana Conesa
- Genomics of Gene Expression Lab, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|