1
|
Colocalization analysis of polycystic ovary syndrome to identify potential disease-mediating genes and proteins. Eur J Hum Genet 2021; 29:1446-1454. [PMID: 33664499 PMCID: PMC8440598 DOI: 10.1038/s41431-021-00835-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common complex disease in women with a strong genetic component and downstream consequences for reproductive, metabolic and psychological health. There are currently 19 known PCOS risk loci, primarily identified in women of Han Chinese or European ancestry, and 14 of these risk loci were identified or replicated in a genome-wide association study of PCOS performed in up to 10,074 cases and 103,164 controls of European descent. However, for most of these loci the gene responsible for the association is unknown. We therefore use a Bayesian colocalization approach (Coloc) to highlight genes in PCOS-associated regions that may have a role in mediating the disease risk. We evaluated the posterior probabilities of evidence consistent with shared causal variants between 14 PCOS genetic risk loci and intermediate cellular phenotypes in one protein (N = 3301) and two expression quantitative trait locus datasets (N = 31,684 and N = 80–491). Through these analyses, we identified seven proteins or genes with evidence of a possibly shared causal variant for almost 30% of known PCOS signals, including follicle stimulating hormone and ERBB3, IKZF4, RPS26, SUOX, ZFP36L2, and C8orf49. Several of these potential effector proteins and genes have been implicated in the hypothalamic–pituitary–gonadal signalling pathway and provide an avenue for functional follow-up in order to demonstrate a causal role in PCOS pathophysiology.
Collapse
|
2
|
Investigating the role of BCAR4 in ovarian physiology and female fertility by genome editing in rabbit. Sci Rep 2020; 10:4992. [PMID: 32193429 PMCID: PMC7081282 DOI: 10.1038/s41598-020-61689-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/26/2020] [Indexed: 12/02/2022] Open
Abstract
Breast Cancer Anti-estrogen Resistance 4 (BCAR4) was previously characterised in bovine species as a gene preferentially expressed in oocytes, whose inhibition is detrimental to in vitro embryo development. But its role in oogenesis, folliculogenesis and globally fertility in vivo remains unknown. Because the gene is not conserved in mice, rabbits were chosen for investigation of BCAR4 expression and function in vivo. BCAR4 displayed preferential expression in the ovary compared to somatic organs, and within the ovarian follicle in the oocyte compared to somatic cells. The transcript was detected in follicles as early as the preantral stage. Abundance decreased throughout embryo development until the blastocyst stage. A lineage of genome-edited rabbits was produced; BCAR4 expression was abolished in follicles from homozygous animals. Females of wild-type, heterozygous and homozygous genotypes were examined for ovarian physiology and reproductive parameters. Follicle growth and the number of ovulations in response to hormonal stimulation were not significantly different between genotypes. Following insemination, homozygous females displayed a significantly lower delivery rate than their heterozygous counterparts (22 ± 7% vs 71 ± 11% (mean ± SEM)), while prolificacy was 1.8 ± 0.7 vs 6.0 ± 1.4 kittens per insemination. In conclusion, BCAR4 is not essential for follicular growth and ovulation but it contributes to optimal fertility in rabbits.
Collapse
|
3
|
Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6972030. [PMID: 28265575 PMCID: PMC5318639 DOI: 10.1155/2017/6972030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/14/2016] [Accepted: 01/04/2017] [Indexed: 11/17/2022]
Abstract
Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90). The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1), reticulocalbin-3 (RCN3)], cell differentiation (actin), and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK)]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP)] and stress response [heat shock-related 70 kDa protein 2 (HSPA2)]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s) involved in the regulation of the ovarian follicle development.
Collapse
|
4
|
Abstract
The adult mammalian ovary is devoid of definitive germline stem cells. As such, female reproductive senescence largely results from the depletion of a finite ovarian follicle pool that is produced during embryonic development. Remarkably, the crucial nature and regulation of follicle assembly and survival during embryogenesis is just coming into focus. This developmental pathway involves the coordination of meiotic progression and the breakdown of germ cell cysts into individual oocytes housed within primordial follicles. Recent evidence also indicates that genetic and environmental factors can specifically perturb primordial follicle assembly. Here, we review the cellular and molecular mechanisms by which the mammalian ovarian reserve is established, highlighting the presence of a crucial checkpoint that allows survival of only the highest-quality oocytes.
Collapse
Affiliation(s)
- Kathryn J Grive
- Brown University, MCB Graduate Program, Providence, RI 02912, USA
| | | |
Collapse
|
5
|
Xu M, Che L, Wang D, Yang Z, Zhang P, Lin Y, Fang Z, Che L, Li J, Chen D, Wu D, Xu S. Proteomic Analysis of Fetal Ovary Reveals That Ovarian Developmental Potential Is Greater in Meishan Pigs than in Yorkshire Pigs. PLoS One 2015; 10:e0135514. [PMID: 26305539 PMCID: PMC4549060 DOI: 10.1371/journal.pone.0135514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/22/2015] [Indexed: 11/18/2022] Open
Abstract
Time-dependent expression of functional proteins in fetal ovaries is important to understand the developmental process of the ovary. This study was carried out to enhance our understanding of the developmental process of porcine fetal ovaries and to better address the differences in fetal ovary development of local and foreign pigs. The objective of the present study is to test the expression of key proteins that regulate the growth and development of fetal ovaries in Meishan and Yorkshire porcine breeds by using proteomics technology. Six Meishan and 6 Yorkshire pregnant gilts were used in this experiment. Fetal ovaries were obtained from Yorkshire and Meishan gilts on days 55 and 90 of the gestation period. Using 2D-DIGE (two dimensional-difference in gel electrophoresis) analysis, the results showed that there are about 1551 and 1400 proteins in gilt fetal ovaries on days 55 and 90, respectively of the gestation. Using MALDI TOF-TOF MS analysis, 27 differentially expressed proteins were identified in the fetal ovaries of the 2 breeds on day 55 of gestation, and a total of 18 proteins were identified on day 90 of gestation. These differentially expressed proteins were involved in the regulation of biological processes (cell death, stress response, cytoskeletal proteins) and molecular functions (enzyme regulator activity). We also found that alpha-1-antitrypsin, actin, vimentin, and PP2A proteins promote the formation of primordial follicles in the ovaries of Yorkshire pigs on day 55 of gestation while low expression heat shock proteins and high expression alpha-fetoproteins (AFP) may promote Meishan fetal ovarian follicular development on day 90 of gestation. These findings provide a deeper understanding of how reduced expression of heat shock proteins and increased expression of AFP can significantly reduce the risk of reproductive disease in obese Meishan sows. Our study also shows how these proteins can increase the ovulation rate and may be responsible for the low reproductive efficiency reported in other obese breeds. The ovarian developmental potential was found to be greater in Meishan pigs than in Yorkshire pigs.
Collapse
Affiliation(s)
- Mengmeng Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, 625014, China
| | - Long Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, 625014, China
| | - Dingyue Wang
- Tequ Group of Sichuan Province, Chengdu, 610207, China
| | - Zhenguo Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, 625014, China
| | - Pan Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, 625014, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, 625014, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, 625014, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, 625014, China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, 625014, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, 625014, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, 625014, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, 625014, China
- * E-mail:
| |
Collapse
|
6
|
Chakraborty P, Roy SK. Expression of FSH receptor in the hamster ovary during perinatal development. Mol Cell Endocrinol 2015; 400:41-7. [PMID: 25462586 PMCID: PMC4274197 DOI: 10.1016/j.mce.2014.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 01/10/2023]
Abstract
FSH plays an important role in ovarian follicular development, and it functions via the G-protein coupled FSH receptor. The objectives of the present study were to determine if full-length FSHR mRNA and corresponding protein were expressed in fetal through postnatal hamster ovaries to explain the FSH-induced primordial follicle formation, and if FSH or estrogen (E) would affect the expression. A full-length and two alternately spliced FSHR transcripts were expressed from E14 through P20. The level of the full-length FSHR mRNA increased markedly through P7 before stabilizing at a lower level with the formation and activation of primordial follicles. A predicted 87 kDa FSHR protein band was detected in fetal through P4 ovaries, but additional bands appeared as ovary developed. FSHR immunosignal was present in undifferentiated somatic cells and oocytes in early postnatal ovaries, but was granulosa cells specific after follicles formed. Both eCG and E significantly up-regulated full-length FSHR mRNA levels. Therefore, FSHR is expressed in the hamster ovary from the fetal life to account for FSH-induced primordial follicle formation and cAMP production. Further, FSH or E regulates the receptor expression.
Collapse
Affiliation(s)
- Prabuddha Chakraborty
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Shyamal K Roy
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198; Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE 68198.
| |
Collapse
|