1
|
Serra L, Silva Pereira S, Viegas IJ, Machado H, López-Escobar L, Figueiredo LM. m 6A landscape is more pervasive when Trypanosoma brucei exits the cell cycle. Biomed J 2024:100728. [PMID: 38641210 DOI: 10.1016/j.bj.2024.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
N6-methyladenosine (m6A) is a mRNA modification with important roles in gene expression. In African trypanosomes, this post-transcriptional modification is detected in hundreds of transcripts and it affects the stability of the variant surface glycoprotein (VSG) transcript in the proliferating blood stream form. However, how the m6A landscape varies across the life cycle remains poorly defined. Using full-length, non-fragmented RNA, we immunoprecipitated and sequenced m6A-modified transcripts across three life cycle stages of Trypanosoma brucei - slender (proliferative), stumpy (quiescent), and procyclic forms (proliferative). We found that 1037 transcripts are methylated in at least one of these three life cycle stages. While 21% of methylated transcripts are common in the three stages of the life cycle, globally each stage has a distinct methylome. Interestingly, 47% of methylated transcripts are detected in the quiescent stumpy form only, suggesting a critical role for m6A when parasites exit the cell cycle and prepare for transmission by the Tsetse fly. In this stage, we found that a significant proportion of methylated transcripts encodes for proteins involved in RNA metabolism, which is consistent with their reduced transcription and translation. Moreover, we found that not all major surface proteins are regulated by m6A, as procyclins are not methylated, and that, within the VSG repertoire, not all VSG transcripts are demethylated upon parasite differentiation to procyclic form. This study reveals that the m6A regulatory landscape is specific to each life cycle stage, becoming more pervasive as T. brucei exits the cell cycle.
Collapse
Affiliation(s)
- Lúcia Serra
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa
| | - Sara Silva Pereira
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa
| | - Idálio J Viegas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa; Current affiliation: Institute of Inflammation and Ageing, University of Birmingham
| | - Henrique Machado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa
| | - Lara López-Escobar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa.
| |
Collapse
|
2
|
Iribarren PA, Di Marzio LA, Berazategui MA, Saura A, Coria L, Cassataro J, Rojas F, Navarro M, Alvarez VE. Depolymerization of SUMO chains induces slender to stumpy differentiation in T. brucei bloodstream parasites. PLoS Pathog 2024; 20:e1012166. [PMID: 38635823 PMCID: PMC11060531 DOI: 10.1371/journal.ppat.1012166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Trypanosoma brucei are protozoan parasites that cause sleeping sickness in humans and nagana in cattle. Inside the mammalian host, a quorum sensing-like mechanism coordinates its differentiation from a slender replicative form into a quiescent stumpy form, limiting growth and activating metabolic pathways that are beneficial to the parasite in the insect host. The post-translational modification of proteins with the Small Ubiquitin-like MOdifier (SUMO) enables dynamic regulation of cellular metabolism. SUMO can be conjugated to its targets as a monomer but can also form oligomeric chains. Here, we have investigated the role of SUMO chains in T. brucei by abolishing the ability of SUMO to polymerize. We have found that parasites able to conjugate only SUMO monomers are primed for differentiation. This was demonstrated for monomorphic lines that are normally unable to produce stumpy forms in response to quorum sensing signaling in mice, and also for pleomorphic cell lines in which stumpy cells were observed at unusually low parasitemia levels. SUMO chain mutants showed a stumpy compatible transcriptional profile and better competence to differentiate into procyclics. Our study indicates that SUMO depolymerization may represent a coordinated signal triggered during stumpy activation program.
Collapse
Affiliation(s)
- Paula Ana Iribarren
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Lucía Ayelén Di Marzio
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - María Agustina Berazategui
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Andreu Saura
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC (IPBLN-CSIC), Granada, Spain
| | - Lorena Coria
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Federico Rojas
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC (IPBLN-CSIC), Granada, Spain
| | - Vanina Eder Alvarez
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| |
Collapse
|
3
|
Trindade S, De Niz M, Costa-Sequeira M, Bizarra-Rebelo T, Bento F, Dejung M, Narciso MV, López-Escobar L, Ferreira J, Butter F, Bringaud F, Gjini E, Figueiredo LM. Slow growing behavior in African trypanosomes during adipose tissue colonization. Nat Commun 2022; 13:7548. [PMID: 36481558 PMCID: PMC9732351 DOI: 10.1038/s41467-022-34622-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
When Trypanosoma brucei parasites, the causative agent of sleeping sickness, colonize the adipose tissue, they rewire gene expression. Whether this adaptation affects population behavior and disease treatment remained unknown. By using a mathematical model, we estimate that the population of adipose tissue forms (ATFs) proliferates slower than blood parasites. Analysis of the ATFs proteome, measurement of protein synthesis and proliferation rates confirm that the ATFs divide on average every 12 h, instead of 6 h in the blood. Importantly, the population of ATFs is heterogeneous with parasites doubling times ranging between 5 h and 35 h. Slow-proliferating parasites remain capable of reverting to the fast proliferation profile in blood conditions. Intravital imaging shows that ATFs are refractory to drug treatment. We propose that in adipose tissue, a subpopulation of T. brucei parasites acquire a slow growing behavior, which contributes to disease chronicity and treatment failure.
Collapse
Affiliation(s)
- Sandra Trindade
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Mariana Costa-Sequeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Tiago Bizarra-Rebelo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Fábio Bento
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Institute of Molecular Biology, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology, 55128, Mainz, Germany
| | - Marta Valido Narciso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Lara López-Escobar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Falk Butter
- Institute of Molecular Biology, 55128, Mainz, Germany
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS, UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS, UMR-5536, Bordeaux, France
| | - Erida Gjini
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
4
|
Guegan F, Rajan KS, Bento F, Pinto-Neves D, Sequeira M, Gumińska N, Mroczek S, Dziembowski A, Cohen-Chalamish S, Doniger T, Galili B, Estévez AM, Notredame C, Michaeli S, Figueiredo LM. A long noncoding RNA promotes parasite differentiation in African trypanosomes. SCIENCE ADVANCES 2022; 8:eabn2706. [PMID: 35704590 PMCID: PMC9200285 DOI: 10.1126/sciadv.abn2706] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The parasite Trypanosoma brucei causes African sleeping sickness that is fatal to patients if untreated. Parasite differentiation from a replicative slender form into a quiescent stumpy form promotes host survival and parasite transmission. Long noncoding RNAs (lncRNAs) are known to regulate cell differentiation in other eukaryotes. To determine whether lncRNAs are also involved in parasite differentiation, we used RNA sequencing to survey the T. brucei genome, identifying 1428 previously uncharacterized lncRNA genes. We find that grumpy lncRNA is a key regulator that promotes parasite differentiation into the quiescent stumpy form. This function is promoted by a small nucleolar RNA encoded within the grumpy lncRNA. snoGRUMPY binds to messenger RNAs of at least two stumpy regulatory genes, promoting their expression. grumpy overexpression reduces parasitemia in infected mice. Our analyses suggest that T. brucei lncRNAs modulate parasite-host interactions and provide a mechanism by which grumpy regulates cell differentiation in trypanosomes.
Collapse
Affiliation(s)
- Fabien Guegan
- Instituto de Medicina Molecular–Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Corresponding author. (F.G.); (L.M.F.)
| | - K. Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Fábio Bento
- Instituto de Medicina Molecular–Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Daniel Pinto-Neves
- Instituto de Medicina Molecular–Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mariana Sequeira
- Instituto de Medicina Molecular–Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Natalia Gumińska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Beathrice Galili
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Antonio M. Estévez
- Instituto de Parasitologia y Biomedicina ‘Lopez-Neyra,’ IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Cedric Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Luisa M. Figueiredo
- Instituto de Medicina Molecular–Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Corresponding author. (F.G.); (L.M.F.)
| |
Collapse
|
5
|
Tinti M, Kelner-Mirôn A, Marriott LJ, Ferguson MA. Polysomal mRNA Association and Gene Expression in Trypanosoma brucei. Wellcome Open Res 2022; 6:36. [PMID: 34250262 PMCID: PMC8240603 DOI: 10.12688/wellcomeopenres.16430.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The contrasting physiological environments of
Trypanosoma brucei procyclic (insect vector) and bloodstream (mammalian host) forms necessitates deployment of different molecular processes and, therefore, changes in protein expression. Transcriptional regulation is unusual in
T. brucei because the arrangement of genes is polycistronic; however, genes which are transcribed together are subsequently cleaved into separate mRNAs by
trans-splicing. Following pre-mRNA processing, the regulation of mature mRNA stability is a tightly controlled cellular process. While many stage-specific transcripts have been identified, previous studies using RNA-seq suggest that changes in overall transcript level do not necessarily reflect the abundance of the corresponding protein. Methods: To better understand the regulation of gene expression in
T. brucei, we performed a bioinformatic analysis of RNA-seq on total, sub-polysomal, and polysomal mRNA samples. We further cross-referenced our dataset with a previously published proteomics dataset to identify new protein coding sequences. Results: Our analyses showed that several long non-coding RNAs are more abundant in the sub-polysome samples, which possibly implicates them in regulating cellular differentiation in
T. brucei. We also improved the annotation of the
T.brucei genome by identifying new putative protein coding transcripts that were confirmed by mass spectrometry data. Conclusions: Several long non-coding RNAs are more abundant in the sub-polysome cellular fractions and might pay a role in the regulation of gene expression. We hope that these data will be of wide general interest, as well as being of specific value to researchers studying gene regulation expression and life stage transitions in
T. brucei.
Collapse
Affiliation(s)
- Michele Tinti
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Anna Kelner-Mirôn
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Lizzie J. Marriott
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Michael A.J. Ferguson
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| |
Collapse
|
6
|
Tinti M, Kelner-Mirôn A, Marriott LJ, Ferguson MAJ. Polysomal mRNA Association and Gene Expression in Trypanosoma brucei. Wellcome Open Res 2021; 6:36. [PMID: 34250262 DOI: 10.12688/wellcomeopenres.16430.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The contrasting physiological environments of Trypanosoma brucei procyclic (insect vector) and bloodstream (mammalian host) forms necessitates deployment of different molecular processes and, therefore, changes in protein expression. Transcriptional regulation is unusual in T. brucei because the arrangement of genes is polycistronic; however, genes which are transcribed together are subsequently cleaved into separate mRNAs by trans-splicing. Following pre-mRNA processing, the regulation of mature mRNA stability is a tightly controlled cellular process. While many stage-specific transcripts have been identified, previous studies using RNA-seq suggest that changes in overall transcript level do not necessarily reflect the abundance of the corresponding protein. Methods: To better understand the regulation of gene expression in T. brucei, we performed a bioinformatic analysis of RNA-seq on total, sub-polysomal, and polysomal mRNA samples. We further cross-referenced our dataset with a previously published proteomics dataset to identify new protein coding sequences. Results: Our analyses showed that several long non-coding RNAs are more abundant in the sub-polysome samples, which possibly implicates them in regulating cellular differentiation in T. brucei. We also improved the annotation of the T.brucei genome by identifying new putative protein coding transcripts that were confirmed by mass spectrometry data. Conclusions: Several long non-coding RNAs are more abundant in the sub-polysome cellular fractions and might pay a role in the regulation of gene expression. We hope that these data will be of wide general interest, as well as being of specific value to researchers studying gene regulation expression and life stage transitions in T. brucei.
Collapse
Affiliation(s)
- Michele Tinti
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Anna Kelner-Mirôn
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Lizzie J Marriott
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| |
Collapse
|
7
|
Single-cell transcriptomic analysis of bloodstream Trypanosoma brucei reconstructs cell cycle progression and developmental quorum sensing. Nat Commun 2021; 12:5268. [PMID: 34489460 PMCID: PMC8421343 DOI: 10.1038/s41467-021-25607-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Developmental steps in the trypanosome life-cycle involve transition between replicative and non-replicative forms specialised for survival in, and transmission between, mammalian and tsetse fly hosts. Here, using oligopeptide-induced differentiation in vitro, we model the progressive development of replicative 'slender' to transmissible 'stumpy' bloodstream form Trypanosoma brucei and capture the transcriptomes of 8,599 parasites using single cell transcriptomics (scRNA-seq). Using this framework, we detail the relative order of biological events during asynchronous development, profile dynamic gene expression patterns and identify putative regulators. We additionally map the cell cycle of proliferating parasites and position stumpy cell-cycle exit at early G1 before progression to a distinct G0 state. A null mutant for one transiently elevated developmental regulator, ZC3H20 is further analysed by scRNA-seq, identifying its point of failure in the developmental atlas. This approach provides a paradigm for the dissection of differentiation events in parasites, relevant to diverse transitions in pathogen biology.
Collapse
|
8
|
Tinti M, Kelner-Mirôn A, Marriott LJ, Ferguson MAJ. Polysomal mRNA Association and Gene Expression in Trypanosoma brucei. Wellcome Open Res 2021; 6:36. [PMID: 34250262 DOI: 10.12688/wellcomeopenres.16430.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The contrasting physiological environments of Trypanosoma brucei procyclic (insect vector) and bloodstream (mammalian host) forms necessitates deployment of different molecular processes and, therefore, changes in protein expression. Transcriptional regulation is unusual in T. brucei because the arrangement of genes is polycistronic; however, genes which are transcribed together are subsequently cleaved into separate mRNAs by trans-splicing. Following pre-mRNA processing, the regulation of mature mRNA stability is a tightly controlled cellular process. While many stage-specific transcripts have been identified, previous studies using RNA-seq suggest that changes in overall transcript level do not necessarily reflect the abundance of the corresponding protein. Methods: To better understand the regulation of gene expression in T. brucei, we performed a bioinformatic analysis of RNA-seq on total, sub-polysomal, and polysomal mRNA samples. We further cross-referenced our dataset with a previously published proteomics dataset to identify new protein coding sequences. Results: Our analyses showed that several long non-coding RNAs are more abundant in the sub-polysome samples, which possibly implicates them in regulating cellular differentiation in T. brucei. We also improved the annotation of the T.brucei genome by identifying new putative protein coding transcripts that were confirmed by mass spectrometry data. Conclusions: Several long non-coding RNAs are more abundant in the sub-polysome cellular fractions and might pay a role in the regulation of gene expression. We hope that these data will be of wide general interest, as well as being of specific value to researchers studying gene regulation expression and life stage transitions in T. brucei.
Collapse
Affiliation(s)
- Michele Tinti
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Anna Kelner-Mirôn
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Lizzie J Marriott
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| |
Collapse
|
9
|
Luzak V, López-Escobar L, Siegel TN, Figueiredo LM. Cell-to-Cell Heterogeneity in Trypanosomes. Annu Rev Microbiol 2021; 75:107-128. [PMID: 34228491 DOI: 10.1146/annurev-micro-040821-012953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent developments in single-cell and single-molecule techniques have revealed surprising levels of heterogeneity among isogenic cells. These advances have transformed the study of cell-to-cell heterogeneity into a major area of biomedical research, revealing that it can confer essential advantages, such as priming populations of unicellular organisms for future environmental stresses. Protozoan parasites, such as trypanosomes, face multiple and often hostile environments, and to survive, they undergo multiple changes, including changes in morphology, gene expression, and metabolism. But why does only a subset of proliferative cells differentiate to the next life cycle stage? Why do only some bloodstream parasites undergo antigenic switching while others stably express one variant surface glycoprotein? And why do some parasites invade an organ while others remain in the bloodstream? Building on extensive research performed in bacteria, here we suggest that biological noise can contribute to the fitness of eukaryotic pathogens and discuss the importance of cell-to-cell heterogeneity in trypanosome infections. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vanessa Luzak
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany.,Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany
| | - Lara López-Escobar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany.,Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
10
|
Bevkal S, Naguleswaran A, Rehmann R, Kaiser M, Heller M, Roditi I. An Alba-domain protein required for proteome remodelling during trypanosome differentiation and host transition. PLoS Pathog 2021; 17:e1009239. [PMID: 33493187 PMCID: PMC7861527 DOI: 10.1371/journal.ppat.1009239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/04/2021] [Accepted: 12/10/2020] [Indexed: 11/19/2022] Open
Abstract
The transition between hosts is a challenge for digenetic parasites as it is unpredictable. For Trypanosoma brucei subspecies, which are disseminated by tsetse flies, adaptation to the new host requires differentiation of stumpy forms picked up from mammals to procyclic forms in the fly midgut. Here we show that the Alba-domain protein Alba3 is not essential for mammalian slender forms, nor is it required for differentiation of slender to stumpy forms in culture or in mice. It is crucial, however, for the development of T. brucei procyclic forms during the host transition. While steady state levels of mRNAs in differentiating cells are barely affected by the loss of Alba3, there are major repercussions for the proteome. Mechanistically, Alba3 aids differentiation by rapidly releasing stumpy forms from translational repression and stimulating polysome formation. In its absence, parasites fail to remodel their proteome appropriately, lack components of the mitochondrial respiratory chain and show reduced infection of tsetse. Interestingly, Alba3 and the closely related Alba4 are functionally redundant in slender forms, but Alba4 cannot compensate for the lack of Alba3 during differentiation from the stumpy to the procyclic form. We postulate that Alba-domain proteins play similar roles in regulating translation in other protozoan parasites, in particular during life-cycle and host transitions. Trypanosoma brucei is a unicellular eukaryotic parasite that is responsible for African trypanosomiasis. The parasite needs two hosts, mammals and tsetse flies, in order to complete its life cycle. Throughout its developmental cycle, T. brucei encounters diverse environments to which it has to adapt in order to maintain its transmission and infectivity. Successful adaptation to the new environment and transition to different life-cycle stages are the general challenges faced by many digenetic parasites. In this study we show that the Alba-domain protein Alba3 is essential for differentiation of the mammalian stumpy form (transition form) to the procyclic form in the tsetse host. An Alba3 deletion mutant infects mice and shows characteristic waves of parasitaemia, but is severely compromised in its ability to infect tsetse flies. Stumpy forms are translationally repressed, but are poised to resume protein synthesis during differentiation. We show that Alba3 is key to efficient escape from translation repression; in its absence, there is a delay in the formation of polysomes and resumption of protein synthesis. This impacts the formation of procyclic-specific mitochondrial respiratory complex proteins as well as the repression of some bloodstream-specific proteins. This is the first time that a single protein has been shown to have a major influence on translation as an adaptive response to changing hosts. It is also the first time that a mechanism has been established for Alba-domain proteins in parasites.
Collapse
Affiliation(s)
- Shubha Bevkal
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Science, University of Bern, Bern, Switzerland
| | | | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Marcel Kaiser
- Department of Medical and Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
11
|
Cestari I, Stuart K. The phosphoinositide regulatory network in Trypanosoma brucei: Implications for cell-wide regulation in eukaryotes. PLoS Negl Trop Dis 2020; 14:e0008689. [PMID: 33119588 PMCID: PMC7595295 DOI: 10.1371/journal.pntd.0008689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The unicellular eukaryote Trypanosoma brucei undergoes extensive cellular and developmental changes during its life cycle. These include regulation of mammalian stage surface antigen variation and surface composition changes between life stages; switching between glycolysis and oxidative phosphorylation; differential mRNA editing; and changes in posttranscriptional gene expression, protein trafficking, organellar function, and cell morphology. These diverse events are coordinated and controlled throughout parasite development, maintained in homeostasis at each life stage, and are essential for parasite survival in both the host and insect vector. Described herein are the enzymes and metabolites of the phosphatidylinositol (PI) cellular regulatory network, its integration with other cellular regulatory systems that collectively control and coordinate these numerous cellular processes, including cell development and differentiation and the many associated complex processes in multiple subcellular compartments. We conclude that this regulation is the product of the organization of these enzymes within the cellular architecture, their activities, metabolite fluxes, and responses to environmental changes via signal transduction and other processes. We describe a paradigm for how these enzymes and metabolites could function to control and coordinate multiple cellular functions. The significance of the PI system's regulatory functions in single-celled eukaryotes to metazoans and their potential as chemotherapeutic targets are indicated.
Collapse
Affiliation(s)
- Igor Cestari
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (IC); (KS)
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IC); (KS)
| |
Collapse
|
12
|
Trenaman A, Glover L, Hutchinson S, Horn D. A post-transcriptional respiratome regulon in trypanosomes. Nucleic Acids Res 2019; 47:7063-7077. [PMID: 31127277 PMCID: PMC6648352 DOI: 10.1093/nar/gkz455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/25/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional regulons coordinate the expression of groups of genes in eukaryotic cells, yet relatively few have been characterized. Parasitic trypanosomatids are particularly good models for studies on such mechanisms because they exhibit almost exclusive polycistronic, and unregulated, transcription. Here, we identify the Trypanosoma brucei ZC3H39/40 RNA-binding proteins as regulators of the respiratome; the mitochondrial electron transport chain (complexes I-IV) and the FoF1-ATP synthase (complex V). A high-throughput RNAi screen initially implicated both ZC3H proteins in variant surface glycoprotein (VSG) gene silencing. This link was confirmed and both proteins were shown to form a cytoplasmic ZC3H39/40 complex. Transcriptome and mRNA-interactome analyses indicated that the impact on VSG silencing was indirect, while the ZC3H39/40 complex specifically bound and stabilized transcripts encoding respiratome-complexes. Quantitative proteomic analyses revealed specific positive control of >20 components from complexes I, II and V. Our findings establish a link between the mitochondrial respiratome and VSG gene silencing in bloodstream form T. brucei. They also reveal a major respiratome regulon controlled by the conserved trypanosomatid ZC3H39/40 RNA-binding proteins.
Collapse
Affiliation(s)
- Anna Trenaman
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lucy Glover
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sebastian Hutchinson
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
13
|
de Pablos LM, Ferreira TR, Dowle AA, Forrester S, Parry E, Newling K, Walrad PB. The mRNA-bound Proteome of Leishmania mexicana: Novel Genetic Insight into an Ancient Parasite. Mol Cell Proteomics 2019; 18:1271-1284. [PMID: 30948621 PMCID: PMC6601212 DOI: 10.1074/mcp.ra118.001307] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/23/2019] [Indexed: 01/08/2023] Open
Abstract
Leishmania parasite infections, termed the leishmaniases, cause significant global infectious disease burden. The lifecycle of the parasite embodies three main stages that require precise coordination of gene regulation to survive environmental shifts between sandfly and mammalian hosts. Constitutive transcription in kinetoplastid parasites means that gene regulation is overwhelmingly reliant on post-transcriptional mechanisms, yet strikingly few Leishmania trans-regulators are known. Using optimized crosslinking and deep, quantified mass spectrometry, we present a comprehensive analysis of 1400 mRNA binding proteins (mRBPs) and whole cell proteomes from the three main Leishmania lifecycle stages. Supporting the validity, although the crosslinked RBPome is magnitudes more enriched, the protein identities of the crosslinked and non-crosslinked RBPomes were nearly identical. Moreover, multiple candidate RBPs were endogenously tagged and found to associate with discrete mRNA target pools in a stage-specific manner. Results indicate that in L. mexicana parasites, mRNA levels are not a strong predictor of the whole cell expression or RNA binding potential of encoded proteins. Evidence includes a low correlation between transcript and corresponding protein expression and stage-specific variation in protein expression versus RNA binding potential. Unsurprisingly, RNA binding protein enrichment correlates strongly with relative replication efficiency of the specific lifecycle stage. Our study is the first to quantitatively define and compare the mRBPome of multiple stages in kinetoplastid parasites. It provides novel, in-depth insight into the trans-regulatory mRNA:Protein (mRNP) complexes that drive Leishmania parasite lifecycle progression.
Collapse
Affiliation(s)
| | | | - Adam A Dowle
- §Metabolomics and Proteomics Lab, Bioscience Technology Facility, and
| | | | - Ewan Parry
- From the ‡Centre for Immunology and Infection
| | - Katherine Newling
- ¶Genomics and Bioinformatics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | | |
Collapse
|
14
|
Awuoche EO, Weiss BL, Mireji PO, Vigneron A, Nyambega B, Murilla G, Aksoy S. Expression profiling of Trypanosoma congolense genes during development in the tsetse fly vector Glossina morsitans morsitans. Parasit Vectors 2018; 11:380. [PMID: 29970164 PMCID: PMC6029126 DOI: 10.1186/s13071-018-2964-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background The tsetse transmitted parasitic flagellate Trypanosoma congolense causes animal African trypanosomosis (AAT) across sub-Saharan Africa. AAT negatively impacts agricultural, economic, nutritional and subsequently, health status of the affected populace. The molecular mechanisms that underlie T. congolense’s developmental program within tsetse are largely unknown due to considerable challenges with obtaining sufficient parasite cells to perform molecular studies. Methods In this study, we used RNA-seq to profile T. congolense gene expression during development in two distinct tsetse tissues, the cardia and proboscis. Indirect immunofluorescent antibody test (IFA) and confocal laser scanning microscope was used to localize the expression of a putative protein encoded by the hypothetical protein (TcIL3000_0_02370). Results Consistent with current knowledge, genes coding several variant surface glycoproteins (including metacyclic specific VSGs), and the surface coat protein, congolense epimastigote specific protein, were upregulated in parasites in the proboscis (PB-parasites). Additionally, our results indicate that parasites in tsetse’s cardia (C-parasites) and PB employ oxidative phosphorylation and amino acid metabolism for energy. Several genes upregulated in C-parasites encoded receptor-type adenylate cyclases, surface carboxylate transporter family proteins (or PADs), transport proteins, RNA-binding proteins and procyclin isoforms. Gene ontology analysis of products of genes upregulated in C-parasites showed enrichment of terms broadly associated with nucleotides, microtubules, cell membrane and its components, cell signaling, quorum sensing and several transport activities, suggesting that the parasites colonizing the cardia may monitor their environment and regulate their density and movement in this tissue. Additionally, cell surface protein (CSP) encoding genes associated with the Fam50 ‘GARP’, ‘iii’ and ‘i’ subfamilies were also significantly upregulated in C-parasites, suggesting that they are important for the long non-dividing trypomastigotes to colonize tsetse’s cardia. The putative products of genes that were upregulated in PB-parasites were linked to nucleosomes, cytoplasm and membrane-bound organelles, which suggest that parasites in this niche undergo cell division in line with prior findings. Most of the CSPs upregulated in PB-parasites were hypothetical, thus requiring further functional characterization. Expression of one such hypothetical protein (TcIL3000_0_02370) was analyzed using immunofluorescence and confocal laser scanning microscopy, which together revealed preferential expression of this protein on the entire surface coat of T. congolense parasite stages that colonize G. m. morsitans’ proboscis. Conclusion Collectively, our results provide insight into T. congolense gene expression profiles in distinct niches within the tsetse vector. Our results show that the hypothetical protein TcIL3000_0_02370, is expressed on the entire surface of the trypanosomes inhabiting tsetse’s proboscis. We discuss our results in terms of their relevance to disease transmission processes. Electronic supplementary material The online version of this article (10.1186/s13071-018-2964-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erick O Awuoche
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya. .,Department of Biomedical Science and Technology, School of Public Health and Community Development, Maseno University, Private Bag, Maseno, Kenya. .,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA. .,Department of Agriculture, School of Agriculture and Food Science, Meru University of Science and Technology, Meru, Kenya.
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya.,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Benson Nyambega
- Department of Medical Biochemistry, School of Medicine, Maseno University, Private Bag, Maseno, Kenya
| | - Grace Murilla
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
15
|
Kalem MC, Gerasimov ES, Vu PK, Zimmer SL. Gene expression to mitochondrial metabolism: Variability among cultured Trypanosoma cruzi strains. PLoS One 2018; 13:e0197983. [PMID: 29847594 PMCID: PMC5976161 DOI: 10.1371/journal.pone.0197983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/11/2018] [Indexed: 11/18/2022] Open
Abstract
The insect-transmitted protozoan parasite Trypanosoma cruzi experiences changes in nutrient availability and rate of flux through different metabolic pathways across its life cycle. The species encompasses much genetic diversity of both the nuclear and mitochondrial genomes among isolated strains. The genetic or expression variation of both genomes are likely to impact metabolic responses to environmental stimuli, and even steady state metabolic function, among strains. To begin formal characterization these differences, we compared aspects of metabolism between genetically similar strains CL Brener and Tulahuen with less similar Esmeraldo and Sylvio X10 strains in a culture environment. Epimastigotes of all strains took up glucose at similar rates. However, the degree of medium acidification that could be observed when glucose was absent from the medium varied by strain, indicating potential differences in excreted metabolic byproducts. Our main focus was differences related to electron transport chain function. We observed differences in ATP-coupled respiration and maximal respiratory capacity, mitochondrial membrane potential, and mitochondrial morphology between strains, despite the fact that abundances of two nuclear-encoded proteins of the electron transport chain are similar between strains. RNA sequencing reveals strain-specific differences in abundances of mRNAs encoding proteins of the respiratory chain but also other metabolic processes. From these differences in metabolism and mitochondrial phenotypes we have generated tentative models for the differential metabolic fluxes or differences in gene expression that may underlie these results.
Collapse
Affiliation(s)
- Murat C. Kalem
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, Minnesota, United States of America
| | | | - Pamela K. Vu
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, Minnesota, United States of America
| |
Collapse
|
16
|
Karamysheva ZN, Tikhonova EB, Grozdanov PN, Huffman JC, Baca KR, Karamyshev A, Denison RB, MacDonald CC, Zhang K, Karamyshev AL. Polysome Profiling in Leishmania, Human Cells and Mouse Testis. J Vis Exp 2018. [PMID: 29683462 DOI: 10.3791/57600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Proper protein expression at the right time and in the right amounts is the basis of normal cell function and survival in a fast-changing environment. For a long time, the gene expression studies were dominated by research on the transcriptional level. However, the steady-state levels of mRNAs do not correlate well with protein production, and the translatability of mRNAs varies greatly depending on the conditions. In some organisms, like the parasite Leishmania, the protein expression is regulated mostly at the translational level. Recent studies demonstrated that protein translation dysregulation is associated with cancer, metabolic, neurodegenerative and other human diseases. Polysome profiling is a powerful method to study protein translation regulation. It allows to measure the translational status of individual mRNAs or examine translation on a genome-wide scale. The basis of this technique is the separation of polysomes, ribosomes, their subunits and free mRNAs during centrifugation of a cytoplasmic lysate through a sucrose gradient. Here, we present a universal polysome profiling protocol used on three different models - parasite Leishmania major, cultured human cells and animal tissues. Leishmania cells freely grow in suspension and cultured human cells grow in adherent monolayer, while mouse testis represents an animal tissue sample. Thus, the technique is adapted to all of these sources. The protocol for the analysis of polysomal fractions includes detection of individual mRNA levels by RT-qPCR, proteins by Western blot and analysis of ribosomal RNAs by electrophoresis. The method can be further extended by examination of mRNAs association with the ribosome on a transcriptome level by deep RNA-seq and analysis of ribosome-associated proteins by mass spectroscopy of the fractions. The method can be easily adjusted to other biological models.
Collapse
Affiliation(s)
| | - Elena B Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center
| | - Petar N Grozdanov
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center
| | - James C Huffman
- Department of Biological Sciences, Texas Tech University; CISER (Center for the Integration of STEM Education & Research), Texas Tech University
| | - Kristen R Baca
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center; CISER (Center for the Integration of STEM Education & Research), Texas Tech University
| | - Alexander Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center
| | - R Brian Denison
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center
| | - Clinton C MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center;
| |
Collapse
|
17
|
Cestari I, Anupama A, Stuart K. Inositol polyphosphate multikinase regulation of Trypanosoma brucei life stage development. Mol Biol Cell 2018. [PMID: 29514930 PMCID: PMC5921579 DOI: 10.1091/mbc.e17-08-0515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The regulation of Trypanosoma brucei life stage development remains unclear. Inositol polyphosphate multikinase regulates the development of mammalian bloodforms to insect stages that normally develop in flies. Specific inositol phosphates, perhaps as second messengers, interact with proteins of the regulatory network that controls development. Many cellular processes change during the Trypanosoma brucei life cycle as this parasite alternates between the mammalian host and tsetse fly vector. We show that the inositol phosphate pathway helps regulate these developmental changes. Knockdown of inositol polyphosphate multikinase (IPMK), which phosphorylates Ins(1,4,5)P3 and Ins(1,3,4,5)P4, resulted in changes in bloodstream forms that are characteristic of insect stage procyclic forms. These changes include expression of the procyclic surface coat, up-regulation of RNA-binding proteins that we show to regulate stage-specific transcripts, and activation of oxidative phosphorylation with increased ATP production in bloodstream forms. These changes were accompanied by development of procyclic morphology, which also occurred by the expression of a catalytically inactive IPMK, implying that regulation of these processes entails IPMK activity. Proteins involved in signaling, protein synthesis and turnover, and metabolism were affinity-enriched with the IPMK substrate or product. Developmental changes associated with IPMK knockdown or catalytic inactivation reflected processes that are enriched with inositol phosphates, and chemical and genetic perturbation of these processes affected T. brucei development. Hence, IPMK helps regulate T. brucei development, perhaps by affecting inositol phosphate interactions with proteins of the regulatory network that controls energy metabolism and development.
Collapse
Affiliation(s)
- Igor Cestari
- Center for Infectious Disease Research, Seattle, WA 98109
| | - Atashi Anupama
- Center for Infectious Disease Research, Seattle, WA 98109
| | - Kenneth Stuart
- Center for Infectious Disease Research, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
18
|
Freire ER, Moura DMN, Bezerra MJR, Xavier CC, Morais-Sobral MC, Vashisht AA, Rezende AM, Wohlschlegel JA, Sturm NR, de Melo Neto OP, Campbell DA. Trypanosoma brucei EIF4E2 cap-binding protein binds a homolog of the histone-mRNA stem-loop-binding protein. Curr Genet 2017; 64:821-839. [DOI: 10.1007/s00294-017-0795-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
|
19
|
Christiano R, Kolev NG, Shi H, Ullu E, Walther TC, Tschudi C. The proteome and transcriptome of the infectious metacyclic form of Trypanosoma brucei define quiescent cells primed for mammalian invasion. Mol Microbiol 2017; 106:74-92. [PMID: 28742275 DOI: 10.1111/mmi.13754] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 01/22/2023]
Abstract
The infectious metacyclic forms of Trypanosoma brucei result from a complex development in the tsetse fly vector. When they infect mammals, they cause African sleeping sickness in humans. Due to scarcity of biological material and difficulties of the tsetse fly as an experimental system, very limited information is available concerning the gene expression profile of metacyclic forms. We used an in vitro system based on expressing the RNA binding protein 6 to obtain infectious metacyclics and determined their protein and mRNA repertoires by mass-spectrometry (MS) based proteomics and mRNA sequencing (RNA-Seq) in comparison to non-infectious procyclic trypanosomes. We showed that metacyclics are quiescent cells, and propose this influences the choice of a monocistronic variant surface glycoprotein expression site. Metacyclics have a largely bloodstream-form type transcriptome, and thus are programmed to translate a bloodstream-form type proteome upon entry into the mammalian host and resumption of cell division. Genes encoding cell surface components showed the largest changes between procyclics and metacyclics, observed at both the transcript and protein levels. Genes encoding metabolic enzymes exhibited expression in metacyclics with features of both procyclic and bloodstream forms, suggesting that this intermediate-type metabolism is dictated by the availability of nutrients in the tsetse fly vector.
Collapse
Affiliation(s)
- Romain Christiano
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| | - Huafang Shi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| | - Elisabetta Ullu
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Internal Medicine, School of Medicine, Yale University, 330 Cedar St, Boardman 110, New Haven, CT 06520, USA
| | - Tobias C Walther
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.,Howard Hughes Medical Institute, Harvard T.H. Chan School of Public Health Boston, MA 02115, USA
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| |
Collapse
|
20
|
Silvester E, McWilliam KR, Matthews KR. The Cytological Events and Molecular Control of Life Cycle Development of Trypanosoma brucei in the Mammalian Bloodstream. Pathogens 2017; 6:pathogens6030029. [PMID: 28657594 PMCID: PMC5617986 DOI: 10.3390/pathogens6030029] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
African trypanosomes cause devastating disease in sub-Saharan Africa in humans and livestock. The parasite lives extracellularly within the bloodstream of mammalian hosts and is transmitted by blood-feeding tsetse flies. In the blood, trypanosomes exhibit two developmental forms: the slender form and the stumpy form. The slender form proliferates in the bloodstream, establishes the parasite numbers and avoids host immunity through antigenic variation. The stumpy form, in contrast, is non-proliferative and is adapted for transmission. Here, we overview the features of slender and stumpy form parasites in terms of their cytological and molecular characteristics and discuss how these contribute to their distinct biological functions. Thereafter, we describe the technical developments that have enabled recent discoveries that uncover how the slender to stumpy transition is enacted in molecular terms. Finally, we highlight new understanding of how control of the balance between slender and stumpy form parasites interfaces with other components of the infection dynamic of trypanosomes in their mammalian hosts. This interplay between the host environment and the parasite’s developmental biology may expose new vulnerabilities to therapeutic attack or reveal where drug control may be thwarted by the biological complexity of the parasite’s lifestyle.
Collapse
Affiliation(s)
- Eleanor Silvester
- Institute for Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Kirsty R McWilliam
- Institute for Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Keith R Matthews
- Institute for Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| |
Collapse
|
21
|
Tanowitz HB, Scherer PE, Mota MM, Figueiredo LM. Adipose Tissue: A Safe Haven for Parasites? Trends Parasitol 2016; 33:276-284. [PMID: 28007406 DOI: 10.1016/j.pt.2016.11.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
Abstract
Adipose tissue (AT) is no longer regarded as an inert lipid storage, but as an important central regulator in energy homeostasis and immunity. Three parasite species are uniquely associated with AT during part of their life cycle: Trypanosoma cruzi, the causative agent of Chagas disease; Trypanosoma brucei, the causative agent of African sleeping sickness; and Plasmodium spp., the causative agents of malaria. In AT, T. cruzi resides inside adipocytes, T. brucei is found in the interstitial spaces between adipocytes, while Plasmodium spp. infect red blood cells, which may adhere to the blood vessels supplying AT. Here, we discuss how each parasite species adapts to this tissue environment and what the implications are for pathogenesis, clinical manifestations, and therapy.
Collapse
Affiliation(s)
- Herbert B Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8549, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
22
|
Developmental differentiation in Leishmania lifecycle progression: post-transcriptional control conducts the orchestra. Curr Opin Microbiol 2016; 34:82-89. [PMID: 27565628 DOI: 10.1016/j.mib.2016.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022]
Abstract
The successful progression of Leishmania spp. through their lifecycle entails a series of differentiation processes; the proliferative procyclic promastigote forms become quiescent, human-infective metacyclic promastigotes during metacyclogenesis in the sandfly vector, which then differentiate into amastigotes during amastigogenesis in the mammalian host. The progression to these infective forms requires two components: environmental cues and a coordinated cellular response. Recent studies have shown that the Leishmania cellular transformation into mammalian-infective stages is triggered by broad changes in the absolute and relative RNA and protein levels. In this review, we will discuss the implications of Leishmania transcriptomic and proteomic fluctuations, which adapt the parasitic cell for survival.
Collapse
|
23
|
Hope R, Egarmina K, Voloshin K, Waldman Ben-Asher H, Carmi S, Eliaz D, Drori Y, Michaeli S. Transcriptome and proteome analyses and the role of atypical calpain protein and autophagy in the spliced leader silencing pathway in Trypanosoma brucei. Mol Microbiol 2016; 102:1-21. [PMID: 27161313 DOI: 10.1111/mmi.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2016] [Indexed: 11/29/2022]
Abstract
Under persistent ER stress, Trypanosoma brucei parasites induce the spliced leader silencing (SLS) pathway. In SLS, transcription of the SL RNA gene, the SL donor to all mRNAs, is extinguished, arresting trans-splicing and leading to programmed cell death (PCD). In this study, we investigated the transcriptome following silencing of SEC63, a factor essential for protein translocation across the ER membrane, and whose silencing induces SLS. The proteome of SEC63-silenced cells was analyzed with an emphasis on SLS-specific alterations in protein expression, and modifications that do not directly result from perturbations in trans-splicing. One such protein identified is an atypical calpain SKCRP7.1/7.2. Co-silencing of SKCRP7.1/7.2 and SEC63 eliminated SLS induction due its role in translocating the PK3 kinase. This kinase initiates SLS by migrating to the nucleus and phosphorylating TRF4 leading to shut-off of SL RNA transcription. Thus, SKCRP7.1 is involved in SLS signaling and the accompanying PCD. The role of autophagy in SLS was also investigated; eliminating autophagy through VPS34 or ATG7 silencing demonstrated that autophagy is not essential for SLS induction, but is associated with PCD. Thus, this study identified factors that are used by the parasite to cope with ER stress and to induce SLS and PCD.
Collapse
Affiliation(s)
- Ronen Hope
- The Mina and Everard Goodman Faculty of Life Sciences.,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Katarina Egarmina
- The Mina and Everard Goodman Faculty of Life Sciences.,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Konstantin Voloshin
- The Mina and Everard Goodman Faculty of Life Sciences.,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | | | - Shai Carmi
- The Mina and Everard Goodman Faculty of Life Sciences.,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Dror Eliaz
- The Mina and Everard Goodman Faculty of Life Sciences.,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yaron Drori
- The Mina and Everard Goodman Faculty of Life Sciences.,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences. .,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
24
|
Parsons M, Myler PJ. Illuminating Parasite Protein Production by Ribosome Profiling. Trends Parasitol 2016; 32:446-457. [PMID: 27061497 DOI: 10.1016/j.pt.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/29/2022]
Abstract
While technologies for global enumeration of transcript abundance are well-developed, those that assess protein abundance require tailoring to penetrate to low-abundance proteins. Ribosome profiling circumvents this challenge by measuring global protein production via sequencing small mRNA fragments protected by the assembled ribosome. This powerful approach is now being applied to protozoan parasites including trypanosomes and Plasmodium. It has been used to identify new protein-coding sequences (CDSs) and clarify the boundaries of previously annotated CDSs in Trypanosoma brucei. Ribosome profiling has demonstrated that translation efficiencies vary widely between genes and, for trypanosomes at least, for the same gene across stages. The ribosomal proteins are themselves subjected to translational control, suggesting a means of reinforcing global translational regulation.
Collapse
Affiliation(s)
- Marilyn Parsons
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North STE 500, Seattle, WA 98109 USA; Department of Global Health, Box 357965, University of Washington, Seattle, WA 98195, USA.
| | - Peter J Myler
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North STE 500, Seattle, WA 98109 USA; Department of Global Health, Box 357965, University of Washington, Seattle, WA 98195, USA; Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Avila CCDC, Peacock L, Machado FC, Gibson W, Schenkman S, Carrington M, Castilho BA. Phosphorylation of eIF2α on Threonine 169 is not required for Trypanosoma brucei cell cycle arrest during differentiation. Mol Biochem Parasitol 2016; 205:16-21. [PMID: 26996431 PMCID: PMC4850487 DOI: 10.1016/j.molbiopara.2016.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 11/17/2022]
Abstract
Pleomorphic T. brucei expressing an eIF2α phosphorylation site mutant were made. The mutation did not prevent normal arrest and differentiation into stumpy forms. Mutants differentiate into procyclic forms in vitro and in tsetse flies.
The trypanosome life cycle consists of a series of developmental forms each adapted to an environment in the relevant insect and/or mammalian host. The differentiation process from the mammalian bloodstream form to the insect-midgut procyclic form in Trypanosoma brucei occurs in two steps in vivo. First proliferating ‘slender' bloodstream forms differentiate to non-dividing ‘stumpy' forms arrested in G1. Second, in response to environmental cues, stumpy bloodstream forms re-enter the cell cycle and start to proliferate as procyclic forms after a lag during which both cell morphology and gene expression are modified. Nearly all arrested cells have lower rates of protein synthesis when compared to the proliferating equivalent. In eukaryotes, one mechanism used to regulate the overall rate of protein synthesis involves phosphorylation of the alpha subunit of initiation factor eIF2 (eIF2α). The effect of eIF2α phosphorylation is to prevent the action of eIF2B, the guanine nucleotide exchange factor that activates eIF2 for the next rounds of initiation. To investigate the role of the phosphorylation of eIF2α in the life cycle of T. brucei, a cell line was made with a single eIF2α gene that contained the phosphorylation site, threonine 169, mutated to alanine. These cells were capable of differentiating from proliferating bloodstream form cells into arrested stumpy forms in mice and into procyclic forms in vitro and in tsetse flies. These results indicate that translation attenuation mediated by the phosphorylation of eIF2α on threonine 169 is not necessary for the cell cycle arrest associated with these differentiation processes.
Collapse
Affiliation(s)
- Carla Cristi D C Avila
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Lori Peacock
- Department of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS40 5DU, UK; School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Fabricio Castro Machado
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Beatriz A Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
26
|
Mulindwa J, Mercé C, Matovu E, Enyaru J, Clayton C. Transcriptomes of newly-isolated Trypanosoma brucei rhodesiense reveal hundreds of mRNAs that are co-regulated with stumpy-form markers. BMC Genomics 2015; 16:1118. [PMID: 26715446 PMCID: PMC4696300 DOI: 10.1186/s12864-015-2338-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/22/2015] [Indexed: 12/02/2022] Open
Abstract
Background During natural Trypanosoma brucei infections, the parasites differentiate spontaneously into a non-dividing “stumpy” form when a certain level of parasitaemia is attained. This form is metabolically adapted for rapid further differentiation into procyclic forms upon uptake by Tsetse flies. Results We describe here four central Ugandan isolates of Trypanosoma brucei rhodesiense that have undergone only three rodent passages since isolation from human patients. As expected, SNP analysis shows that these isolates are more closely related to each other than to the commonly used strains Lister 427, Antat1.1, and TREU927. TREU927 generally has smaller copy numbers of repeated genes than the other strains, while Lister 427 trypanosomes with a 30-year history of in vitro culture and cloning have more histone genes than the other isolates. The recently isolated trypanosomes were grown in rats, and their transcriptomes characterised. In comparison with cultured procyclic and bloodstream forms, there were increases in mRNAs encoding the stumpy-form markers ESAG9 and PIP39, with coordinated alterations in the levels of over 600 additional mRNAs. Numerous mRNAs encoding proteins of no known function were either increased or decreased. The products of the mRNAs that were increased in parallel with PIP39 included not only enzymes of procyclic-form metabolism, but also components of the translational and RNA control machineries. Many of the mRNAs that were decreased in cells with elevated PIP39 reflected reduced cell division. Conclusions These transcriptomes suggest new avenues for research into the regulation of trypanosome differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2338-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julius Mulindwa
- Department of Biochemistry and Sports Science, College of Natural Sciences, Makerere University, P.O.Box 7062, Kampala, Uganda. .,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany.
| | - Clémentine Mercé
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany.
| | - Enock Matovu
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O.Box 7062, Kampala, Uganda.
| | - John Enyaru
- Department of Biochemistry and Sports Science, College of Natural Sciences, Makerere University, P.O.Box 7062, Kampala, Uganda.
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany.
| |
Collapse
|
27
|
Swann J, Jamshidi N, Lewis NE, Winzeler EA. Systems analysis of host-parasite interactions. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:381-400. [PMID: 26306749 PMCID: PMC4679367 DOI: 10.1002/wsbm.1311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022]
Abstract
Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug‐resistant parasites necessitates that the research community take an active role in understanding host–parasite infection biology in order to develop improved therapeutics. Recent advances in next‐generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host–parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high‐throughput ‐omic data will undoubtedly generate extraordinary insight into host–parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host–parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies. WIREs Syst Biol Med 2015, 7:381–400. doi: 10.1002/wsbm.1311 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Justine Swann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Neema Jamshidi
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, USA.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics and Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Jackson AP, Goyard S, Xia D, Foth BJ, Sanders M, Wastling JM, Minoprio P, Berriman M. Global Gene Expression Profiling through the Complete Life Cycle of Trypanosoma vivax. PLoS Negl Trop Dis 2015; 9:e0003975. [PMID: 26266535 PMCID: PMC4534299 DOI: 10.1371/journal.pntd.0003975] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/12/2015] [Indexed: 12/13/2022] Open
Abstract
The parasitic flagellate Trypanosoma vivax is a cause of animal trypanosomiasis across Africa and South America. The parasite has a digenetic life cycle, passing between mammalian hosts and insect vectors, and a series of developmental forms adapted to each life cycle stage. Each point in the life cycle presents radically different challenges to parasite metabolism and physiology and distinct host interactions requiring remodeling of the parasite cell surface. Transcriptomic and proteomic studies of the related parasites T. brucei and T. congolense have shown how gene expression is regulated during their development. New methods for in vitro culture of the T. vivax insect stages have allowed us to describe global gene expression throughout the complete T. vivax life cycle for the first time. We combined transcriptomic and proteomic analysis of each life stage using RNA-seq and mass spectrometry respectively, to identify genes with patterns of preferential transcription or expression. While T. vivax conforms to a pattern of highly conserved gene expression found in other African trypanosomes, (e.g. developmental regulation of energy metabolism, restricted expression of a dominant variant antigen, and expression of ‘Fam50’ proteins in the insect mouthparts), we identified significant differences in gene expression affecting metabolism in the fly and a suite of T. vivax-specific genes with predicted cell-surface expression that are preferentially expressed in the mammal (‘Fam29, 30, 42’) or the vector (‘Fam34, 35, 43’). T. vivax differs significantly from other African trypanosomes in the developmentally-regulated proteins likely to be expressed on its cell surface and thus, in the structure of the host-parasite interface. These unique features may yet explain the species differences in life cycle and could, in the form of bloodstream-stage proteins that do not undergo antigenic variation, provide targets for therapy. Trypanosoma vivax is a single-celled parasite that infects cattle and non-domesticated animals through the bite of the tsetse fly. The parasite causes animal trypanosomiasis, a chronic condition resulting in severe anemia, muscle wastage and ultimately death if untreated. This disease is endemic across sub-Saharan Africa but has also spread to South America and causes considerable losses in animal productivity, impeding economic development in the world’s poorest nations. To develop new ways of preventing and treating animal trypanosomiasis, we need an accurate understanding of how the parasite causes disease. In this study, we present an analysis of gene expression throughout the T. vivax life cycle that compares the abundance of gene transcripts (mRNA) and proteins in the mammalian and insect hosts. We have identified genes that are preferentially expressed in each life stage, including many that are unique to T. vivax and probably expressed on its cell surface. Our findings provide a comprehensive understanding of how gene expression is regulated in T. vivax and further refine a pool of T. vivax-specific genes that could be exploited to prevent and treat animal trypanosomiasis.
Collapse
Affiliation(s)
- Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Sophie Goyard
- Department of Infection and Epidemiology, Institut Pasteur, Paris, France
| | - Dong Xia
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Bernardo J Foth
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Mandy Sanders
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jonathan M Wastling
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Paola Minoprio
- Department of Infection and Epidemiology, Institut Pasteur, Paris, France
| | - Matthew Berriman
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
29
|
Fritz M, Vanselow J, Sauer N, Lamer S, Goos C, Siegel TN, Subota I, Schlosser A, Carrington M, Kramer S. Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve. Nucleic Acids Res 2015; 43:8013-32. [PMID: 26187993 PMCID: PMC4652759 DOI: 10.1093/nar/gkv731] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/07/2015] [Indexed: 02/07/2023] Open
Abstract
RNP granules are ribonucleoprotein assemblies that regulate the post-transcriptional fate of mRNAs in all eukaryotes. Their exact function remains poorly understood, one reason for this is that RNP granule purification has not yet been achieved. We have exploited a unique feature of trypanosomes to prepare a cellular fraction highly enriched in starvation stress granules. First, granules remain trapped within the cage-like, subpellicular microtubule array of the trypanosome cytoskeleton while soluble proteins are washed away. Second, the microtubules are depolymerized and the granules are released. RNA sequencing combined with single molecule mRNA FISH identified the short and highly abundant mRNAs encoding ribosomal mRNAs as being excluded from granules. By mass spectrometry we have identified 463 stress granule candidate proteins. For 17/49 proteins tested by eYFP tagging we have confirmed the localization to granules, including one phosphatase, one methyltransferase and two proteins with a function in trypanosome life-cycle regulation. The novel method presented here enables the unbiased identification of novel RNP granule components, paving the way towards an understanding of RNP granule function.
Collapse
Affiliation(s)
- Melanie Fritz
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jens Vanselow
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Nadja Sauer
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stephanie Lamer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Carina Goos
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - T Nicolai Siegel
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ines Subota
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Mark Carrington
- Department of Biochemistry, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Susanne Kramer
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
30
|
Bühlmann M, Walrad P, Rico E, Ivens A, Capewell P, Naguleswaran A, Roditi I, Matthews KR. NMD3 regulates both mRNA and rRNA nuclear export in African trypanosomes via an XPOI-linked pathway. Nucleic Acids Res 2015; 43:4491-504. [PMID: 25873624 PMCID: PMC4482084 DOI: 10.1093/nar/gkv330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/03/2023] Open
Abstract
Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5'UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export.
Collapse
Affiliation(s)
- Melanie Bühlmann
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Pegine Walrad
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK Centre for Immunology and Infection, Department of Biology, University of York, YO10 5DD, UK
| | - Eva Rico
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Paul Capewell
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | | | - Isabel Roditi
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
31
|
Jensen BC, Ramasamy G, Vasconcelos EJR, Ingolia NT, Myler PJ, Parsons M. Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics 2014; 15:911. [PMID: 25331479 PMCID: PMC4210626 DOI: 10.1186/1471-2164-15-911] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 10/09/2014] [Indexed: 02/06/2023] Open
Abstract
Background Trypanosoma brucei subspecies infect humans and animals in sub-Saharan Africa. This early diverging eukaryote shows many novel features in basic biological processes, including the use of polycistronic transcription to generate all protein-coding mRNAs. Therefore we hypothesized that translational control provides a means to tune gene expression during parasite development in mammalian and fly hosts. Results We used ribosome profiling to examine genome-wide protein synthesis in animal-derived slender bloodstream forms and cultured procyclic (insect midgut) forms. About one-third of all CDSs showed statistically significant regulation of protein production between the two stages. Of these, more than two-thirds showed a change in translation efficiency, but few appeared to be controlled by this alone. Ribosomal proteins were translated poorly, especially in animal-derived parasites. A disproportionate number of metabolic enzymes were up-regulated at the mRNA level in procyclic forms, as were variant surface glycoproteins in bloodstream forms. Comparison with cultured bloodstream forms from another strain revealed stage-specific changes in gene expression that transcend strain and growth conditions. Genes with upstream ORFs had lower mean translation efficiency, but no evidence was found for involvement of uORFs in stage-regulation. Conclusions Ribosome profiling revealed that differences in the production of specific proteins in T. brucei bloodstream and procyclic forms are more extensive than predicted by analysis of mRNA abundance. While in vivo and in vitro derived bloodstream forms from different strains are more similar to one another than to procyclic forms, they showed many differences at both the mRNA and protein production level. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-911) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Marilyn Parsons
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Seattle, WA 98109-5219, USA.
| |
Collapse
|
32
|
Clayton CE. Networks of gene expression regulation in Trypanosoma brucei. Mol Biochem Parasitol 2014; 195:96-106. [PMID: 24995711 DOI: 10.1016/j.molbiopara.2014.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
Regulation of gene expression in Kinetoplastids relies mainly on post-transcriptional mechanisms. Recent high-throughput analyses, combined with mathematical modelling, have demonstrated possibilities for transcript-specific regulation at every stage: trans splicing, polyadenylation, translation, and degradation of both the precursor and the mature mRNA. Different mRNA degradation pathways result in different types of degradation kinetics. The original idea that the fate of an mRNA - or even just its degradation kinetics - can be defined by a single "regulatory element" is an over-simplification. It is now clear that every mRNA can bind many different proteins, some of which may compete with each other. Superimposed upon this complexity are the interactions of those proteins with effectors of gene expression. The amount of protein that is made from a gene is therefore determined by a complex network of interactions.
Collapse
Affiliation(s)
- C E Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
33
|
Found in translation. Nat Rev Microbiol 2014; 12:238. [DOI: 10.1038/nrmicro3243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Vasquez JJ, Hon CC, Vanselow JT, Schlosser A, Siegel TN. Comparative ribosome profiling reveals extensive translational complexity in different Trypanosoma brucei life cycle stages. Nucleic Acids Res 2014; 42:3623-37. [PMID: 24442674 PMCID: PMC3973304 DOI: 10.1093/nar/gkt1386] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While gene expression is a fundamental and tightly controlled cellular process that is regulated at multiple steps, the exact contribution of each step remains unknown in any organism. The absence of transcription initiation regulation for RNA polymerase II in the protozoan parasite Trypanosoma brucei greatly simplifies the task of elucidating the contribution of translation to global gene expression. Therefore, we have sequenced ribosome-protected mRNA fragments in T. brucei, permitting the genome-wide analysis of RNA translation and translational efficiency. We find that the latter varies greatly between life cycle stages of the parasite and ∼100-fold between genes, thus contributing to gene expression to a similar extent as RNA stability. The ability to map ribosome positions at sub-codon resolution revealed extensive translation from upstream open reading frames located within 5' UTRs and enabled the identification of hundreds of previously un-annotated putative coding sequences (CDSs). Evaluation of existing proteomics and genome-wide RNAi data confirmed the translation of previously un-annotated CDSs and suggested an important role for >200 of those CDSs in parasite survival, especially in the form that is infective to mammals. Overall our data show that translational control plays a prevalent and important role in different parasite life cycle stages of T. brucei.
Collapse
Affiliation(s)
- Juan-José Vasquez
- Research Center for Infectious Diseases, University of Wuerzburg, Wuerzburg 97080, Germany, Département Biologie cellulaire et infection, Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris 75015, France, INSERM U786, Paris 75015, France and Rudolf Virchow Center, University of Wuerzburg, Wuerzburg 97080, Germany
| | | | | | | | | |
Collapse
|
35
|
High-throughput chemical screening for antivirulence developmental phenotypes in Trypanosoma brucei. EUKARYOTIC CELL 2014; 13:412-26. [PMID: 24442893 PMCID: PMC3957582 DOI: 10.1128/ec.00335-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the bloodstream of mammalian hosts, the sleeping sickness parasite, Trypanosoma brucei, exists as a proliferative slender form or a nonproliferative, transmissible, stumpy form. The transition between these developmental forms is controlled by a density-dependent mechanism that is important for the parasite's infection dynamics, immune evasion via ordered antigenic variation, and disease transmissibility. However, stumpy formation has been lost in most laboratory-adapted trypanosome lines, generating monomorphic parasites that proliferate uncontrolled as slender forms in vitro and in vivo. Nonetheless, these forms are readily amenable to cell culture and high-throughput screening for trypanocidal lead compounds. Here, we have developed and exploited a high-throughput screen for developmental phenotypes using a transgenic monomorphic cell line expressing a reporter under the regulation of gene control signals from the stumpy-specific molecule PAD1. Using a whole-cell fluorescence-based assay to screen over 6,000 small molecules from a kinase-focused compound library, small molecules able to activate stumpy-specific gene expression and proliferation arrest were assayed in a rapid assay format. Independent follow-up validation identified one hit able to induce modest, yet specific, changes in mRNA expression indicative of a partial differentiation to stumpy forms in monomorphs. Further, in pleomorphs this compound induced a stumpy-like phenotype, entailing growth arrest, morphological changes, PAD1 expression, and enhanced differentiation to procyclic forms. This not only provides a potential tool compound for the further understanding of stumpy formation but also demonstrates the use of high-throughput screening in the identification of compounds able to induce specific phenotypes, such as differentiation, in African trypanosomes.
Collapse
|
36
|
Kramer S. RNA in development: how ribonucleoprotein granules regulate the life cycles of pathogenic protozoa. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:263-84. [PMID: 24339376 DOI: 10.1002/wrna.1207] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
Ribonucleoprotein (RNP) granules are important posttranscriptional regulators of messenger RNA (mRNA) fate. Several types of RNP granules specifically regulate gene expression during development of multicellular organisms and are commonly referred to as germ granules. The function of germ granules is not entirely understood and probably diverse, but it is generally agreed that one main function is posttranscriptional regulation of gene expression during early development, when transcription is silent. One example is the translational repression of maternally derived mRNAs in oocytes. Here, I hope to show that the need for regulation of gene expression by RNP granules is not restricted to animal development, but plays an equally important role during the development of pathogenic protozoa. Apicomplexa and Trypanosomatidae have complex life cycles with frequent host changes. The need to quickly adapt gene expression to a new environment as well as the ability to suppress translation to survive latencies is critical for successful completion of life cycles. Posttranscriptional gene regulation is not necessarily simpler in protozoa. Apicomplexa surprise with the presence of micro RNA (miRNAs) and upstream open reading frames (µORFs). Trypanosomes have an unusually large repertoire of different RNP granule types. A better understanding of RNP granules in protozoa may help to gain insight into the evolutionary origin of RNP granules: Trypanosomes for example have two types of granules with interesting similarities to animal germ granules.
Collapse
Affiliation(s)
- Susanne Kramer
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Rico E, Rojas F, Mony BM, Szoor B, Macgregor P, Matthews KR. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei. Front Cell Infect Microbiol 2013; 3:78. [PMID: 24294594 PMCID: PMC3827541 DOI: 10.3389/fcimb.2013.00078] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/24/2013] [Indexed: 12/04/2022] Open
Abstract
African trypanosomes are sustained in the bloodstream of their mammalian hosts by their extreme capacity for antigenic variation. However, for life cycle progression, trypanosomes also must generate transmission stages called stumpy forms that are pre-adapted to survive when taken up during the bloodmeal of the disease vector, tsetse flies. These stumpy forms are rather different to the proliferative slender forms that maintain the bloodstream parasitaemia. Firstly, they are non proliferative and morphologically distinct, secondly, they show particular sensitivity to environmental cues that signal entry to the tsetse fly and, thirdly, they are relatively robust such that they survive the changes in temperature, pH and proteolytic environment encountered within the tsetse midgut. These characteristics require regulated changes in gene expression to pre-adapt the parasite and the use of environmental sensing mechanisms, both of which allow the rapid initiation of differentiation to tsetse midgut procyclic forms upon transmission. Interestingly, the generation of stumpy forms is also regulated and periodic in the mammalian blood, this being governed by a density-sensing mechanism whereby a parasite-derived signal drives cell cycle arrest and cellular development both to optimize transmission and to prevent uncontrolled parasite multiplication overwhelming the host. In this review we detail recent developments in our understanding of the molecular mechanisms that underpin the production of stumpy forms in the mammalian bloodstream and their signal perception pathways both in the mammalian bloodstream and upon entry into the tsetse fly. These discoveries are discussed in the context of conserved eukaryotic signaling and differentiation mechanisms. Further, their potential to act as targets for therapeutic strategies that disrupt parasite development either in the mammalian bloodstream or upon their transmission to tsetse flies is also discussed.
Collapse
Affiliation(s)
- Eva Rico
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh Edinburgh, UK
| | | | | | | | | | | |
Collapse
|