1
|
Rudà R, Horbinski C, van den Bent M, Preusser M, Soffietti R. IDH inhibition in gliomas: from preclinical models to clinical trials. Nat Rev Neurol 2024; 20:395-407. [PMID: 38760442 DOI: 10.1038/s41582-024-00967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Gliomas are the most common malignant primary brain tumours in adults and cannot usually be cured with standard cancer treatments. Gliomas show intratumoural and intertumoural heterogeneity at the histological and molecular levels, and they frequently contain mutations in the isocitrate dehydrogenase 1 (IDH1) or IDH2 gene. IDH-mutant adult-type diffuse gliomas are subdivided into grade 2, 3 or 4 IDH-mutant astrocytomas and grade 2 or 3 IDH-mutant, 1p19q-codeleted oligodendrogliomas. The product of the mutated IDH genes, D-2-hydroxyglutarate (D-2-HG), induces global DNA hypermethylation and interferes with immunity, leading to stimulation of tumour growth. Selective inhibitors of mutant IDH, such as ivosidenib and vorasidenib, have been shown to reduce D-2-HG levels and induce cellular differentiation in preclinical models and to induce MRI-detectable responses in early clinical trials. The phase III INDIGO trial has demonstrated superiority of vorasidenib, a brain-penetrant pan-mutant IDH inhibitor, over placebo in people with non-enhancing grade 2 IDH-mutant gliomas following surgery. In this Review, we describe the pathway of development of IDH inhibitors in IDH-mutant low-grade gliomas from preclinical models to clinical trials. We discuss the practice-changing implications of the INDIGO trial and consider new avenues of investigation in the field of IDH-mutant gliomas.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy.
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martin van den Bent
- Brain Tumour Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy
| |
Collapse
|
2
|
McAleenan A, Jones HE, Kernohan A, Robinson T, Schmidt L, Dawson S, Kelly C, Spencer Leal E, Faulkner CL, Palmer A, Wragg C, Jefferies S, Brandner S, Vale L, Higgins JP, Kurian KM. Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma. Cochrane Database Syst Rev 2022; 3:CD013387. [PMID: 35233774 PMCID: PMC8889390 DOI: 10.1002/14651858.cd013387.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Complete deletion of both the short arm of chromosome 1 (1p) and the long arm of chromosome 19 (19q), known as 1p/19q codeletion, is a mutation that can occur in gliomas. It occurs in a type of glioma known as oligodendroglioma and its higher grade counterpart known as anaplastic oligodendroglioma. Detection of 1p/19q codeletion in gliomas is important because, together with another mutation in an enzyme known as isocitrate dehydrogenase, it is needed to make the diagnosis of an oligodendroglioma. Presence of 1p/19q codeletion also informs patient prognosis and prediction of the best drug treatment. The main two tests in use are fluorescent in situ hybridisation (FISH) and polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) assays (also known as PCR-based short tandem repeat or microsatellite analysis). Many other tests are available. None of the tests is perfect, although PCR-based LOH is expected to have very high sensitivity. OBJECTIVES To estimate the sensitivity and specificity and cost-effectiveness of different deoxyribonucleic acid (DNA)-based techniques for determining 1p/19q codeletion status in glioma. SEARCH METHODS We searched MEDLINE, Embase and BIOSIS up to July 2019. There were no restrictions based on language or date of publication. We sought economic evaluation studies from the results of this search and using the National Health Service Economic Evaluation Database. SELECTION CRITERIA We included cross-sectional studies in adults with glioma or any subtype of glioma, presenting raw data or cross-tabulations of two or more DNA-based tests for 1p/19q codeletion. We also sought economic evaluations of these tests. DATA COLLECTION AND ANALYSIS We followed procedures outlined in the Cochrane Handbook for Diagnostic Test Accuracy Reviews. Two review authors independently screened titles/abstracts/full texts, performed data extraction, and undertook applicability and risk of bias assessments using QUADAS-2. Meta-analyses used the hierarchical summary ROC model to estimate and compare test accuracy. We used FISH and PCR-based LOH as alternate reference standards to examine how tests compared with those in common use, and conducted a latent class analysis comparing FISH and PCR-based LOH. We constructed an economic model to evaluate cost-effectiveness. MAIN RESULTS We included 53 studies examining: PCR-based LOH, FISH, single nucleotide polymorphism (SNP) array, next-generation sequencing (NGS), comparative genomic hybridisation (CGH), array comparative genomic hybridisation (aCGH), multiplex-ligation-dependent probe amplification (MLPA), real-time PCR, chromogenic in situ hybridisation (CISH), mass spectrometry (MS), restriction fragment length polymorphism (RFLP) analysis, G-banding, methylation array and NanoString. Risk of bias was low for only one study; most gave us concerns about how patients were selected or about missing data. We had applicability concerns about many of the studies because only patients with specific subtypes of glioma were included. 1520 participants contributed to analyses using FISH as the reference, 1304 participants to analyses involving PCR-based LOH as the reference and 262 participants to analyses of comparisons between methods from studies not including FISH or PCR-based LOH. Most evidence was available for comparison of FISH with PCR-based LOH (15 studies, 915 participants): PCR-based LOH detected 94% of FISH-determined codeletions (95% credible interval (CrI) 83% to 98%) and FISH detected 91% of codeletions determined by PCR-based LOH (CrI 78% to 97%). Of tumours determined not to have a deletion by FISH, 94% (CrI 87% to 98%) had a deletion detected by PCR-based LOH, and of those determined not to have a deletion by PCR-based LOH, 96% (CrI 90% to 99%) had a deletion detected by FISH. The latent class analysis suggested that PCR-based LOH may be slightly more accurate than FISH. Most other techniques appeared to have high sensitivity (i.e. produced few false-negative results) for detection of 1p/19q codeletion when either FISH or PCR-based LOH was considered as the reference standard, although there was limited evidence. There was some indication of differences in specificity (false-positive rate) with some techniques. Both NGS and SNP array had high specificity when considered against FISH as the reference standard (NGS: 6 studies, 243 participants; SNP: 6 studies, 111 participants), although we rated certainty in the evidence as low or very low. NGS and SNP array also had high specificity when PCR-based LOH was considered the reference standard, although with much more uncertainty as these results were based on fewer studies (just one study with 49 participants for NGS and two studies with 33 participants for SNP array). G-banding had low sensitivity and specificity when PCR-based LOH was the reference standard. Although MS had very high sensitivity and specificity when both FISH and PCR-based LOH were considered the reference standard, these results were based on only one study with a small number of participants. Real-time PCR also showed high specificity with FISH as a reference standard, although there were only two studies including 40 participants. We found no relevant economic evaluations. Our economic model using FISH as the reference standard suggested that the resource-optimising test depends on which measure of diagnostic accuracy is most important. With FISH as the reference standard, MLPA is likely to be cost-effective if society was willing to pay GBP 1000 or less for a true positive detected. However, as the value placed on a true positive increased, CISH was most cost-effective. Findings differed when the outcome measure changed to either true negative detected or correct diagnosis. When PCR-based LOH was used as the reference standard, MLPA was likely to be cost-effective for all measures of diagnostic accuracy at lower threshold values for willingness to pay. However, as the threshold values increased, none of the tests were clearly more likely to be considered cost-effective. AUTHORS' CONCLUSIONS In our review, most techniques (except G-banding) appeared to have good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma against both FISH and PCR-based LOH as a reference standard. However, we judged the certainty of the evidence low or very low for all the tests. There are possible differences in specificity, with both NGS and SNP array having high specificity (fewer false positives) for 1p/19q codeletion when considered against FISH as the reference standard. The economic analysis should be interpreted with caution due to the small number of studies.
Collapse
Affiliation(s)
- Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hayley E Jones
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tomos Robinson
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne , UK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emmelyn Spencer Leal
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire L Faulkner
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Abigail Palmer
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Sarah Jefferies
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Luke Vale
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Julian Pt Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kathreena M Kurian
- Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Levallet G, Creveuil C, Bekaert L, Péres E, Planchard G, Lecot-Cotigny S, Guillamo JS, Emery E, Zalcman G, Lechapt-Zalcman E. Promoter Hypermethylation of Genes Encoding for RASSF/Hippo Pathway Members Reveals Specific Alteration Pattern in Diffuse Gliomas. J Mol Diagn 2019; 21:695-704. [PMID: 31055025 DOI: 10.1016/j.jmoldx.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022] Open
Abstract
Ras association domain family (RASSF)/Hippo pathway alterations are poorly characterized in diffuse gliomas. We assayed promoter methylation of LATS1/2, MST1(STK4)/MST2(STK3), RASSF1, RASSF2, Nore1A/RASSF5, RASSF6, and RASSF10 genes in 133 diffuse gliomas. The RASSF/Hippo pathway was highly silenced in gliomas, particularly RASSF1A (79.4%) and LATS2 (35.9%). The most frequent combination of promoter hypermethylation of one RASSF gene and one Hippo pathway member's gene was RASSF1/LATS2-coupled hypermethylation [n = 44 (33.08%)]. Hypermethylated profiles were related to IDH mutation, yet not randomly in IDH-mutated gliomas, because LATS2 promoter hypermethylation was more frequent in oligodendroglioma than in astrocytoma. RASSF1 and LATS2 promoter hypermethylation predicted a longer overall survival (OS). Considering hypermethylation of these two promoters, Cox proportional hazard regression analysis categorized the patients into three prognostic groups: i) high risk of death (n = 24; both RASSF1 and LATS2 unmethylated promoters; median OS, 13 months); ii) intermediate risk of death (n = 65; RASSF1 or LATS2 hypermethylated promoter; median OS, 50.5 months; HR = 3.3; 95% CI, 1.6-6.4; P = 0.001); and iii) low risk of death (n = 44; both RASSF1 and LATS2 hypermethylated promoters; median OS, 119 months; HR = 75.1; 95% CI, 3.3-15.1; P = 0.001). We have thus highlighted a simple two-gene (RASSF1/LATS2) methylation signature as a tool to stratify different prognostic groups of patients with diffuse glioma, adding further prognostic information within the IDH-mutated group.
Collapse
Affiliation(s)
- Guénaëlle Levallet
- UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Cyceron, a Public Interest Group, Normandy University, Caen, France; Department of Anatomy and Pathological Cytology, CHU de Caen, Caen, France.
| | | | - Lien Bekaert
- Department of Neurosurgery, CHU de Caen, Caen, France
| | - Elodie Péres
- UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Cyceron, a Public Interest Group, Normandy University, Caen, France
| | - Gaëtane Planchard
- Department of Anatomy and Pathological Cytology, CHU de Caen, Caen, France
| | | | - Jean-Sébastien Guillamo
- UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Cyceron, a Public Interest Group, Normandy University, Caen, France
| | | | - Gérard Zalcman
- Thoracic Oncology Department, Bichat-Claude Bernard Hospital, Public Assistance of Paris Hospitals (AP-HP), Paris-Diderot University, Paris, France; CIC INSERM 1425-CLIP2 Paris-North, Bichat-Claude Bernard Hospital, AP-HP, Paris, France
| | - Emmanuèle Lechapt-Zalcman
- UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Cyceron, a Public Interest Group, Normandy University, Caen, France; Department of Anatomy and Pathological Cytology, CHU de Caen, Caen, France; Department of Neuropathology, GHU Paris Psychiatry and Neuroscience, Paris, France
| |
Collapse
|
4
|
Sander C, Wallenborn M, Brandt VP, Ahnert P, Reuschel V, Eisenlöffel C, Krupp W, Meixensberger J, Holland H. Central neurocytoma: SNP array analyses, subtel FISH, and review of the literature. Pathol Res Pract 2019; 215:152397. [PMID: 31000381 DOI: 10.1016/j.prp.2019.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 12/29/2022]
Abstract
The central neurocytoma (CN) is a rare brain tumor with a frequency of 0.1-0.5% of all brain tumors. According to the World Health Organization classification, it is a benign grade II tumor with good prognosis. However, some CN occur as histologically "atypical" variant, combined with increasing proliferation and poor clinical outcome. Detailed genetic knowledge could be helpful to characterize a potential atypical behavior in CN. Only few publications on genetics of CN exist in the literature. Therefore, we performed cytogenetic analysis of an intraventricular neurocytoma WHO grade II in a 39-year-old male patient by use of genome-wide high-density single nucleotide polymorphism array (SNP array) and subtelomere FISH. Applying these techniques, we could detect known chromosomal aberrations and identified six not previously described chromosomal aberrations, gains of 1p36.33-p36.31, 2q37.1-q37.3, 6q27, 12p13.33-p13.31, 20q13.31-q13.33, and loss of 19p13.3-p12. Our case report contributes to the genetic knowledge about CN and to increased understanding of "typical" and "atypical" variants.
Collapse
Affiliation(s)
- Caroline Sander
- Dept. of Neurosurgery, University of Leipzig, Liebigstraße 26, 04103 Leipzig, Germany.
| | - Marco Wallenborn
- Dept. of Neurosurgery, University of Leipzig, Liebigstraße 26, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation, University of Leipzig, Philipp-Rosenthal Str. 55, 04103 Leipzig, Germany.
| | - Vivian Pascal Brandt
- Saxonian Incubator for Clinical Translation, University of Leipzig, Philipp-Rosenthal Str. 55, 04103 Leipzig, Germany.
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany.
| | - Vera Reuschel
- Dept. of Neuroradiology, University of Leipzig, Liebigstraße 22a, 04103 Leipzig, Germany
| | - Christan Eisenlöffel
- Dept. of Neuropathology, University of Leipzig, Liebigstraße 26, 04103 Leipzig, Germany
| | - Wolfgang Krupp
- Dept. of Neurosurgery, University of Leipzig, Liebigstraße 26, 04103 Leipzig, Germany.
| | - Jürgen Meixensberger
- Dept. of Neurosurgery, University of Leipzig, Liebigstraße 26, 04103 Leipzig, Germany.
| | - Heidrun Holland
- Saxonian Incubator for Clinical Translation, University of Leipzig, Philipp-Rosenthal Str. 55, 04103 Leipzig, Germany.
| |
Collapse
|
5
|
Nauen DW, Guajardo A, Haley L, Powell K, Burger PC, Gocke CD. Chromosomal defects track tumor subpopulations and change in progression in oligodendroglioma. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2015; 1. [PMID: 31602317 DOI: 10.1088/2057-1739/1/1/015001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To assess karyotypic changes and tumor subpopulations in progression of oligodendroglioma (ODG) we analyzed histologically diagnosed 1p/19q codeleted cases using single nucleotide polymorphism (SNP) microarray data. We separated cases according to grade, which was assigned blind to karyotype information beyond 1p/19q status. The 51 WHO grade II (O2) and 18 WHO grade III (O3) specimens showed frequent chromosomal locations and patterns of change including loss of heterozygosity (LOH), often copy-neutral, on 9p and LOH on 4p and 4q together. Analysis of co-occurrence indicated that most defects were independent but also suggested increased likelihood of defects on 11q, 13q, and 14q in the presence of defects on 18, 4, and 9, respectively. We used the relative degree of change in B-allele frequency as an indicator of an abnormality's extent, and we present simulated data to clarify how information on subpopulations was thus inferred. Among 9p defects, 89.3% involved the whole tumor, whereas only 47.6% of 4q defects did so. We modeled extent through the tumor as due to a karyotypic change's likelihood of occurring and the fitness it confers on its subpopulation, and used group data to estimate these values. To assess progression directly, we evaluated specimens from six patients who underwent multiple resections since 1996. Four of these patients had received no chemotherapy or radiation, permitting assessment of the natural history of the tumor karyotype in situ. Defects present throughout a tumor at first resection remained so, whereas among subpopulations, some expanded, some remained constant, and some disappeared. The rate of expansion among subpopulations that did so was not uniform, and estimates of fitness predicted subpopulation composition at recurrence. These results extend prior studies of increased karyotypic abnormality in progression of oligodendroglioma and reveal the complex dynamics of subpopulations in the tumor over time.
Collapse
Affiliation(s)
- David W Nauen
- Department of Pathology, Johns Hopkins Hospital, Ross 558, 720 Rutland Avenue, Baltimore MD 21205, USA
| | - Andrew Guajardo
- Department of Pathology, Johns Hopkins Hospital, Ross 558, 720 Rutland Avenue, Baltimore MD 21205, USA
| | - Lisa Haley
- Department of Pathology, Johns Hopkins Hospital, Ross 558, 720 Rutland Avenue, Baltimore MD 21205, USA
| | - Kerry Powell
- Department of Pathology, Johns Hopkins Hospital, Ross 558, 720 Rutland Avenue, Baltimore MD 21205, USA
| | - Peter C Burger
- Department of Pathology, Johns Hopkins Hospital, Ross 558, 720 Rutland Avenue, Baltimore MD 21205, USA
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins Hospital, Ross 558, 720 Rutland Avenue, Baltimore MD 21205, USA
| |
Collapse
|
6
|
Majchrzak-Celińska A, Paluszczak J, Szalata M, Barciszewska AM, Nowak S, Kleszcz R, Sherba A, Baer-Dubowska W. The methylation of a panel of genes differentiates low-grade from high-grade gliomas. Tumour Biol 2015; 36:3831-41. [PMID: 25563195 DOI: 10.1007/s13277-014-3025-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/26/2014] [Indexed: 12/29/2022] Open
Abstract
Epigenetic changes play an important role in the pathogenesis of gliomas and have the potential to become clinically useful biomarkers. The aim of this study was the evaluation of the profile of promoter methylation of 13 genes selected based on their anticipated diagnostic and/or prognostic value. Methylation-specific PCR (MSP) was used to assess the methylation status of MGMT, ERCC1, hMLH1, ATM, CDKN2B (p15INK4B), p14ARF, CDKN2A (p16INK4A), RASSF1A, RUNX3, GATA6, NDRG2, PTEN, and RARβ in a subset of 95 gliomas of different grades. Additionally, the methylation status of MGMT and NDRG2 was analyzed using pyrosequencing (PSQ). The results revealed that the methylation index of individual glioma patients correlates with World Health Organization (WHO) tumor grade and patient's age. RASSF1A, RUNX3, GATA6, and MGMT were most frequently methylated, whereas the INK4B-ARF-INK4A locus, PTEN, RARβ, and ATM were methylated to a lesser extent. ERCC1, hMLH1, and NDRG2 were unmethylated. RUNX3 methylation correlated with WHO tumor grade and patient's age. PSQ confirmed significantly higher methylation levels of MGMT and NDRG2 as compared with normal, non-cancerous brain tissue. To conclude, DNA methylation of a whole panel of selected genes can serve as a tool for glioma aggressiveness prediction.
Collapse
Affiliation(s)
- Aleksandra Majchrzak-Celińska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781, Poznań, Poland
| | | | | | | | | | | | | | | |
Collapse
|