1
|
Reshetnikov V, Terenin I, Shepelkova G, Yeremeev V, Kolmykov S, Nagornykh M, Kolosova E, Sokolova T, Zaborova O, Kukushkin I, Kazakova A, Kunyk D, Kirshina A, Vasileva O, Seregina K, Pateev I, Kolpakov F, Ivanov R. Untranslated Region Sequences and the Efficacy of mRNA Vaccines against Tuberculosis. Int J Mol Sci 2024; 25:888. [PMID: 38255961 PMCID: PMC10815675 DOI: 10.3390/ijms25020888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
mRNA vaccines have been shown to be effective in combating the COVID-19 pandemic. The amount of research on the use of mRNAs as preventive and therapeutic modalities has undergone explosive growth in the last few years. Nonetheless, the issue of the stability of mRNA molecules and their translation efficiency remains incompletely resolved. These characteristics of mRNA directly affect the expression level of a desired protein. Regulatory elements of RNA-5' and 3' untranslated regions (UTRs)-are responsible for translation efficiency. An optimal combination of the regulatory sequences allows mRNA to significantly increase the target protein's expression. We assessed the translation efficiency of mRNA encoding of firefly luciferase with various 5' and 3'UTRs in vitro on cell lines DC2.4 and THP1. We found that mRNAs containing 5'UTR sequences from eukaryotic genes HBB, HSPA1A, Rabb, or H4C2, or from the adenoviral leader sequence TPL, resulted in higher levels of luciferase bioluminescence 4 h after transfection of DC2.4 cells as compared with 5'UTR sequences used in vaccines mRNA-1273 and BNT162b2 from Moderna and BioNTech. mRNA containing TPL as the 5'UTR also showed higher efficiency (as compared with the 5'UTR from Moderna) at generating a T-cell response in mice immunized with mRNA vaccines encoding a multiepitope antigen. By contrast, no effects of various 5'UTRs and 3'UTRs were detectable in THP1 cells, suggesting that the observed effects are cell type specific. Further analyses enabled us to identify potential cell type-specific RNA-binding proteins that differ in landing sites within mRNAs with various 5'UTRs and 3'UTRs. Taken together, our data indicate high translation efficiency of TPL as a 5'UTR, according to experiments on DC2.4 cells and C57BL/6 mice.
Collapse
Affiliation(s)
- Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ilya Terenin
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | - Semyon Kolmykov
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Maxim Nagornykh
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Elena Kolosova
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Tatiana Sokolova
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga Zaborova
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ivan Kukushkin
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alisa Kazakova
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dmitry Kunyk
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anna Kirshina
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga Vasileva
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Kristina Seregina
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ildus Pateev
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Fedor Kolpakov
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
2
|
Kirshina A, Vasileva O, Kunyk D, Seregina K, Muslimov A, Ivanov R, Reshetnikov V. Effects of Combinations of Untranslated-Region Sequences on Translation of mRNA. Biomolecules 2023; 13:1677. [PMID: 38002359 PMCID: PMC10669451 DOI: 10.3390/biom13111677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
mRNA-based therapeutics have been found to be a promising treatment strategy in immunotherapy, gene therapy, and cancer treatments. Effectiveness of mRNA therapeutics depends on the level and duration of a desired protein's expression, which is determined by various cis- and trans-regulatory elements of the mRNA. Sequences of 5' and 3' untranslated regions (UTRs) are responsible for translational efficiency and stability of mRNA. An optimal combination of the regulatory sequences allows researchers to significantly increase the target protein's expression. Using both literature data and previously obtained experimental data, we chose six sequences of 5'UTRs (adenoviral tripartite leader [TPL], HBB, rabbit β-globin [Rabb], H4C2, Moderna, and Neo2) and five sequences of 3'UTRs (mtRNR-EMCV, mtRNR-AES, mtRNR-mtRNR, BioNTech, and Moderna). By combining them, we constructed 30 in vitro transcribed RNAs encoding firefly luciferase with various combinations of 5'- and 3'UTRs, and the resultant bioluminescence was assessed in the DC2.4 cell line at 4, 8, 24, and 72 h after transfection. The cellular data enabled us to identify the best seven combinations of 5'- and 3'UTRs, whose translational efficiency was then assessed in BALB/c mice. Two combinations of 5'- and 3'UTRs (5'Rabb-3'mtRNR-EMCV and 5'TPL-3'Biontech) led to the most pronounced increase in the luciferase amount in the in vivo experiment in mice. Subsequent analysis of the stability of the mRNA indicated that the increase in luciferase expression is explained primarily by the efficiency of translation, not by the number of RNA molecules. Altogether, these findings suggest that 5'UTR-and-3'UTR combinations 5'Rabb-3'mtRNR- EMCV and 5'TPL-3'Biontech lead to high expression of target proteins and may be considered for use in preventive and therapeutic modalities based on mRNA.
Collapse
Affiliation(s)
- Anna Kirshina
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga Vasileva
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dmitry Kunyk
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Kristina Seregina
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Albert Muslimov
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
- Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Yu G, Chen Y, Hu Y, Zhou Y, Ding X, Zhou X. Roles of transducin-like enhancer of split (TLE) family proteins in tumorigenesis and immune regulation. Front Cell Dev Biol 2022; 10:1010639. [PMID: 36438567 PMCID: PMC9692235 DOI: 10.3389/fcell.2022.1010639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
Mammalian transducin-like enhancer of split family proteins (TLEs) are homologous to Drosophila Groucho (Gro) and are essential transcriptional repressors. Seven TLE family members, TLE1-7, have been identified to date. These proteins do not bind DNA directly; instead, they bind a set of transcription factors and thereby inhibit target gene expression. Loss of TLEs in mice usually leads to defective early development; however, TLE functions in developmentally mature cells are unclear. Recent studies have revealed that TLEs are dysregulated in certain human cancer types and may function as oncogenes or tumor suppressors in different contexts. TLE levels also affect the efficacy of cancer treatments and the development of drug resistance. In addition, TLEs play critical roles in the development and function of immune cells, including macrophages and lymphocytes. In this review, we provide updates on the expression, function, and mechanism of TLEs; discuss the roles played by TLEs in tumorigenesis and the inflammatory response; and elaborate on several TLE-associated signaling pathways, including the Notch, Wnt, and MAPK pathways. Finally, we discuss potential strategies for targeting TLEs in cancer therapy.
Collapse
Affiliation(s)
- Guiping Yu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Yiqi Chen
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yuwen Hu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yan Zhou
- Department of Periodontology, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Xiaoling Ding
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| |
Collapse
|
4
|
Wang Z, Zhou L, Wang Y, Peng Q, Li H, Zhang X, Su Z, Song J, Sun Q, Sayed S, Liu S, Lu D. The CK1δ/ε-AES axis regulates tumorigenesis and metastasis in colorectal cancer. Am J Cancer Res 2021; 11:4421-4435. [PMID: 33754069 PMCID: PMC7977458 DOI: 10.7150/thno.53901] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Amino-terminal enhancer of split (AES) has been identified as a tumor and metastasis suppressor in some cancers including colorectal cancer (CRC), but very little is known about the regulation of AES expression. Methods: Bioinformatics analysis was used to investigate the expression patterns of AES, CK1δ and CK1ε. The co-immunoprecipitation, GST pull-down, Western Blot, real-time PCR and immunohistochemistry were performed to study the mechanism underlying the regulation of AES expression by CK1δ/ε. The biological function was assessed by in vitro colony formation, transwell, sphere formation, tumor organoids, in vivo tumor metastasis model and patient-derived colorectal tumor xenografts (PDTX) model. Results: A strong inverse relationship was observed between the expression of AES and the expression of CK1δ/ε. Mechanically, AES could interact with CK1δ/ε and SKP2 using its Q domain. SKP2 mediated the ubiquitination and degradation of AES in a CK1δ/ε-dependent manner. CK1δ/ε phosphorylated AES at Ser121 and accelerated the SKP2-mediated ubiquitination and degradation of AES. In colon cancer cells, CK1δ/ε antagonized the effect of wild-type AES but not that of its mutant (S121A) on Wnt and Notch signaling, leading to an increase in the expression of Wnt target genes and Notch target genes. By downregulating the expression of AES, CK1δ/ε enhanced anchorage-independent growth, migration, invasion and sphere formation in colon cancer cells. CK1δ/ε also promoted the growth of APCmin/+ colorectal tumor organoids and liver metastasis in colon cancer mouse models through the regulation of AES degradation. Furthermore, CK1 inhibitor SR3029 treatment suppressed tumor growth via stabilizing AES in APCmin/+ colorectal tumor organoids and patient-derived colorectal tumor xenografts (PDTX). Conclusions: Our results revealed that the CK1δ/ε-AES axis is important for CRC tumorigenesis and metastasis, and targeted inhibition of this axis may be a potential therapeutic strategy for CRC.
Collapse
|
5
|
Comprehensive transcriptome profiling of Taiwanese colorectal cancer implicates an ethnic basis for pathogenesis. Sci Rep 2020; 10:4526. [PMID: 32161294 PMCID: PMC7066141 DOI: 10.1038/s41598-020-61273-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide. While both genetic and environmental factors have been linked to the incidence and mortality associated with CRC, an ethnic aspect of its etiology has also emerged. Since previous large-scale cancer genomics studies are mostly based on samples of European ancestry, the patterns of clinical events and associated mechanisms in other minority ethnic patients suffering from CRC are largely unexplored. We collected 104 paired and adjacent normal tissue and CRC tumor samples from Taiwanese patients and employed an integrated approach - paired expression profiles of mRNAs and microRNAs (miRNAs) combined with transcriptome-wide network analyses - to catalog the molecular signatures of this regional cohort. On the basis of this dataset, which is the largest ever reported for this type of systems analysis, we made the following key discoveries: (1) In comparison to the The Cancer Genome Atlas (TCGA) data, the Taiwanese CRC tumors show similar perturbations in expressed genes but a distinct enrichment in metastasis-associated pathways. (2) Recurrent as well as novel CRC-associated gene fusions were identified based on the sequencing data. (3) Cancer subtype classification using existing tools reveals a comparable distribution of tumor subtypes between Taiwanese cohort and TCGA datasets; however, this similarity in molecular attributes did not translate into the predicted subtype-related clinical outcomes (i.e., death event). (4) To further elucidate the molecular basis of CRC prognosis, we developed a new stratification strategy based on miRNA-mRNA-associated subtyping (MMAS) and consequently showed that repressed WNT signaling activity is associated with poor prognosis in Taiwanese CRC. In summary, our findings of distinct, hitherto unreported biosignatures underscore the heterogeneity of CRC tumorigenesis, support our hypothesis of an ethnic basis of disease, and provide prospects for translational medicine.
Collapse
|
6
|
Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3' UTRs Identified by Cellular Library Screening. Mol Ther 2018; 27:824-836. [PMID: 30638957 DOI: 10.1016/j.ymthe.2018.12.011] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023] Open
Abstract
Synthetic mRNA has emerged as a powerful tool for the transfer of genetic information, and it is being explored for a variety of therapeutic applications. Many of these applications require prolonged intracellular persistence of mRNA to improve bioavailability of the encoded protein. mRNA molecules are intrinsically unstable and their intracellular kinetics depend on the UTRs embracing the coding sequence, in particular the 3' UTR elements. We describe here a novel and generally applicable cell-based selection process for the identification of 3' UTRs that augment the expression of proteins encoded by synthetic mRNA. Moreover, we show, for two applications of mRNA therapeutics, namely, (1) the delivery of vaccine antigens in order to mount T cell immune responses and (2) the introduction of reprogramming factors into differentiated cells in order to induce pluripotency, that mRNAs tagged with the 3' UTR elements discovered in this study outperform those with commonly used 3' UTRs. This approach further leverages the utility of mRNA as a gene therapy drug format.
Collapse
|
7
|
Chanoumidou K, Hadjimichael C, Athanasouli P, Ahlenius H, Klonizakis A, Nikolaou C, Drakos E, Kostouros A, Stratidaki I, Grigoriou M, Kretsovali A. Groucho related gene 5 (GRG5) is involved in embryonic and neural stem cell state decisions. Sci Rep 2018; 8:13790. [PMID: 30214018 PMCID: PMC6137157 DOI: 10.1038/s41598-018-31696-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 08/20/2018] [Indexed: 12/16/2022] Open
Abstract
Groucho related gene 5 (GRG5) is a multifunctional protein that has been implicated in late embryonic and postnatal mouse development. Here, we describe a previously unknown role of GRG5 in early developmental stages by analyzing its function in stem cell fate decisions. By both loss and gain of function approaches we demonstrate that ablation of GRG5 deregulates the Embryonic Stem Cell (ESC) pluripotent state whereas its overexpression leads to enhanced self-renewal and acquisition of cancer cell-like properties. The malignant characteristics of teratomas generated by ESCs that overexpress GRG5 reveal its pro-oncogenic potential. Furthermore, transcriptomic analysis and cell differentiation approaches underline GRG5 as a multifaceted signaling regulator that represses mesendodermal-related genes. When ESCs exit pluripotency, GRG5 promotes neuroectodermal specification via Wnt and BMP signaling suppression. Moreover, GRG5 promotes the neuronal reprogramming of fibroblasts and maintains the self-renewal of Neural Stem Cells (NSCs) by sustaining the activity of Notch/Hes and Stat3 signaling pathways. In summary, our results demonstrate that GRG5 has pleiotropic roles in stem cell biology functioning as a stemness factor and a neural fate specifier.
Collapse
Affiliation(s)
- Konstantina Chanoumidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupoli, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.,Lund Stem Cell Center, University Hospital, SE-221 84, Lund, Sweden
| | - Christiana Hadjimichael
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
| | - Paraskevi Athanasouli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.,Department of Biology, University of Crete, 71409, Heraklion, Crete, Greece
| | - Henrik Ahlenius
- Lund Stem Cell Center, University Hospital, SE-221 84, Lund, Sweden
| | - Antonis Klonizakis
- Department of Biology, University of Crete, 71409, Heraklion, Crete, Greece
| | | | - Elias Drakos
- School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Antonis Kostouros
- School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Irene Stratidaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
| | - Maria Grigoriou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupoli, Greece
| | - Androniki Kretsovali
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.
| |
Collapse
|
8
|
Wang W, Xiao X, Chen X, Huo Y, Xi WJ, Lin ZF, Zhang D, Li YF, Yang F, Wen WH, Yang AG, Wang T. Tumor-suppressive miR-145 co-repressed by TCF4-β-catenin and PRC2 complexes forms double-negative regulation loops with its negative regulators in colorectal cancer. Int J Cancer 2017; 142:308-321. [DOI: 10.1002/ijc.31056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/11/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Xin Xiao
- Department of Orthopedics; Xijing Hospital, Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Xu Chen
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Yi Huo
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
- Department of Medical Genetics and Developmental Biology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Wen-Jin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Zhi-Feng Lin
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Dan Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Yu-Fang Li
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
- Department of Medical Genetics and Developmental Biology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Fan Yang
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Wei-Hong Wen
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Tao Wang
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
- Department of Medical Genetics and Developmental Biology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| |
Collapse
|
9
|
Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:49-82. [PMID: 27975270 DOI: 10.1007/978-3-319-46095-6_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented. This section will be followed by a review of translational mechanisms operating in oocytes, eggs, and early cleavage-stage embryos and conclude with a discussion of how the regulation of key maternal cell-fate determinants at the level of translation functions in Xenopus embryogenesis. A key theme is that the molecular asymmetries critical for forming the body axes are established and further elaborated upon by the selective temporal and spatial regulation of maternal mRNA translation.
Collapse
|
10
|
|
11
|
Glucocorticoid Receptor β Acts as a Co-activator of T-Cell Factor 4 and Enhances Glioma Cell Proliferation. Mol Neurobiol 2014; 52:1106-1118. [PMID: 25301232 DOI: 10.1007/s12035-014-8900-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/16/2014] [Indexed: 12/13/2022]
Abstract
We previously reported that glucocorticoid receptor β (GRβ) regulates injury-mediated astrocyte activation and contributes to glioma pathogenesis via modulation of β-catenin/T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional activity. The aim of this study was to characterize the mechanism behind cross-talk between GRβ and β-catenin/TCF in the progression of glioma. Here, we reported that GRβ knockdown reduced U118 and Shg44 glioma cell proliferation in vitro and in vivo. Mechanistically, we found that GRβ knockdown decreased TCF/LEF transcriptional activity without affecting β-catenin/TCF complex. Both GRα and GRβ directly interact with TCF-4, while only GRβ is required for sustaining TCF/LEF activity under hormone-free condition. GRβ bound to the N-terminus domain of TCF-4 its influence on Wnt signaling required both ligand- and DNA-binding domains (LBD and DBD, respectively). GRβ and TCF-4 interaction is enough to maintain the TCF/LEF activity at a high level in the absence of β-catenin stabilization. Taken together, these results suggest a novel cross-talk between GRβ and TCF-4 which regulates Wnt signaling and the proliferation in gliomas.
Collapse
|