1
|
Guilvout I, Samsudin F, Huber RG, Bond PJ, Bardiaux B, Francetic O. Membrane platform protein PulF of the Klebsiella type II secretion system forms a trimeric ion channel essential for endopilus assembly and protein secretion. mBio 2024; 15:e0142323. [PMID: 38063437 PMCID: PMC10790770 DOI: 10.1128/mbio.01423-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/24/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Type IV pili and type II secretion systems are members of the widespread type IV filament (T4F) superfamily of nanomachines that assemble dynamic and versatile surface fibers in archaea and bacteria. The assembly and retraction of T4 filaments with diverse surface properties and functions require the plasma membrane platform proteins of the GspF/PilC superfamily. Generally considered dimeric, platform proteins are thought to function as passive transmitters of the mechanical energy generated by the ATPase motor, to somehow promote insertion of pilin subunits into the nascent pilus fibers. Here, we generate and experimentally validate structural predictions that support the trimeric state of a platform protein PulF from a type II secretion system. The PulF trimers form selective proton or sodium channels which might energize pilus assembly using the membrane potential. The conservation of the channel sequence and structural features implies a common mechanism for all T4F assembly systems. We propose a model of the oligomeric PulF-PulE ATPase complex that provides an essential framework to investigate and understand the pilus assembly mechanism.
Collapse
Affiliation(s)
- Ingrid Guilvout
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | | | | | - Peter J. Bond
- Bioinformatics Institute (A-STAR), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Bioinformatics Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Transmembrane Systems Unit, Paris, France
| | - Olivera Francetic
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| |
Collapse
|
2
|
She P, Li Y, Li Z, Liu S, Yang Y, Li L, Zhou L, Wu Y. Repurposing 9-Aminoacridine as an Adjuvant Enhances the Antimicrobial Effects of Rifampin against Multidrug-Resistant Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0447422. [PMID: 37036368 PMCID: PMC10269603 DOI: 10.1128/spectrum.04474-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/22/2023] [Indexed: 04/11/2023] Open
Abstract
The increasing occurrence of extensively drug-resistant and pan-drug-resistant K. pneumoniae has posed a serious threat to global public health. Therefore, new antimicrobial strategies are urgently needed to combat these resistant K. pneumoniae-related infections. Drug repurposing and combination are two effective strategies to solve this problem. By a high-throughput screening assay of FDA-approved drugs, we found that the potential small molecule 9-aminoacridine (9-AA) could be used as an antimicrobial alone or synergistically with rifampin (RIF) against extensively/pan-drug-resistant K. pneumoniae. In addition, 9-AA could overcome the shortcomings of RIF by reducing the occurrence of resistance. Mechanistic studies revealed that 9-AA interacted with bacterial DNA and disrupted the proton motive force in K. pneumoniae. Through liposomeization and combination with RIF, the cytotoxicity of 9-AA was significantly reduced without affecting its antimicrobial activity. In addition, we demonstrated the in vivo antimicrobial activity of 9-AA combined with RIF without detectable toxicity. In summary, 9-AA has the potential to be an antimicrobial agent or a RIF adjuvant for the treatment of multidrug-resistant K. pneumoniae infections. IMPORTANCE Klebsiella pneumoniae is a leading cause of clinically acquired infections. The increasing occurrence of drug-resistant K. pneumoniae has posed a serious threat to global public health. We found that the potential small molecule 9-AA could be used as an antimicrobial alone or synergistically with RIF against drug-resistant K. pneumoniae in vitro and with low resistance occurrence. The combination of 9-AA or 9-AA liposomes with RIF possesses effective antimicrobial activity in vivo without detected toxicity. 9-AA exerted its antimicrobial activity by interacting with specific bacterial DNA and disrupting the proton motive force in K. pneumoniae. In summary, we found that 9-AA has the potential to be developed as a new antibacterial agent and adjuvant for RIF. Therefore, our study can reduce the risk of antimicrobial resistance and provide an option for the exploitation of new clinical drugs and a theoretical basis for the research on a new antimicrobial agent.
Collapse
Affiliation(s)
- Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
3
|
Hennes M, Bender N, Cronenberg T, Welker A, Maier B. Collective polarization dynamics in bacterial colonies signify the occurrence of distinct subpopulations. PLoS Biol 2023; 21:e3001960. [PMID: 36652440 PMCID: PMC9847958 DOI: 10.1371/journal.pbio.3001960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Membrane potential in bacterial systems has been shown to be dynamic and tightly related to survivability at the single-cell level. However, little is known about spatiotemporal patterns of membrane potential in bacterial colonies and biofilms. Here, we discovered a transition from uncorrelated to collective dynamics within colonies formed by the human pathogen Neisseria gonorrhoeae. In freshly assembled colonies, polarization is heterogeneous with instances of transient and uncorrelated hyper- or depolarization of individual cells. As colonies reach a critical size, the polarization behavior transitions to collective dynamics: A hyperpolarized shell forms at the center, travels radially outward, and halts several micrometers from the colony periphery. Once the shell has passed, we detect an influx of potassium correlated with depolarization. Transient hyperpolarization also demarks the transition from volume to surface growth. By combining simulations and the use of an alternative electron acceptor for the respiratory chain, we provide strong evidence that local oxygen gradients shape the collective polarization dynamics. Finally, we show that within the hyperpolarized shell, tolerance against aminoglycoside antibiotics increases. These findings highlight that the polarization pattern can signify the differentiation into distinct subpopulations with different growth rates and antibiotic tolerance.
Collapse
Affiliation(s)
- Marc Hennes
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- * E-mail: (MH); (BM)
| | - Niklas Bender
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Tom Cronenberg
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anton Welker
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Berenike Maier
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- * E-mail: (MH); (BM)
| |
Collapse
|
4
|
Shi J, Chen C, Wang D, Wang Z, Liu Y. The antimicrobial peptide LI14 combats multidrug-resistant bacterial infections. Commun Biol 2022; 5:926. [PMID: 36071151 PMCID: PMC9452538 DOI: 10.1038/s42003-022-03899-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/25/2022] [Indexed: 11/14/2022] Open
Abstract
The prevalence of multidrug-resistant (MDR) pathogens raises public fears of untreatable infections and represents a huge health risk. There is an urgent need to exploit novel antimicrobial agents. Due to the unique mechanisms, antimicrobial peptides (AMPs) with a low probability to achieve resistance are regarded as potential antibiotic alternatives to address this issue. Herein, we develop a panel of synthetic peptide compounds with novel structures based on the database filters technology (DFT), and the lead peptide LI14 shows potent antibacterial activity against all tested drug-resistant bacteria. LI14 exhibits rapid bactericidal activity and excellent anti-biofilm and -persisters activity, simultaneously showing a low propensity to induce resistance. Moreover, LI14 shows tolerance against pH, temperatures, and pepsin treatment, and no detectable toxicity both in vitro and in vivo. Mechanistic studies revealed that LI14 induces membrane damage by targeting bacterial-specific membrane components and dissipates the proton motive force (PMF), thereby resulting in metabolic perturbations and the accumulation of toxic metabolic products. Furthermore, LI14 sensitizes clinically relevant antibiotics against MDR bacteria. In animal models of infection, LI14 or combined with antibiotics are effective against drug-resistant pathogens. These findings suggest that LI14 is a promising antibiotic candidate to tackle MDR bacterial infections. A synthetic peptide LI14 demonstrates potent antibacterial activity against drug-resistant bacteria in vitro and in vivo by inducing membrane damage and disrupting membrane potential leading to metabolic perturbation.
Collapse
Affiliation(s)
- Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Dejuan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China. .,Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Kraus-Römer S, Wielert I, Rathmann I, Grossbach J, Maier B. External Stresses Affect Gonococcal Type 4 Pilus Dynamics. Front Microbiol 2022; 13:839711. [PMID: 35283813 PMCID: PMC8914258 DOI: 10.3389/fmicb.2022.839711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial type 4 pili (T4P) are extracellular polymers that serve both as adhesins and molecular motors. Functionally, they are involved in adhesion, colony formation, twitching motility, and horizontal gene transfer. T4P of the human pathogen Neisseria gonorrhoeae have been shown to enhance survivability under treatment with antibiotics or hydrogen peroxide. However, little is known about the effect of external stresses on T4P production and motor properties. Here, we address this question by directly visualizing gonococcal T4P dynamics. We show that in the absence of stress gonococci produce T4P at a remarkably high rate of ∼200 T4P min–1. T4P retraction succeeds elongation without detectable time delay. Treatment with azithromycin or ceftriaxone reduces the T4P production rate. RNA sequencing results suggest that reduced piliation is caused by combined downregulation of the complexes required for T4P extrusion from the cell envelope and cellular energy depletion. Various other stresses including inhibitors of cell wall synthesis and DNA replication, as well as hydrogen peroxide and lactic acid, inhibit T4P production. Moreover, hydrogen peroxide and acidic pH strongly affect pilus length and motor function. In summary, we show that gonococcal T4P are highly dynamic and diverse external stresses reduce piliation despite the protective effect of T4P against some of these stresses.
Collapse
Affiliation(s)
| | - Isabelle Wielert
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Isabel Rathmann
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Jan Grossbach
- Faculty of Mathematics and Natural Sciences, CECAD, University of Cologne, Cologne, Germany
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
- *Correspondence: Berenike Maier,
| |
Collapse
|
6
|
Biquet-Bisquert A, Labesse G, Pedaci F, Nord AL. The Dynamic Ion Motive Force Powering the Bacterial Flagellar Motor. Front Microbiol 2021; 12:659464. [PMID: 33927708 PMCID: PMC8076557 DOI: 10.3389/fmicb.2021.659464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial flagellar motor (BFM) is a rotary molecular motor embedded in the cell membrane of numerous bacteria. It turns a flagellum which acts as a propeller, enabling bacterial motility and chemotaxis. The BFM is rotated by stator units, inner membrane protein complexes that stochastically associate to and dissociate from individual motors at a rate which depends on the mechanical and electrochemical environment. Stator units consume the ion motive force (IMF), the electrochemical gradient across the inner membrane that results from cellular respiration, converting the electrochemical energy of translocated ions into mechanical energy, imparted to the rotor. Here, we review some of the main results that form the base of our current understanding of the relationship between the IMF and the functioning of the flagellar motor. We examine a series of studies that establish a linear proportionality between IMF and motor speed, and we discuss more recent evidence that the stator units sense the IMF, altering their rates of dynamic assembly. This, in turn, raises the question of to what degree the classical dependence of motor speed on IMF is due to stator dynamics vs. the rate of ion flow through the stators. Finally, while long assumed to be static and homogeneous, there is mounting evidence that the IMF is dynamic, and that its fluctuations control important phenomena such as cell-to-cell signaling and mechanotransduction. Within the growing toolbox of single cell bacterial electrophysiology, one of the best tools to probe IMF fluctuations may, ironically, be the motor that consumes it. Perfecting our incomplete understanding of how the BFM employs the energy of ion flow will help decipher the dynamical behavior of the bacterial IMF.
Collapse
Affiliation(s)
- Anaïs Biquet-Bisquert
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Francesco Pedaci
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Ashley L Nord
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
7
|
Zöllner R, Cronenberg T, Maier B. Motor Properties of PilT-Independent Type 4 Pilus Retraction in Gonococci. J Bacteriol 2019; 201:e00778-18. [PMID: 30692169 PMCID: PMC6707916 DOI: 10.1128/jb.00778-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 01/25/2023] Open
Abstract
Bacterial type 4 pili (T4P) belong to the strongest molecular machines. The gonococcal T4P retraction ATPase PilT supports forces exceeding 100 pN during T4P retraction. Here, we address the question of whether gonococcal T4P retract in the absence of PilT. We show that pilT deletion strains indeed retract their T4P, but the maximum force is reduced to 5 pN. Similarly, the speed of T4P retraction is lower by orders of magnitude compared to that of T4P retraction driven by PilT. Deleting the pilT paralogue pilT2 further reduces the speed of T4P retraction, yet T4P retraction is detectable in the absence of all three pilT paralogues. Furthermore, we show that depletion of proton motive force (PMF) slows but does not inhibit pilT-independent T4P retraction. We conclude that the retraction ATPase is not essential for gonococcal T4P retraction. However, the force generated in the absence of PilT is too low to support important functions of T4P, including twitching motility, fluidization of colonies, and induction of host cell response.IMPORTANCE Bacterial type 4 pili (T4P) have been termed the "Swiss Army knives" of bacteria because they perform numerous functions, including host cell interaction, twitching motility, colony formation, DNA uptake, protein secretion, and surface sensing. The pilus fiber continuously elongates or retracts, and these dynamics are functionally important. Curiously, only a subset of T4P systems employ T4P retraction ATPases to power T4P retraction. Here, we show that one of the strongest T4P machines, the gonococcal T4P, retracts without a retraction ATPase. Biophysical characterization reveals strongly reduced force and speed compared to retraction with ATPase. We propose that bacteria encode retraction ATPases when T4P have to generate high-force-supporting functions like twitching motility, triggering host cell response, or fluidizing colonies.
Collapse
Affiliation(s)
- Robert Zöllner
- University of Cologne, Institute for Biological Physics, Cologne, Germany
| | - Tom Cronenberg
- University of Cologne, Institute for Biological Physics, Cologne, Germany
| | - Berenike Maier
- University of Cologne, Institute for Biological Physics, Cologne, Germany
| |
Collapse
|
8
|
Daum B, Gold V. Twitch or swim: towards the understanding of prokaryotic motion based on the type IV pilus blueprint. Biol Chem 2019; 399:799-808. [PMID: 29894297 DOI: 10.1515/hsz-2018-0157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/05/2018] [Indexed: 01/02/2023]
Abstract
Bacteria and archaea are evolutionarily distinct prokaryotes that diverged from a common ancestor billions of years ago. However, both bacteria and archaea assemble long, helical protein filaments on their surface through a machinery that is conserved at its core. In both domains of life, the filaments are required for a diverse array of important cellular processes including cell motility, adhesion, communication and biofilm formation. In this review, we highlight the recent structures of both the type IV pilus machinery and the archaellum determined in situ. We describe the current level of functional understanding and discuss how this relates to the pressures facing bacteria and archaea throughout evolution.
Collapse
Affiliation(s)
- Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.,College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Vicki Gold
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.,College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
9
|
Welker A, Cronenberg T, Zöllner R, Meel C, Siewering K, Bender N, Hennes M, Oldewurtel ER, Maier B. Molecular Motors Govern Liquidlike Ordering and Fusion Dynamics of Bacterial Colonies. PHYSICAL REVIEW LETTERS 2018; 121:118102. [PMID: 30265121 DOI: 10.1103/physrevlett.121.118102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 06/09/2018] [Indexed: 06/08/2023]
Abstract
Bacteria can adjust the structure of colonies and biofilms to enhance their survival rate under external stress. Here, we explore the link between bacterial interaction forces and colony structure. We show that the activity of extracellular pilus motors enhances local ordering and accelerates fusion dynamics of bacterial colonies. The radial distribution function of mature colonies shows local fluidlike order. The degree and dynamics of ordering are dependent on motor activity. At a larger scale, the fusion dynamics of two colonies shows liquidlike behavior whereby motor activity strongly affects surface tension and viscosity.
Collapse
Affiliation(s)
- Anton Welker
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Tom Cronenberg
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Robert Zöllner
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Claudia Meel
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Katja Siewering
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Niklas Bender
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Marc Hennes
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Enno R Oldewurtel
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| |
Collapse
|
10
|
Yang P, Oliveira da Rocha Calixto R, van Elsas JD. Migration of Paraburkholderia terrae BS001 Along Old Fungal Hyphae in Soil at Various pH Levels. MICROBIAL ECOLOGY 2018; 76:443-452. [PMID: 29322230 PMCID: PMC6061471 DOI: 10.1007/s00248-017-1137-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/27/2017] [Indexed: 05/08/2023]
Abstract
The movement of bacterial cells along with fungal hyphae in soil (the mycosphere) has been reported in several previous studies. However, how local soil conditions affect bacterial migration direction in the mycosphere has not been extensively studied. Here, we investigated the influence of two soil parameters, pH and soil moisture content, on the migration, and survival, of Paraburkholderia terrae BS001 in the mycosphere of Lyophyllum sp. strain Karsten in microcosms containing a loamy sand soil. The data showed that bacterial movement along the hyphal networks took place in both the "forward" and the "backward" directions. Low soil pH strongly restricted bacterial survival, as well as dispersal in both directions, in the mycosphere. The backward movement was weakly correlated with the amount of fungal tissue formed in the old mycelial network. The initial soil moisture content, set at 12 versus 17% (corresponding to 42 and 60% of the soil water holding capacity), also significantly affected the bacterial dispersal along the fungal hyphae. Overall, the presence of fungal hyphae was found to increase the soil pH (under conditions of acidity), which possibly exerted protective effects on the bacterial cells. Finally, we provide a refined model that describes the bacterial migration patterns with fungal hyphae based on the new findings in this study.
Collapse
Affiliation(s)
- Pu Yang
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Renata Oliveira da Rocha Calixto
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
11
|
Brill-Karniely Y, Jin F, Wong GCL, Frenkel D, Dobnikar J. Emergence of complex behavior in pili-based motility in early stages of P. aeruginosa surface adaptation. Sci Rep 2017; 7:45467. [PMID: 28393835 PMCID: PMC5385500 DOI: 10.1038/srep45467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa move across surfaces by using multiple Type IV Pili (TFP), motorized appendages capable of force generation via linear extension/retraction cycles, to generate surface motions collectively known as twitching motility. Pseudomonas cells arrive at a surface with low levels of piliation and TFP activity, which both progressively increase as the cells sense the presence of a surface. At present, it is not clear how twitching motility emerges from these initial minimal conditions. Here, we build a simple model for TFP-driven surface motility without complications from viscous and solid friction on surfaces. We discover the unanticipated structural requirement that TFP motors need to have a minimal amount of effective angular rigidity in order for cells to perform the various classes of experimentally-observed motions. Moreover, a surprisingly small number of TFP are needed to recapitulate movement signatures associated with twitching: Two TFP can already produce movements reminiscent of recently observed slingshot type motion. Interestingly, jerky slingshot motions characteristic of twitching motility comprise the transition region between different types of observed crawling behavior in the dynamical phase diagram, such as self-trapped localized motion, 2-D diffusive exploration, and super-diffusive persistent motion.
Collapse
Affiliation(s)
- Yifat Brill-Karniely
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.,Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Fan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.,Bioengineering Department, Chemistry and Biochemistry Department, California Nano Systems Institute, University of California, Los Angeles, CA 90095, USA
| | - Gerard C L Wong
- Bioengineering Department, Chemistry and Biochemistry Department, California Nano Systems Institute, University of California, Los Angeles, CA 90095, USA
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Jure Dobnikar
- Beijing national laboratory for condensed matter physics &CAS key laboratory of soft matter physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of physical sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Measurements of Ion-Motive Force Across the Cell Membrane. Methods Mol Biol 2017. [PMID: 28389955 DOI: 10.1007/978-1-4939-6927-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cells need energy to survive. Ion-motive force (IMF) is one of the most important biological energy formats in bacterial cells. Essentially, the ion-motive force is the sum of electrical and chemical potential differences across the cell membrane. For bacteria, the ion-motive force is involved not only in ATP production but also in flagellar motility. The bacterial flagellar motor is driven either by proton or sodium ion. The ion-motive force measurement therefore requires the measurement of membrane potential, proton concentration, or sodium ion concentration. The bacterial flagellar motor is the most powerful molecular machine we have known so far. To understand the energetic condition of bacterial flagellar motors, together with single-motor torque measurement, methods for single-cell ion-motive force measurement have been developed. Here, we describe fluorescent approaches to measure the components of ion-motive force.
Collapse
|
13
|
Role of Cyclic Di-GMP and Exopolysaccharide in Type IV Pilus Dynamics. J Bacteriol 2017; 199:JB.00859-16. [PMID: 28167523 DOI: 10.1128/jb.00859-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
For Pseudomonas aeruginosa, levels of cyclic di-GMP (c-di-GMP) govern the transition from the planktonic state to biofilm formation. Type IV pili (T4P) are crucial determinants of biofilm structure and dynamics, but it is unknown how levels of c-di-GMP affect pilus dynamics. Here, we scrutinized how c-di-GMP affects molecular motor properties and adhesive behavior of T4P. By means of retraction, T4P generated forces of ∼30 pN. Deletion mutants in the proteins with known roles in biofilm formation, swarming motility, and exopolysaccharide (EPS) production (specifically, the diguanylate cyclases sadC and roeA or the c-di-GMP phosphodiesterase bifA) showed only modest effects on velocity or force of T4P retraction. At high levels of c-di-GMP, the production of exopolysaccharides, particularly of Pel, is upregulated. We found that Pel production strongly enhances T4P-mediated surface adhesion of P. aeruginosa, suggesting that T4P-matrix interactions may be involved in biofilm formation by P. aeruginosa Finally, our data support the previously proposed model of slingshot-like "twitching" motility of P. aeruginosaIMPORTANCE Type IV pili (T4P) play various important roles in the transition of bacteria from the planktonic state to the biofilm state, including surface attachment and surface sensing. Here, we investigate adhesion, dynamics, and force generation of T4P after bacteria engage a surface. Our studies showed that two critical components of biofilm formation by Pseudomonas aeruginosa, T4P and exopolysaccharides, contribute to enhanced T4P-mediated force generation by attached bacteria. These data indicate a crucial role for the coordinated impact of multiple biofilm-promoting factors during the early stages of attachment to a surface. Our data are also consistent with a previous model explaining why pilus-mediated motility in P. aeruginosa results in characteristic "twitching" behavior.
Collapse
|
14
|
Attenuation of the Type IV Pilus Retraction Motor Influences Neisseria gonorrhoeae Social and Infection Behavior. mBio 2016; 7:mBio.01994-16. [PMID: 27923924 PMCID: PMC5142622 DOI: 10.1128/mbio.01994-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Retraction of the type IV pilus (Tfp) mediates DNA uptake, motility, and social and infection behavior in a wide variety of prokaryotes. To date, investigations into Tfp retraction-dependent activities have used a mutant deleted of PilT, the ATPase motor protein that causes the pilus fiber to retract. ΔpilT cells are nontransformable, nonmotile, and cannot aggregate into microcolonies. We tested the hypothesis that these retraction-dependent activities are sensitive to the strength of PilT enzymatic activity by using the pathogen Neisseria gonorrhoeae as a model. We constructed an N. gonorrhoeae mutant with an amino acid substitution in the PilT Walker B box (a substitution of cysteine for leucine at position 201, encoded by pilTL201C). Purified PilTL201C forms a native hexamer, but mutant hexamers hydrolyze ATP at half the maximal rate. N. gonorrhoeae pilTL201C cells produce Tfp fibers, crawl at the same speed as the wild-type (wt) parent, and are equally transformable. However, the social behavior of pilTL201C cells is intermediate between the behaviors of wt and ΔpilT cells. The infection behavior of pilTL201C is also defective, due to its failure to activate the epidermal growth factor receptor (EGFR)-heparin-binding EGF-like growth factor (HB-EGF) pathway. Our study indicates that pilus retraction, per se, is not sufficient for N. gonorrhoeae microcolony formation or infectivity; rather, these activities are sensitive to the strength of PilT enzymatic activity. We discuss the implications of these findings for Neisseria pathogenesis in the context of mechanobiology. Type IV pili are fibers expressed on the surface of many bacteria. Neisseria gonorrhoeae cells crawl, take up DNA, and communicate with each other and with human cells by retracting these fibers. Here, we show that an N. gonorrhoeae mutant expressing an enzymatically weakened type IV pilus retraction motor still crawls and takes up DNA normally. However, mutant cells exhibit abnormal social behavior, and they are less infective because they fail to activate the epidermal growth factor receptor. Our study shows that N. gonorrhoeae social and infection behaviors are sensitive to the strength of the retraction motor enzyme.
Collapse
|
15
|
Using Biophysics to Monitor the Essential Protonmotive Force in Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:69-79. [PMID: 27193538 DOI: 10.1007/978-3-319-32189-9_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Protonmotive force is an essential biological energy format in all levels of cells. Protonmotive force comprises electrical and chemical potential difference across biological membrane. In bacteria, protonmotive force couples to metabolism and ATP production. Moreover, protonmotive force directly provides driving energy of bacterial flagellar motor that is critical for bacterial motility and infection. Due to the small size of bacterial cells, there were limited experimental tools to measure protonmotive force in bacteria. Recent developments of optical membrane potential and intracellular pH indicators provide valuable information on bacterial studies. These new biophysical techniques allow us to monitor the protonmotive force even in single bacterial cell level that shed the light of next generation single-cell physiological experiments towards the understanding of bacterial infection process.
Collapse
|
16
|
Purcell EB, Tamayo R. Cyclic diguanylate signaling in Gram-positive bacteria. FEMS Microbiol Rev 2016; 40:753-73. [PMID: 27354347 DOI: 10.1093/femsre/fuw013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 12/14/2022] Open
Abstract
The nucleotide second messenger 3'-5' cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria.
Collapse
Affiliation(s)
- Erin B Purcell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Maier B, Wong GCL. How Bacteria Use Type IV Pili Machinery on Surfaces. Trends Microbiol 2015; 23:775-788. [PMID: 26497940 DOI: 10.1016/j.tim.2015.09.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/24/2015] [Accepted: 09/10/2015] [Indexed: 01/05/2023]
Abstract
The bacterial type IV pilus (T4P) is a versatile molecular machine with a broad range of functions. Recent advances revealed that the molecular components and the biophysical properties of the machine are well conserved among phylogenetically distant bacterial species. However, its functions are diverse, and include adhesion, motility, and horizontal gene transfer. This review focusses on the role of T4P in surface motility and bacterial interactions. Different species have evolved distinct mechanisms for intracellular coordination of multiple pili and of pili with other motility machines, ranging from physical coordination to biochemical clocks. Coordinated behavior between multiple bacteria on a surface is achieved by active manipulation of surfaces and modulation of pilus-pilus interactions. An emerging picture is that the T4P actively senses and responds to environmental conditions.
Collapse
Affiliation(s)
- Berenike Maier
- Department of Physics, University of Cologne, Zülpicher Str. 77, 50937 Köln, Germany.
| | - Gerard C L Wong
- Department of Bioengineering, Department of Chemistry & Biochemistry, California Nano Systems Institute, University of California, Los Angeles, CA 90095-1600, USA
| |
Collapse
|
18
|
Dewenter L, Volkmann TE, Maier B. Oxygen governs gonococcal microcolony stability by enhancing the interaction force between type IV pili. Integr Biol (Camb) 2015; 7:1161-70. [PMID: 25892255 DOI: 10.1039/c5ib00018a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of small bacterial clusters, called microcolonies, is the first step towards the formation of bacterial biofilms. The human pathogen Neisseria gonorrhoeae requires type IV pili (T4P) for microcolony formation and for surface motility. Here, we investigated the effect of oxygen on the dynamics of microcolony formation. We found that an oxygen concentration exceeding 3 μM is required for formation and maintenance of microcolonies. Depletion of proton motive force triggers microcolony disassembly. Disassembly of microcolonies is actively driven by T4P retraction. Using laser tweezers we showed that under aerobic conditions T4P-T4P interaction forces exceed 50 pN. Under anaerobic conditions T4P-T4P interaction is severely inhibited. We conclude that oxygen is required for gonococcal microcolony formation by enhancing pilus-pilus interaction.
Collapse
Affiliation(s)
- Lena Dewenter
- Department of Physics, Universität zu Köln, Köln, Germany.
| | | | | |
Collapse
|
19
|
Muschiol S, Balaban M, Normark S, Henriques-Normark B. Uptake of extracellular DNA: competence induced pili in natural transformation of Streptococcus pneumoniae. Bioessays 2015; 37:426-35. [PMID: 25640084 PMCID: PMC4405041 DOI: 10.1002/bies.201400125] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transport of DNA across bacterial membranes involves complex DNA uptake systems. In Gram-positive bacteria, the DNA uptake machinery shares fundamental similarities with type IV pili and type II secretion systems. Although dedicated pilus structures, such as type IV pili in Gram-negative bacteria, are necessary for efficient DNA uptake, the role of similar structures in Gram-positive bacteria is just beginning to emerge. Recently two essentially very different pilus structures composed of the same major pilin protein ComGC were proposed to be involved in transformation of the Gram-positive bacterium Streptococcus pneumoniae – one is a long, thin, type IV pilus-like fiber with DNA binding capacity and the other one is a pilus structure that was thicker, much shorter and not able to bind DNA. Here we discuss how competence induced pili, either by pilus retraction or by a transient pilus-related opening in the cell wall, may mediate DNA uptake in S. pneumoniae.
Collapse
Affiliation(s)
- Sandra Muschiol
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|