1
|
Stahlke S, Frai J, Busse JF, Matschke V, Theiss C, Weber T, Herzog-Niescery J. Innovative in vivo rat model for global cerebral hypoxia: a new approach to investigate therapeutic and preventive drugs. Front Physiol 2024; 15:1293247. [PMID: 38405120 PMCID: PMC10885152 DOI: 10.3389/fphys.2024.1293247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/09/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction: Severe acute global cerebral hypoxia can lead to significant disability in humans. Although different animal models have been described to study hypoxia, there is no endogenous model that considers hypoxia and its effect on the brain as an independent factor. Thus, we developed a minimally invasive rat model, which is based on the non-depolarizing muscle blocking agent rocuronium in anesthetized animals. This drug causes respiratory insufficiency by paralysis of the striated muscles. Methods: In this study, 14 rats underwent 12 min of hypoxemia with an oxygen saturation of approximately 60% measured by pulse oximetry; thereafter, animals obtained sugammadex to antagonize rocuronium immediately. Results: Compared to controls (14 rats, anesthesia only), hypoxic animals demonstrated significant morphological alterations in the hippocampus (cell decrease in the CA 1 region) and the cerebellum (Purkinje cell decrease), as well as significant changes in hypoxia markers in blood (Hif2α, Il1β, Tgf1β, Tnfα, S100b, cspg2, neuron-specific enolase), hippocampus (Il1β, Tnfα, S100b, cspg2, NSE), and cerebellum (Hif1α, Tnfα, S100b, cspg2, NSE). Effects were more pronounced in females than in males. Discussion: Consequently, this model is suitable to induce hypoxemia with consecutive global cerebral hypoxia. As significant morphological and biochemical changes were proven, it can be used to investigate therapeutic and preventive drugs for global cerebral hypoxia.
Collapse
Affiliation(s)
- Sarah Stahlke
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, Germany
| | - Jonas Frai
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, Germany
| | | | - Veronika Matschke
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Weber
- Department of Anesthesiology and Intensive Care Medicine, St.Josef-Hospital Bochum, Bochum, Germany
| | - Jennifer Herzog-Niescery
- Department of Anesthesiology and Intensive Care Medicine, St.Josef-Hospital Bochum, Bochum, Germany
| |
Collapse
|
2
|
Kumar P, Misra S, Kumar A, Faruq M, Shakya S, Vardhan G, Vivekanandhan S, Srivastava AK, Prasad K. Transforming growth factor-β1 (C509T, G800A, and T869C) gene polymorphisms and risk of ischemic stroke in North Indian population: A hospital-based case-control study. Ann Indian Acad Neurol 2017; 20:5-12. [PMID: 28298836 PMCID: PMC5341267 DOI: 10.4103/0972-2327.199910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Transforming growth factor-beta 1 (TGF-β1) is a multifunctional pleiotropic cytokine involved in inflammation and pathogenesis of cerebrovascular diseases. There is limited information on the association between variations within the TGF-β1 gene polymorphisms and risk of ischemic stroke (IS). The aim of this study was to investigate the association of the TGF-β1 gene (C509T, G800A, and T869C) polymorphisms, and their haplotypes with the risk of IS in North Indian population. Methods: A total of 250 IS patients and 250 age- and sex-matched controls were studied. IS was classified using the Trial of Org 10172 in Acute Stroke Treatment classification. Conditional logistic regression analysis was used to calculate the strength of association between TGF-β1 gene polymorphisms and risk of IS. Genotyping was performed using SNaPshot method. Results: Hypertension, diabetes, dyslipidemia, alcohol, smoking, family history of stroke, sedentary lifestyle, and low socioeconomic status were found to be associated with the risk of IS. The distribution of C509T, G800A and T869C genotypes was consistent with Hardy-Weinberg Equilibrium in the IS and control groups. Adjusted conditional logistic regression analysis showed a significant association of TGF-β1 C509T (odds ratio [OR], 2.1; 95% CI; 1.2–3.8; P = 0.006), G800A (OR, 4.4; 95% CI; 2.1–9.3; P < 0.001) and T869C (OR, 2.6; 95% CI; 1.5–4.5; P = 0.001) with the risk of IS under dominant model. Haplotype analysis showed that C509-A800-T869 and T509-G800-C869 haplotypes were significantly associated with the increased risk of IS. C509T and T869C were in strong linkage disequilibrium (D' =0.51, r2 = 0.23). Conclusion: Our results suggest that TGF-β1 polymorphisms and their haplotypes are significantly associated with the risk of IS in North Indian population.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Shubham Misra
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Kumar
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammad Faruq
- Department of Functional Genomics, Institutes of Genomics and Integrative Biology, New Delhi, India
| | - Sunil Shakya
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Gyan Vardhan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Subiah Vivekanandhan
- Department of Neurobiochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Kameshwar Prasad
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Chen JY, Liu JH, Wu HDI, Lin KH, Chang KC, Liou YM. Transforming Growth Factor-β1 T869C Gene Polymorphism Is Associated with Acquired Sick Sinus Syndrome via Linking a Higher Serum Protein Level. PLoS One 2016; 11:e0158676. [PMID: 27380173 PMCID: PMC4933337 DOI: 10.1371/journal.pone.0158676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/20/2016] [Indexed: 12/19/2022] Open
Abstract
Background Familial sick sinus syndrome is associated with gene mutations and dysfunction of ion channels. In contrast, degenerative fibrosis of the sinus node tissue plays an important role in the pathogenesis of acquired sick sinus syndrome. There is a close relationship between transforming growth factor-β1 mediated cardiac fibrosis and acquired arrhythmia. It is of interest to examine whether transforming growth factor-β1 is involved in the pathogenesis of acquired sick sinus syndrome. Methods Overall, 110 patients with acquired SSS and 137 age/gender-matched controls were screened for transforming growth factor-β1 and cardiac sodium channel gene polymorphisms using gene sequencing or restriction fragment length polymorphism methods. An enzyme-linked immunosorbent assay was used to determine the serum level of transforming growth factor-β1. Results Two transforming growth factor-β1 gene polymorphisms (C-509T and T+869C) and one cardiac sodium channel gene polymorphism (H588R) have been identified. The C-dominant CC/CT genotype frequency of T869C was significantly higher in acquired sick sinus syndrome patients than in controls (OR 2.09, 95% CI 1.16–3.75, P = 0.01). Consistently, the level of serum transforming growth factor-β1 was also significantly greater in acquired sick sinus syndrome group than in controls (5.3±3.4 ng/ml vs. 3.7±2.4 ng/ml, P = 0.01). In addition, the CC/CT genotypes showed a higher transforming growth factor-β1 serum level than the TT genotype (4.25 ± 2.50 ng/ml vs. 2.71± 1.76 ng/ml, P = 0.028) in controls. Conclusion Transforming growth factor-β1 T869C polymorphism, correlated with high serum transforming growth factor-β1 levels, is associated with susceptibility to acquired sick sinus syndrome.
Collapse
Affiliation(s)
- Jan-Yow Chen
- Division of Cardiology, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Jiung-Hsiun Liu
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Hong-Dar Isaac Wu
- Department of Applied Mathematics and Institute of Statistics, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Hung Lin
- Division of Cardiology, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiology, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
4
|
Zhang MJ, Zhou Y, Wang X, Chen X, Pi Y, Guo L, Gao CY, Li JC, Zhang LL. Interleukin-18 gene promoter 607A polymorphism, but not 137C polymorphism, is a protective factor for ischemic stroke in the Chinese population: A meta-analysis. Meta Gene 2016; 9:165-72. [PMID: 27419078 PMCID: PMC4936505 DOI: 10.1016/j.mgene.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/06/2016] [Accepted: 06/26/2016] [Indexed: 02/06/2023] Open
Abstract
Some epidemiological studies have evaluated the association between interleukin (IL)-18 promoter polymorphisms and the risk of ischemic stroke (IS), but the results were inconsistent. The present meta-analysis was therefore performed to investigate the relationship between IL-18 promoter 137G/C and 607C/A polymorphisms and the risk of IS in the Chinese population. Related studies from PubMed, Embase, Web of Science, CBMdisc and CNKI databases up to November 1, 2014 were systematically searched, also the reference lists of identified articles were manually searched. Information was extracted to calculate for the allelic, genotypic, dominant and recessive models using the pooled odds ratios (ORs) along with 95% confidence intervals (CIs). Evidence of significant association between 607C/A polymorphism and risk of IS was found in four genetic models based on the overall population. However, no significant association between 137G/C polymorphism and risk of IS was found in four genetic models. In summary, the present study suggests that IL-18 gene promoter 607A polymorphism is a protective factor for IS in the Chinese population, while 137C polymorphism has weaker or no protective properties. Still, a larger number of studies with large scale and sufficient original information are required to further confirm our findings. We performed a meta-analysis to investigate the relationship between IL-18 gene promoter polymorphisms and ischemic stroke. IL-18 gene promoter 607C/A polymorphism is a protective factor for ischemic stroke in the Chinese population. This is the first meta-analysis studying such association in Chinese ischemic stroke patients.
Collapse
Affiliation(s)
- Ming-Jie Zhang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Yi Zhou
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Xu Wang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Xue Chen
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Yan Pi
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Lu Guo
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Chang-Yue Gao
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Jing-Cheng Li
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Li-Li Zhang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| |
Collapse
|
5
|
Zhang LJ, Yuan B, Li HH, Tao SB, Yan HQ, Chang L, Zhao JH. Associations of genetic polymorphisms of SAA1 with cerebral infarction. Lipids Health Dis 2013; 12:130. [PMID: 23987125 PMCID: PMC3765816 DOI: 10.1186/1476-511x-12-130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/14/2013] [Indexed: 11/10/2022] Open
Abstract
Background Serum amyloid A protein (SAA) is both an inflammatory factor and an apolipoprotein. However, the relation between genetic polymorphisms of SAA and cerebral infarction (CI) remains unclear. Methods and results The previously reported 4 Single Nucleotide Polymorphisms (rs12218, rs4638289, rs7131332, and rs11603089) of SAA1 gene were genotyped by TaqMan method in a case–control study including 287 cerebral infarction patients and 376 control subjects. We found rs12218 CC genotype and rs7131332 AA genotype were more frequent among CI patients than among controls (9.76% versus 3.19%, P = 0.001; 32.75% versus 24.20%; p = 0.017; respectively). After adjustment of confounding factors such as sex, age, smoking, drinking, hypertension, diabetes, and lipids profile, the difference remained significant in rs12218 (P < 0.01, OR = 2.106, 95% CI: 1.811–7.121). Conclusion Genetic polymorphism of SAA1 may be a genetic maker of cerebral infarction in Chinese.
Collapse
Affiliation(s)
- Li-Jun Zhang
- Department of Neurology, First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P R, China.
| | | | | | | | | | | | | |
Collapse
|