1
|
Kayser C, Heuer H. Multisensory perception depends on the reliability of the type of judgment. J Neurophysiol 2024; 131:723-737. [PMID: 38416720 DOI: 10.1152/jn.00451.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024] Open
Abstract
The brain engages the processes of multisensory integration and recalibration to deal with discrepant multisensory signals. These processes consider the reliability of each sensory input, with the more reliable modality receiving the stronger weight. Sensory reliability is typically assessed via the variability of participants' judgments, yet these can be shaped by factors both external and internal to the nervous system. For example, motor noise and participant's dexterity with the specific response method contribute to judgment variability, and different response methods applied to the same stimuli can result in different estimates of sensory reliabilities. Here we ask how such variations in reliability induced by variations in the response method affect multisensory integration and sensory recalibration, as well as motor adaptation, in a visuomotor paradigm. Participants performed center-out hand movements and were asked to judge the position of the hand or rotated visual feedback at the movement end points. We manipulated the variability, and thus the reliability, of repeated judgments by asking participants to respond using either a visual or a proprioceptive matching procedure. We find that the relative weights of visual and proprioceptive signals, and thus the asymmetry of multisensory integration and recalibration, depend on the reliability modulated by the judgment method. Motor adaptation, in contrast, was insensitive to this manipulation. Hence, the outcome of multisensory binding is shaped by the noise introduced by sensorimotor processing, in line with perception and action being intertwined.NEW & NOTEWORTHY Our brain tends to combine multisensory signals based on their respective reliability. This reliability depends on sensory noise in the environment, noise in the nervous system, and, as we show here, variability induced by the specific judgment procedure.
Collapse
Affiliation(s)
- Christoph Kayser
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| | - Herbert Heuer
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
2
|
Bernardo M, Blandin Y, Casiez G, Scotto CR. Reliability of on-line visual feedback influences learning of continuous motor task of healthy young adults. Front Psychol 2023; 14:1234010. [PMID: 37901071 PMCID: PMC10600441 DOI: 10.3389/fpsyg.2023.1234010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
A continuous task was used to determine how the reliability of on-line visual feedback during acquisition impacts motor learning. Participants performed a right hand pointing task of a repeated sequence with a visual cursor that was either reliable, moderately unreliable, or largely unreliable. Delayed retention tests were administered 24 h later, as well as intermanual transfer tests (performed with the left hand). A visuospatial transfer test was performed with the same targets' sequence (same visuospatial configuration) while a motor transfer test was performed with the visual mirror of the targets' sequence (same motor patterns). Results showed that pointing was slower and long-term learning disrupted in the largely unreliable visual cursor condition, compared with the reliable and moderately unreliable conditions. Also, analysis of transfers revealed classically better performance on visuospatial transfer than on motor transfer for the reliable condition. However, here we first show that such difference disappears when the cursor was moderately or largely unreliable. Interestingly, these results indicated a difference in the type of sequence coding, depending on the reliability of the on-line visual feedback. This recourse to mixed coding opens up interesting perspectives, as it is known to promote better learning of motor sequences.
Collapse
Affiliation(s)
- Marie Bernardo
- Centre de Recherche sur la Cognition et l’Apprentissage, Université de Poitiers, Université François Rabelais de Tours, Poitiers, France
| | - Yannick Blandin
- Centre de Recherche sur la Cognition et l’Apprentissage, Université de Poitiers, Université François Rabelais de Tours, Poitiers, France
| | - Géry Casiez
- Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, Lille, France
- Institut Universitaire de France (IUF), Paris, France
| | - Cécile R. Scotto
- Centre de Recherche sur la Cognition et l’Apprentissage, Université de Poitiers, Université François Rabelais de Tours, Poitiers, France
| |
Collapse
|
3
|
Debats NB, Heuer H, Kayser C. Different time scales of common-cause evidence shape multisensory integration, recalibration and motor adaptation. Eur J Neurosci 2023; 58:3253-3269. [PMID: 37461244 DOI: 10.1111/ejn.16095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/03/2023] [Indexed: 09/05/2023]
Abstract
Perceptual coherence in the face of discrepant multisensory signals is achieved via the processes of multisensory integration, recalibration and sometimes motor adaptation. These supposedly operate on different time scales, with integration reducing immediate sensory discrepancies and recalibration and motor adaptation reflecting the cumulative influence of their recent history. Importantly, whether discrepant signals are bound during perception is guided by the brains' inference of whether they originate from a common cause. When combined, these two notions lead to the hypothesis that the time scales on which integration and recalibration (or motor adaptation) operate are associated with different time scales of evidence about a common cause underlying two signals. We tested this prediction in a well-established visuo-motor paradigm, in which human participants performed visually guided hand movements. The kinematic correlation between hand and cursor movements indicates their common origin, which allowed us to manipulate the common-cause evidence by titrating this correlation. Specifically, we dissociated hand and cursor signals during individual movements while preserving their correlation across the series of movement endpoints. Following our hypothesis, this manipulation reduced integration compared with a condition in which visual and proprioceptive signals were perfectly correlated. In contrast, recalibration and motor adaption were not affected by this manipulation. This supports the notion that multisensory integration and recalibration deal with sensory discrepancies on different time scales guided by common-cause evidence: Integration is prompted by local common-cause evidence and reduces immediate discrepancies, whereas recalibration and motor adaptation are prompted by global common-cause evidence and reduce persistent discrepancies.
Collapse
Affiliation(s)
- Nienke B Debats
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| | - Herbert Heuer
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Christoph Kayser
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| |
Collapse
|
4
|
Kirsch W, Kunde W. Changes in body perception following virtual object manipulation are accompanied by changes of the internal reference scale. Sci Rep 2023; 13:7137. [PMID: 37130888 PMCID: PMC10154308 DOI: 10.1038/s41598-023-34311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/27/2023] [Indexed: 05/04/2023] Open
Abstract
Changes in body perception often arise when observers are confronted with related yet discrepant multisensory signals. Some of these effects are interpreted as outcomes of sensory integration of various signals, whereas related biases are ascribed to learning-dependent recalibration of coding individual signals. The present study explored whether the same sensorimotor experience entails changes in body perception that are indicative of multisensory integration and those that indicate recalibration. Participants enclosed visual objects by a pair of visual cursors controlled by finger movements. Then either they judged their perceived finger posture (indicating multisensory integration) or they produced a certain finger posture (indicating recalibration). An experimental variation of the size of the visual object resulted in systematic and opposite biases of the perceived and produced finger distances. This pattern of results is consistent with the assumption that multisensory integration and recalibration had a common origin in the task we used.
Collapse
Affiliation(s)
- Wladimir Kirsch
- Department of Psychology, University of Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
| | - Wilfried Kunde
- Department of Psychology, University of Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| |
Collapse
|
5
|
Debats NB, Heuer H, Kayser C. Short-term effects of visuomotor discrepancies on multisensory integration, proprioceptive recalibration, and motor adaptation. J Neurophysiol 2023; 129:465-478. [PMID: 36651909 DOI: 10.1152/jn.00478.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Information about the position of our hand is provided by multisensory signals that are often not perfectly aligned. Discrepancies between the seen and felt hand position or its movement trajectory engage the processes of 1) multisensory integration, 2) sensory recalibration, and 3) motor adaptation, which adjust perception and behavioral responses to apparently discrepant signals. To foster our understanding of the coemergence of these three processes, we probed their short-term dependence on multisensory discrepancies in a visuomotor task that has served as a model for multisensory perception and motor control previously. We found that the well-established integration of discrepant visual and proprioceptive signals is tied to the immediate discrepancy and independent of the outcome of the integration of discrepant signals in immediately preceding trials. However, the strength of integration was context dependent, being stronger in an experiment featuring stimuli that covered a smaller range of visuomotor discrepancies (±15°) compared with one covering a larger range (±30°). Both sensory recalibration and motor adaptation for nonrepeated movement directions were absent after two bimodal trials with same or opposite visuomotor discrepancies. Hence our results suggest that short-term sensory recalibration and motor adaptation are not an obligatory consequence of the integration of preceding discrepant multisensory signals.NEW & NOTEWORTHY The functional relation between multisensory integration and recalibration remains debated. We here refute the notion that they coemerge in an obligatory manner and support the hypothesis that they serve distinct goals of perception.
Collapse
Affiliation(s)
- Nienke B Debats
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| | - Herbert Heuer
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany.,Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Christoph Kayser
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| |
Collapse
|
6
|
Wollstein R, Michael D, Harel H, Carlson L. The Influence of Hand Dominance in Wrist Fracture Post-Operative Functional Evaluation. Plast Surg (Oakv) 2021; 29:250-256. [PMID: 34760841 DOI: 10.1177/2292550320933693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sensorimotor testing is used to measure outcomes in surgery, to document results of treatment and rehabilitation, and to compare results between surgeons, therapists, and institutions. When performing sensorimotor testing, failure to address dominant side differences may cause a bias in evaluation of outcomes. This study evaluated the effect of hand dominance on outcomes testing performed on patients following surgery for distal radius fractures (DRF). We hypothesized that the injured dominant hand will perform differently than the injured non-dominant hand. This is a retrospective study of patients following DRF treated surgically and evaluated in therapy. The patients were evaluated at fixed intervals: initially, at 6 weeks, and at 3 months post-surgery. Testing included grip strength, monofilaments, static and moving 2-point discrimination, Moberg testing, and stereognosis. Sixty patients included 46 (76.6%) females. Age averaged 62.1 (standard deviation: 16.9) years, and 54 were right-handed (90%). There were differences between dominant and non-dominant hand injury in 2 of 9 tests of sensibility for each time period, including little finger monofilament and Moberg testing initially, and moving 2-point discrimination in the little finger, monofilament testing of the thumb at 3 months. Both groups improved between initial and 3-month evaluation without differences in amount of improvement. Despite some significant differences in the applied tests between dominant and non-dominant injured hands, our results do not support correction for hand-dominance when using the described examinations in evaluating outcomes following DRF surgery.
Collapse
Affiliation(s)
| | | | - Hani Harel
- Carmel Lady Davis Medical Center, Haifa, Israel
| | | |
Collapse
|
7
|
Debats NB, Heuer H, Kayser C. Visuo-proprioceptive integration and recalibration with multiple visual stimuli. Sci Rep 2021; 11:21640. [PMID: 34737371 PMCID: PMC8569193 DOI: 10.1038/s41598-021-00992-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022] Open
Abstract
To organize the plethora of sensory signals from our environment into a coherent percept, our brain relies on the processes of multisensory integration and sensory recalibration. We here asked how visuo-proprioceptive integration and recalibration are shaped by the presence of more than one visual stimulus, hence paving the way to study multisensory perception under more naturalistic settings with multiple signals per sensory modality. We used a cursor-control task in which proprioceptive information on the endpoint of a reaching movement was complemented by two visual stimuli providing additional information on the movement endpoint. The visual stimuli were briefly shown, one synchronously with the hand reaching the movement endpoint, the other delayed. In Experiment 1, the judgments of hand movement endpoint revealed integration and recalibration biases oriented towards the position of the synchronous stimulus and away from the delayed one. In Experiment 2 we contrasted two alternative accounts: that only the temporally more proximal visual stimulus enters integration similar to a winner-takes-all process, or that the influences of both stimuli superpose. The proprioceptive biases revealed that integration—and likely also recalibration—are shaped by the superposed contributions of multiple stimuli rather than by only the most powerful individual one.
Collapse
Affiliation(s)
- Nienke B Debats
- Department of Cognitive Neuroscience, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany. .,Center for Cognitive Interaction Technology (CITEC), Universität Bielefeld, Bielefeld, Germany.
| | - Herbert Heuer
- Department of Cognitive Neuroscience, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany.,Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Christoph Kayser
- Department of Cognitive Neuroscience, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany.,Center for Cognitive Interaction Technology (CITEC), Universität Bielefeld, Bielefeld, Germany
| |
Collapse
|
8
|
On the relevance of task instructions for the influence of action on perception. Atten Percept Psychophys 2021; 83:2625-2633. [PMID: 33939156 PMCID: PMC8302516 DOI: 10.3758/s13414-021-02309-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 11/08/2022]
Abstract
The present study explored how task instructions mediate the impact of action on perception. Participants saw a target object while performing finger movements. Then either the size of the target or the size of the adopted finger postures was judged. The target judgment was attracted by the adopted finger posture indicating sensory integration of body-related and visual signals. The magnitude of integration, however, depended on how the task was initially described. It was substantially larger when the experimental instructions indicated that finger movements and the target object relate to the same event than when they suggested that they are unrelated. This outcome highlights the role of causal inference processes in the emergence of action specific influences in perception.
Collapse
|
9
|
Liesner M, Kunde W. Suppression of mutually incompatible proprioceptive and visual action effects in tool use. PLoS One 2020; 15:e0242327. [PMID: 33206706 PMCID: PMC7673520 DOI: 10.1371/journal.pone.0242327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022] Open
Abstract
Movements of a tool typically diverge from the movements of the hand manipulating that tool, such as when operating a pivotal lever where tool and hand move in opposite directions. Previous studies suggest that humans are often unaware of the position or movements of their effective body part (mostly the hand) in such situations. It has been suggested that this might be due to a "haptic neglect" of bodily sensations to decrease the interference of representations of body and tool movements. However, in principle this interference could also be decreased by neglecting sensations regarding the tool and focusing instead on body movements. While in most tool use situations the tool-related action effects are task-relevant and thus suppression of body-related rather than tool-related sensations is more beneficial for successful goal achievement, we manipulated this task-relevance in a controlled experiment. The results showed that visual, tool-related effect representations can be suppressed just as proprioceptive, body-related ones in situations where effect representations interfere, given that task-relevance of body-related effects is increased relative to tool-related ones.
Collapse
Affiliation(s)
- Marvin Liesner
- Department of Psychology, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Wilfried Kunde
- Department of Psychology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Abstract
Spatial action-effect binding denotes the mutual attraction between the perceived position of an effector (e.g., one's own hand) and a distal object that is controlled by this effector. Such spatial binding can be construed as an implicit measure of object ownership, thus the belonging of a controlled object to the own body. The current study investigated how different transformations of hand movements (body-internal action component) into movements of a visual object (body-external action component) affect spatial action-effect binding, and thus implicit object ownership. In brief, participants had to bring a cursor on the computer screen into a predefined target position by moving their occluded hand on a tablet and had to estimate their final hand position. In Experiment 1, we found a significantly lower drift of the proprioceptive position of the hand towards the visual object when hand movements were transformed into laterally inverted cursor movements, rather than cursor movements in the same direction. Experiment 2 showed that this reduction reflected an elimination of spatial action-effect binding in the inverted condition. The results are discussed with respect to the prerequisites for an experience of ownership over artificial, noncorporeal objects. Our results show that predictability of an object movement alone is not a sufficient condition for ownership because, depending on the type of transformation, integration of the effector and a distal object can be fully abolished even under conditions of full controllability.
Collapse
|
11
|
Debats NB, Heuer H. Exploring the time window for causal inference and the multisensory integration of actions and their visual effects. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192056. [PMID: 32968497 PMCID: PMC7481684 DOI: 10.1098/rsos.192056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Successful computer use requires the operator to link the movement of the cursor to that of his or her hand. Previous studies suggest that the brain establishes this perceptual link through multisensory integration, whereby the causality evidence that drives the integration is provided by the correlated hand and cursor movement trajectories. Here, we explored the temporal window during which this causality evidence is effective. We used a basic cursor-control task, in which participants performed out-and-back reaching movements with their hand on a digitizer tablet. A corresponding cursor movement could be shown on a monitor, yet slightly rotated by an angle that varied from trial to trial. Upon completion of the backward movement, participants judged the endpoint of the outward hand or cursor movement. The mutually biased judgements that typically result reflect the integration of the proprioceptive information on hand endpoint with the visual information on cursor endpoint. We here manipulated the time period during which the cursor was visible, thereby selectively providing causality evidence either before or after sensory information regarding the to-be-judged movement endpoint was available. Specifically, the cursor was visible either during the outward or backward hand movement (conditions Out and Back, respectively). Our data revealed reduced integration in the condition Back compared with the condition Out, suggesting that causality evidence available before the to-be-judged movement endpoint is more powerful than later evidence in determining how strongly the brain integrates the endpoint information. This finding further suggests that sensory integration is not delayed until a judgement is requested.
Collapse
Affiliation(s)
- Nienke B. Debats
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
- Cognitive Interaction Technology Center of Excellence (CITEC), Universität Bielefeld, Bielefeld, Germany
| | - Herbert Heuer
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
12
|
A condition that produces sensory recalibration and abolishes multisensory integration. Cognition 2020; 202:104326. [PMID: 32464344 DOI: 10.1016/j.cognition.2020.104326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/20/2022]
Abstract
We examined the influence of extended exposure to a visuomotor rotation, which induces both motor adaptation and sensory recalibration, on (partial) multisensory integration in a cursor-control task. Participants adapted to a 30° (adaptation condition) or 0° (control condition) visuomotor rotation by making center-out movements to remembered targets. In subsequent test trials of sensory integration, they made center-out movements with variable visuomotor rotations and judged the position of hand or cursor at the end of these movements. Test trials were randomly embedded among twice the number of maintenance trials with 30° or 0° rotation. The biases of perceived hand (or cursor) position toward the cursor (or hand) position were measured. We found motor adaptation together with proprioceptive and visual recalibrations in the adaptation condition. Unexpectedly, multisensory integration was absent in both the adaptation and control condition. The absence stemmed from the extensive experience of constant visuomotor rotations of 30° or 0°, which probably produced highly precise predictions of the visual consequences of hand movements. The frequently confirmed predictions then dominated the estimate of the visual movement consequences, leaving no influence of the actual visuomotor rotations in the minority of test trials. Conversely, multisensory integration was present for sensed hand positions when these were indirectly assessed from movement characteristics, indicating that the relative weighting of discrepant estimates of hand position was different for motor control. The existence of a condition that abolishes multisensory integration while keeping sensory recalibration suggests that mechanisms that reduce sensory discrepancies (partly) differ between integration and recalibration.
Collapse
|
13
|
Multisensory integration in virtual interactions with distant objects. Sci Rep 2019; 9:17362. [PMID: 31758046 PMCID: PMC6874595 DOI: 10.1038/s41598-019-53921-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/07/2019] [Indexed: 11/08/2022] Open
Abstract
Statistically optimal integration of multimodal signals is known to take place in direct interactions with environmental objects. In the present study we tested whether the same mechanism is responsible for perceptual biases observed in a task, in which participants enclose visual objects by manually controlled visual cursors. We manipulated the relative reliability of visual object information and measured the impact of body-related information on object perception as well as the perceptual variability. The results were qualitatively consistent with statistically optimal sensory integration. However, quantitatively, the observed bias and variability measures systematically differed from the model predictions. This outcome indicates a compensatory mechanism similar to the reliability-based weighting of multisensory signals which could underlie action's effects in visual perception reported in diverse context conditions.
Collapse
|
14
|
Impact of action planning on visual and body perception in a virtual grasping task. Exp Brain Res 2019; 237:2431-2445. [PMID: 31309253 DOI: 10.1007/s00221-019-05601-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/06/2019] [Indexed: 10/26/2022]
Abstract
The present study examined mutual influences of visual and body-related signals during planning of an object-oriented action. Participants were to enclose a visual target object using two cursors controlled by the movements of their fingers. During movement preparation, they were asked to judge either the size of the object or a certain finger distance. Both types of judgments were systematically affected by the transformation of finger movements into the movements of visual cursors. We suggest that these biases are perceptual consequences of sensory integration of visual and body-related signals relating to the same external object.
Collapse
|
15
|
On perceptual biases in virtual object manipulation: Signal reliability and action relevance matter. Atten Percept Psychophys 2019; 81:2881-2889. [PMID: 31190312 DOI: 10.3758/s13414-019-01783-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study examined the role of visual reliability and action relevance in mutual visual-proprioceptive attraction in a virtual grasping task. Participants initially enclosed either the width or the height of a visual rectangular object with two cursors controlled by the movements of the index finger and thumb. Then, either the height or the width of this object or the distance between the fingers was judged. The judgments of object's size were attracted by the felt finger distance, and, vice versa, the judged finger distance was attracted by the size of the grasped object. The impact of the proprioceptive information on object judgments increased, whereas the impact of visual object information on finger judgments decreased when the reliability of the visual stimulus was reduced. Moreover, the proprioceptive bias decreased for the action-relevant stimulus dimension as compared with the action-irrelevant stimulus dimension. These results indicate sensory integration of spatially separated sensory signals in the absence of any direct spatial or kinematic relation between them. We therefore suggest that the basic principles of sensory integration apply to the broad research field on perceptual-motor interactions as well as to many virtual interactions with external objects.
Collapse
|
16
|
Rand MK, Heuer H. Visual and proprioceptive recalibrations after exposure to a visuomotor rotation. Eur J Neurosci 2019; 50:3296-3310. [PMID: 31077463 DOI: 10.1111/ejn.14433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 11/28/2022]
Abstract
Adaptation to a visuomotor rotation in a cursor-control task is accompanied by proprioceptive recalibration, whereas the existence of visual recalibration is uncertain and has even been doubted. In the present study, we tested both visual and proprioceptive recalibration; proprioceptive recalibration was not only assessed by means of psychophysical judgments of the perceived position of the hand, but also by an indirect procedure based on movement characteristics. Participants adapted to a gradually introduced visuomotor rotation of 30° by making center-out movements to remembered targets. In subsequent test trials, they made center-out movements without visual feedback or observed center-out motions of a cursor without moving the hand. In each test trial, they judged the endpoint of hand or cursor by matching the position of the hand or of a visual marker, respectively, moving along a semicircular path. This path ran through all possible endpoints of the center-out movements. We observed proprioceptive recalibration of 7.3° (3.1° with the indirect procedure) and a smaller, but significant, visual recalibration of 1.3°. Total recalibration of 8.6° was about half as strong as motor adaptation, the adaptive shift of the movement direction. The evidence of both proprioceptive and visual recalibration was obtained with a judgment procedure that suggests that recalibration is restricted to the type of movement performed during exposure to a visuomotor rotation. Consequently, identical physical positions of the hand can be perceived differently depending on how they have been reached, and similarly identical positions of a cursor on a monitor can be perceived differently.
Collapse
Affiliation(s)
- Miya K Rand
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Herbert Heuer
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
17
|
Rand MK, Heuer H. Effects of Hand and Hemispace on Multisensory Integration of Hand Position and Visual Feedback. Front Psychol 2019; 10:237. [PMID: 30809172 PMCID: PMC6379332 DOI: 10.3389/fpsyg.2019.00237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/24/2019] [Indexed: 11/23/2022] Open
Abstract
The brain generally integrates a multitude of sensory signals to form a unified percept. Even in cursor control tasks, such as reaching while looking at rotated visual feedback on a monitor, visual information on cursor position and proprioceptive information on hand position are partially integrated (sensory coupling), resulting in mutual biases of the perceived positions of cursor and hand. Previous studies showed that the strength of sensory coupling (sum of the mutual biases) depends on the experience of kinematic correlations between hand movements and cursor motions, whereas the asymmetry of sensory coupling (difference between the biases) depends on the relative reliabilities (inverse of variability) of hand-position and cursor-position estimates (reliability rule). Furthermore, the precision of movement control and perception of hand position are known to differ between hands (left, right) and workspaces (ipsilateral, contralateral), and so does the experience of kinematic correlations from daily life activities. Thus, in the present study, we tested whether strength and asymmetry of sensory coupling for the endpoints of reaches in a cursor control task differ between the right and left hand and between ipsilateral and contralateral hemispace. No differences were found in the strength of sensory coupling between hands or between hemispaces. However, asymmetry of sensory coupling was less in ipsilateral than in contralateral hemispace: in ipsilateral hemispace, the bias of the perceived hand position was reduced, which was accompanied by a smaller variability of the estimates. The variability of position estimates of the dominant right hand was also less than for the non-dominant left hand, but this difference was not accompanied by a difference in the asymmetry of sensory coupling – a violation of the reliability rule, probably due a stronger influence of visual information on right-hand movements. According to these results, the long-term effects of the experienced kinematic correlation between hand movements and cursor motions on the strength of sensory coupling are generic and not specific for hemispaces or hands, whereas the effects of relative reliabilities on the asymmetry of sensory coupling are specific for hemispaces but not for hands.
Collapse
Affiliation(s)
- Miya K Rand
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund (IfADo), Dortmund, Germany
| | - Herbert Heuer
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
18
|
Debats NB, Heuer H. Explicit knowledge of sensory non-redundancy can reduce the strength of multisensory integration. PSYCHOLOGICAL RESEARCH 2018; 84:890-906. [PMID: 30426210 DOI: 10.1007/s00426-018-1116-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/30/2018] [Indexed: 11/26/2022]
Abstract
The brain integrates incoming sensory signals to a degree that depends on the signals' redundancy. Redundancy-which is commonly high when signals originate from a common physical object or event-is estimated by the brain from the signals' spatial and/or temporal correspondence. Here we tested whether verbally instructed knowledge of non-redundancy can also be used to reduce the strength of the sensory integration. We used a cursor-control task in which cursor motions in the frontoparallel plane were controlled by hand movements in the horizontal plane, yet with a small and randomly varying visuomotor rotation that created spatial discrepancies between hand and cursor positions. Consistent with previous studies, we found mutual biases in the hand and cursor position judgments, indicating partial sensory integration. The integration was reduced in strength, but not eliminated, after participants were verbally informed about the non-redundancy (i.e., the spatial discrepancies) in the hand and cursor positions. Comparisons with model predictions excluded confounding bottom-up effects of the non-redundancy instruction. Our findings thus show that participants have top-down control over the degree to which they integrate sensory information. Additionally, we found that the magnitude of this top-down modulatory capability is a reliable individual trait. A comparison between participants with and without video-gaming experience tentatively suggested a relation between top-down modulation of integration strength and attentional control.
Collapse
Affiliation(s)
- Nienke B Debats
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany.
- Cognitive Interaction Technology Center of Excellence (CITEC), Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany.
| | - Herbert Heuer
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
19
|
Debats NB, Heuer H. Sensory integration of movements and their visual effects is not enhanced by spatial proximity. J Vis 2018; 18:15. [PMID: 30347102 DOI: 10.1167/18.11.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Spatial proximity enhances the sensory integration of exafferent position information, likely because it indicates whether the information comes from a single physical source. Does spatial proximity also affect the integration of position information regarding an action (here a hand movement) with that of its visual effect (here a cursor motion), that is, when the sensory information comes from physically distinct objects? In this study, participants made out-and-back hand movements whereby the outward movements were accompanied by corresponding cursor motions on a monitor. Their subsequent judgments of hand or cursor movement endpoints are typically biased toward each other, consistent with an underlying optimal integration mechanism. To study the effect of spatial proximity, we presented the hand and cursor either in orthogonal planes (horizontal and frontal, respectively) or we aligned them in the horizontal plane. We did not find the expected enhanced integration strength in the latter spatial condition. As a secondary question we asked whether spatial transformations required for the position judgments (i.e., horizontal to frontal or vice versa) could be the origin of previously observed suboptimal variances of the integrated hand and cursor position judgments. We found, however, that the suboptimality persisted when spatial transformations were omitted (i.e., with the hand and cursor in the same plane). Our findings thus clearly show that the integration of actions with their visual effects is, at least for cursor control, independent of spatial proximity.
Collapse
Affiliation(s)
- Nienke B Debats
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany.,Cognitive Interaction Technology Center of Excellence (CITEC), Universität Bielefeld, Bielefeld, Germany
| | - Herbert Heuer
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany.,Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
20
|
Optimal integration of actions and their visual effects is based on both online and prior causality evidence. Sci Rep 2018; 8:9796. [PMID: 29955156 PMCID: PMC6023926 DOI: 10.1038/s41598-018-28251-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/19/2018] [Indexed: 11/09/2022] Open
Abstract
The brain needs to identify redundant sensory signals in order to integrate them optimally. The identification process, referred to as causal inference, depends on the spatial and temporal correspondence of the incoming sensory signals ('online sensory causality evidence') as well as on prior expectations regarding their causal relation. We here examine whether the same causal inference process underlies spatial integration of actions and their visual consequences. We used a basic cursor-control task for which online sensory causality evidence is provided by the correlated hand and cursor movements, and prior expectations are formed by everyday experience of such correlated movements. Participants made out-and-back movements and subsequently judged the hand or cursor movement endpoints. In one condition, we omitted the online sensory causality evidence by showing the cursor only at the movement endpoint. The integration strength was lower than in conditions where the cursor was visible during the outward movement, but a substantial level of integration persisted. These findings support the hypothesis that the binding of actions and their visual consequences is based on the general mechanism of optimal integration, and they specifically show that such binding can occur even if it is previous experience only that identifies the action consequence.
Collapse
|
21
|
Debats NB, Ernst MO, Heuer H. Kinematic cross-correlation induces sensory integration across separate objects. Eur J Neurosci 2017; 46:2826-2834. [PMID: 29068094 DOI: 10.1111/ejn.13758] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/27/2022]
Abstract
In a basic cursor-control task, the perceived positions of the hand and the cursor are biased towards each other. We recently found that this phenomenon conforms to the reliability-based weighting mechanism of optimal multisensory integration. This indicates that optimal integration is not restricted to sensory signals originating from a single source, as is the prevailing view, but that it also applies to separate objects that are connected by a kinematic relation (i.e. hand and cursor). In the current study, we examined which aspects of the kinematic relation are crucial for eliciting the sensory integration: (i) the cross-correlation between kinematic variables of the hand and cursor trajectories, and/or (ii) an internal model of the hand-cursor kinematic transformation. Participants made out-and-back movements from the centre of a semicircular workspace to its boundary, after which they judged the position where either their hand or the cursor hit the boundary. We analysed the position biases and found that the integration was strong in a condition with high kinematic correlations (a straight hand trajectory was mapped to a straight cursor trajectory), that it was significantly reduced for reduced kinematic correlations (a straight hand trajectory was transformed into a curved cursor trajectory) and that it was not affected by the inability to acquire an internal model of the kinematic transformation (i.e. by the trial-to-trial variability of the cursor curvature). These findings support the idea that correlations play a crucial role in multisensory integration irrespective of the number of sensory sources involved.
Collapse
Affiliation(s)
- Nienke B Debats
- Department of Cognitive Neuroscience, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany.,Cognitive Interaction Technology Center of Excellence (CITEC), Universität Bielefeld, Bielefeld, Germany
| | - Marc O Ernst
- Department of Applied Cognitive Psychology, Universität Ulm, Ulm, Germany
| | - Herbert Heuer
- Department of Cognitive Neuroscience, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany.,Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
22
|
Dissociating explicit and implicit measures of sensed hand position in tool use: Effect of relative frequency of judging different objects. Atten Percept Psychophys 2017; 80:211-221. [PMID: 29075991 DOI: 10.3758/s13414-017-1438-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In a cursor-control task, the sensed positions of cursor and hand are biased toward each other. We previously found different characteristics of implicit and explicit measures of the bias of sensed hand position toward the position of the cursor, suggesting the existence of distinct neural representations. Here we further explored differences between the two types of measure by varying the proportions of trials with explicit hand-position (H) and cursor-position (C) judgments (C20:H80, C50:H50, and C80:H20). In each trial, participants made a reaching movement to a remembered target, with the visual feedback being rotated randomly, and subsequently they judged the hand or the cursor position. Both the explicitly and implicitly measured biases of sensed hand position were stronger with a low proportion (C80:H20) than with a high proportion (C20:H80) of hand-position judgments, suggesting that both measures place more weight on the sensory modality relevant for the more frequent judgment. With balanced proportions of such judgments (C50:H50), the explicitly assessed biases were similar to those observed with a high proportion of cursor-position judgments (C80:H20), whereas the implicitly assessed biases were similar to those observed with a high proportion of hand-position judgments (C20:H80). Because strong weights of cursor-position or hand-position information may be difficult to increase further but are easy to reduce, the findings suggest that the implicit measure of the bias of sensed hand position places a relatively stronger weight on proprioceptive hand-position information, which is increased no further by a high proportion of hand-position judgments. Conversely, the explicit measure places a relatively stronger weight on visual cursor-position information.
Collapse
|
23
|
Rand MK, Heuer H. Contrasting effects of adaptation to a visuomotor rotation on explicit and implicit measures of sensory coupling. PSYCHOLOGICAL RESEARCH 2017; 83:935-950. [PMID: 29058087 DOI: 10.1007/s00426-017-0931-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 12/24/2022]
Abstract
We previously investigated sensory coupling of the sensed positions of cursor and hand in a cursor-control task and found differential characteristics of implicit and explicit measures of the bias of sensed hand position toward the position of the cursor. The present study further tested whether adaptation to a visuomotor rotation differentially affects these two measures. Participants made center-out reaching movements to remembered targets while looking at a rotated feedback cursor. After sets of practice trials with constant (adaptation condition) or random (control condition) visuomotor rotations, test trials served to assess sensory coupling. In these trials, participants judged the position of the hand at the end of the center-out movement, and the deviation of these judgments from the physical hand positions served as explicit measure of the bias of sensed hand position toward the position of the cursor, whereas the implicit measure was based on the direction of the return movement. The results showed that inter-individual variability of explicitly assessed biases of sensed hand position toward the cursor position was less in the adaptation condition than in the control condition. Conversely, no such changes were observed for the implicit measure of the bias of sensed hand position, revealing contrasting effects of adaptation on the explicit and implicit measures. These results suggest that biases of explicitly sensed hand position reflect sensory coupling of neural representations that are altered by visuomotor adaptation. In contrast, biases of implicitly sensed hand position reflect sensory coupling of neural representations that are unaffected by adaptation.
Collapse
Affiliation(s)
- Miya K Rand
- IfADo, Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139, Dortmund, Germany.
| | - Herbert Heuer
- IfADo, Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139, Dortmund, Germany
| |
Collapse
|
24
|
Costello MC, Bloesch EK. Are Older Adults Less Embodied? A Review of Age Effects through the Lens of Embodied Cognition. Front Psychol 2017; 8:267. [PMID: 28289397 PMCID: PMC5326803 DOI: 10.3389/fpsyg.2017.00267] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/10/2017] [Indexed: 11/13/2022] Open
Abstract
Embodied cognition is a theoretical framework which posits that cognitive function is intimately intertwined with the body and physical actions. Although the field of psychology is increasingly accepting embodied cognition as a viable theory, it has rarely been employed in the gerontological literature. However, embodied cognition would appear to have explanatory power for aging research given that older adults typically manifest concurrent physical and mental changes, and that research has indicated a correlative relationship between such changes. The current paper reviews age-related changes in sensory processing, mental representation, and the action-perception relationship, exploring how each can be understood through the lens of embodied cognition. Compared to younger adults, older adults exhibit across all three domains an increased tendency to favor visual processing over bodily factors, leading to the conclusion that older adults are less embodied than young adults. We explore the significance of this finding in light of existing theoretical models of aging and argue that embodied cognition can benefit gerontological research by identifying further factors that can explain the cause of age-related declines.
Collapse
Affiliation(s)
| | - Emily K Bloesch
- Department of Psychology, Central Michigan University, Mount Pleasant MI, USA
| |
Collapse
|
25
|
Debats NB, Ernst MO, Heuer H. Perceptual attraction in tool use: evidence for a reliability-based weighting mechanism. J Neurophysiol 2017; 117:1569-1580. [PMID: 28100656 DOI: 10.1152/jn.00724.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
Humans are well able to operate tools whereby their hand movement is linked, via a kinematic transformation, to a spatially distant object moving in a separate plane of motion. An everyday example is controlling a cursor on a computer monitor. Despite these separate reference frames, the perceived positions of the hand and the object were found to be biased toward each other. We propose that this perceptual attraction is based on the principles by which the brain integrates redundant sensory information of single objects or events, known as optimal multisensory integration. That is, 1) sensory information about the hand and the tool are weighted according to their relative reliability (i.e., inverse variances), and 2) the unisensory reliabilities sum up in the integrated estimate. We assessed whether perceptual attraction is consistent with optimal multisensory integration model predictions. We used a cursor-control tool-use task in which we manipulated the relative reliability of the unisensory hand and cursor position estimates. The perceptual biases shifted according to these relative reliabilities, with an additional bias due to contextual factors that were present in experiment 1 but not in experiment 2 The biased position judgments' variances were, however, systematically larger than the predicted optimal variances. Our findings suggest that the perceptual attraction in tool use results from a reliability-based weighting mechanism similar to optimal multisensory integration, but that certain boundary conditions for optimality might not be satisfied.NEW & NOTEWORTHY Kinematic tool use is associated with a perceptual attraction between the spatially separated hand and the effective part of the tool. We provide a formal account for this phenomenon, thereby showing that the process behind it is similar to optimal integration of sensory information relating to single objects.
Collapse
Affiliation(s)
- Nienke B Debats
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany; .,Cognitive Interaction Technology Center of Excellence, Universität Bielefeld, Bielefeld, Germany; and
| | - Marc O Ernst
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany.,Cognitive Interaction Technology Center of Excellence, Universität Bielefeld, Bielefeld, Germany; and
| | - Herbert Heuer
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany.,Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
26
|
Kirsch W, Ullrich B, Kunde W. Are Effects of Action on Perception Real? Evidence from Transformed Movements. PLoS One 2016; 11:e0167993. [PMID: 27977726 PMCID: PMC5158014 DOI: 10.1371/journal.pone.0167993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/24/2016] [Indexed: 12/03/2022] Open
Abstract
It has been argued that several reported non-visual influences on perception cannot be truly perceptual. If they were, they should affect the perception of target objects and reference objects used to express perceptual judgments, and thus cancel each other out. This reasoning presumes that non-visual manipulations impact target objects and comparison objects equally. In the present study we show that equalizing a body-related manipulation between target objects and reference objects essentially abolishes the impact of that manipulation so as it should do when that manipulation actually altered perception. Moreover, the manipulation has an impact on judgements when applied to only the target object but not to the reference object, and that impact reverses when only applied to the reference object but not to the target object. A perceptual explanation predicts this reversal, whereas explanations in terms of post-perceptual response biases or demand effects do not. Altogether these results suggest that body-related influences on perception cannot as a whole be attributed to extra-perceptual factors.
Collapse
Affiliation(s)
- Wladimir Kirsch
- Department of Psychology, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Benjamin Ullrich
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Wilfried Kunde
- Department of Psychology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Abstract
The temporal interval between an action and its ensuing effect is perceptually compressed. Specifically, the perceived onset of actions is shifted towards their effects in time and, vice versa, the perceived onset of effects is shifted towards their causing actions. In four experiments, we report evidence showing that action-effect binding also occurs in the spatial domain. Participants controlled the location of a visual stimulus by performing stylus movements before they judged either the position of the stylus or the position of the visual stimulus. The results yielded spatial binding between the perceived stylus position and the perceived stimulus position when the stimulus was under full control of the hand movement compared to control conditions without direct control.
Collapse
|
28
|
Gajda K, Sülzenbrück S, Heuer H. Financial incentives enhance adaptation to a sensorimotor transformation. Exp Brain Res 2016; 234:2859-68. [PMID: 27271505 DOI: 10.1007/s00221-016-4688-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/27/2016] [Indexed: 01/07/2023]
Abstract
Adaptation to sensorimotor transformations has received much attention in recent years. However, the role of motivation and its relation to the implicit and explicit processes underlying adaptation has been neglected thus far. Here, we examine the influence of extrinsic motivation on adaptation to a visuomotor rotation by way of providing financial incentives for accurate movements. Participants in the experimental group "bonus" received a defined amount of money for high end-point accuracy in a visuomotor rotation task; participants in the control group "no bonus" did not receive a financial incentive. Results showed better overall adaptation to the visuomotor transformation in participants who were extrinsically motivated. However, there was no beneficial effect of financial incentives on the implicit component, as assessed by the after-effects, and on separately assessed explicit knowledge. These findings suggest that the positive influence of financial incentives on adaptation is due to a component which cannot be measured by after-effects or by our test of explicit knowledge. A likely candidate is model-free learning based on reward-prediction errors, which could be enhanced by the financial bonuses.
Collapse
Affiliation(s)
- Kathrin Gajda
- Work and Cognitive Psychology, RWTH Aachen University, Jägerstraße 17-19, 52066, Aachen, Germany. .,Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | - Sandra Sülzenbrück
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,FOM Hochschule für Oekonomie & Management, iwp Institut für Wirtschaftspsychologie, Essen, Germany
| | - Herbert Heuer
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
29
|
Rand MK, Heuer H. Effects of Reliability and Global Context on Explicit and Implicit Measures of Sensed Hand Position in Cursor-Control Tasks. Front Psychol 2016; 6:2056. [PMID: 26793162 PMCID: PMC4709824 DOI: 10.3389/fpsyg.2015.02056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/25/2015] [Indexed: 11/29/2022] Open
Abstract
In a cursor-control task in which the motion of the cursor is rotated randomly relative to the movement of the hand, the sensed directions of hand and cursor are mutually biased. In our previous study, we used implicit and explicit measures of the bias of sensed hand direction toward the direction of the cursor and found different characteristics. The present study serves to explore further differences and commonalities of these measures. In Experiment 1, we examined the effects of different relative reliabilities of visual and proprioceptive information on the explicitly and implicitly assessed bias of sensed hand direction. In two conditions, participants made an aiming movement and returned to the start position immediately or after a delay of 6 s during which the cursor was no longer visible. The unimodal proprioceptive information on final hand position in the delayed condition served to increase its relative reliability. As a result, the bias of sensed hand direction toward the direction of the cursor was reduced for the explicit measure, with a complementary increase of the bias of sensed cursor direction, but unchanged for the implicit measure. In Experiment 2, we examined the influence of global context, specifically of the across-trial sequence of judgments of hand and cursor direction. Both explicitly and implicitly assessed biases of sensed hand direction did not significantly differ between the alternated condition (trial-to-trial alternations of judgments of hand and cursor direction) and the blocked condition (judgments of hand or cursor directions in all trials). They both substantially decreased from the alternated to the randomized condition (random sequence of judgments of hand and cursor direction), without a complementary increase of the bias of sensed cursor direction. We conclude that our explicit and implicit measures are equally sensitive to variations of coupling strength as induced by the variation of global context in Experiment 2, but are differently sensitive to variations of the relative reliabilities as induced by our additional unimodal proprioceptive information in Experiment 1.
Collapse
Affiliation(s)
- Miya K. Rand
- IfADo-Leibniz Research Centre for Working Environment and Human FactorsDortmund, Germany
| | | |
Collapse
|
30
|
Kim YK, Shin SH. Comparison of effects of transcranial magnetic stimulation on primary motor cortex and supplementary motor area in motor skill learning (randomized, cross over study). Front Hum Neurosci 2014; 8:937. [PMID: 25477809 PMCID: PMC4238326 DOI: 10.3389/fnhum.2014.00937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022] Open
Abstract
Motor skills require quick visuomotor reaction time, fast movement time, and accurate performance. Primary motor cortex (M1) and supplementary motor area (SMA) are closely related in learning motor skills. Also, it is well known that high frequency repeated transcranial magnetic stimulation (rTMS) on these sites has a facilitating effect. The aim of this study was to compare the effects of high frequency rTMS activation of these two brain sites on learning of motor skills. Twenty three normal volunteers participated. Subjects were randomly stimulated on either brain area, SMA or M1. The motor task required the learning of sequential finger movements, explicitly or implicitly. It consisted of pressing the keyboard sequentially with their right hand on seeing 7 digits on the monitor explicitly, and then tapping the 7 digits by memorization, implicitly. Subjects were instructed to hit the keyboard as fast and accurately as possible. Using Musical Instrument Digital Interface (MIDI), the keyboard pressing task was measured before and after high frequency rTMS for motor performance, which was measured by response time (RT), movement time, and accuracy (AC). A week later, the same task was repeated by cross-over study design. At this time, rTMS was applied on the other brain area. Two-way ANOVA was used to assess the carry over time effect and stimulation sites (M1 and SMA), as factors. Results indicated that no carry-over effect was observed. The AC and RT were not different between the two stimulating sites (M1 and SMA). But movement time was significantly decreased after rTMS on both SMA and M1. The amount of shortened movement time after rTMS on SMA was significantly increased as compared to the movement time after rTMS on M1 (p < 0.05), especially for implicit learning of motor tasks. The coefficient of variation was lower in implicit trial than in explicit trial. In conclusion, this finding indicated an important role of SMA compared to M1, in implicit motor learning.
Collapse
Affiliation(s)
- Yong Kyun Kim
- Department of Physical Medicine and Rehabilitation, Myongji Hospital, Kwandong University College of Medicine Kyunggi, South Korea
| | - Sung Hun Shin
- Department of Physical Medicine and Rehabilitation, Kyung Hee University College of Medicine Seoul, South Korea
| |
Collapse
|
31
|
Rand MK. Segment interdependency and gaze anchoring during manual two-segment sequences. Exp Brain Res 2014; 232:2753-65. [DOI: 10.1007/s00221-014-3951-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
|