1
|
Paraskevopoulos E, Chalas N, Karagiorgis A, Karagianni M, Styliadis C, Papadelis G, Bamidis P. Aging Effects on the Neuroplastic Attributes of Multisensory Cortical Networks as Triggered by a Computerized Music Reading Training Intervention. Cereb Cortex 2021; 31:123-137. [PMID: 32794571 DOI: 10.1093/cercor/bhaa213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
The constant increase in the graying population is the result of a great expansion of life expectancy. A smaller expansion of healthy cognitive and brain functioning diminishes the gains achieved by longevity. Music training, as a special case of multisensory learning, may induce restorative neuroplasticity in older ages. The current study aimed to explore aging effects on the cortical network supporting multisensory cognition and to define aging effects on the network's neuroplastic attributes. A computer-based music reading protocol was developed and evaluated via electroencephalography measurements pre- and post-training on young and older adults. Results revealed that multisensory integration is performed via diverse strategies in the two groups: Older adults employ higher-order supramodal areas to a greater extent than lower level perceptual regions, in contrast to younger adults, indicating an age-related shift in the weight of each processing strategy. Restorative neuroplasticity was revealed in the left inferior frontal gyrus and right medial temporal gyrus, as a result of the training, while task-related reorganization of cortical connectivity was obstructed in the group of older adults, probably due to systemic maturation mechanisms. On the contrary, younger adults significantly increased functional connectivity among the regions supporting multisensory integration.
Collapse
Affiliation(s)
- Evangelos Paraskevopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolas Chalas
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.,Institute for Biomagnetism and Biosignal Analysis, University of Münster, D-48149 Münster, Germany
| | - Alexandros Karagiorgis
- School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Karagianni
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Charis Styliadis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Papadelis
- School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis Bamidis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Tone frequency representation beyond the tonotopic map: Cross-correlation between ongoing activity in the rat auditory cortex. Neuroscience 2019; 409:35-42. [PMID: 31026562 DOI: 10.1016/j.neuroscience.2019.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/21/2022]
Abstract
Functional maps play crucial roles in the neural representations of the sensory cortices, although such representations occasionally extend beyond these maps. For example, the auditory cortex exhibits distinct tonotopic activation at the onset of tone, which is followed by rapid decays in the majority of neuronal signals and ongoing activities in only a small number of neurons. Such ongoing activity should be maintained by the cortical states. To better understand maintenance of ongoing activity beyond that triggered directly by stimuli, we used a rat model. Here, we hypothesized that neural correlations between local field potentials (LFPs) within a local area of the auditory cortex may serve as a measure of the cortical state underlying ongoing activity. We densely mapped the auditory cortex of rats and demonstrated that cross-correlation patterns of ongoing activity were highly decodable. Informative features were widely distributed over the auditory cortex and across multiple frequency bands. Furthermore, acoustic trauma disrupted tonotopic representation at the onset but did not affect neural representations by the correlation of ongoing activities. These results suggest that cross-correlations of LFP within the auditory cortex represent frequencies of sustained auditory stimuli, and that these representations are made beyond direct tonotopic activation at stimulus onset.
Collapse
|
3
|
Effects of the parameters on the oscillation frequency of Izhikevich spiking neural networks. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.01.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Hadders-Algra M. Early human motor development: From variation to the ability to vary and adapt. Neurosci Biobehav Rev 2018; 90:411-427. [PMID: 29752957 DOI: 10.1016/j.neubiorev.2018.05.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
This review summarizes early human motor development. From early fetal age motor behavior is based on spontaneous neural activity: activity of networks in the brainstem and spinal cord that is modulated by supraspinal activity. The supraspinal activity, first primarily brought about by the cortical subplate, later by the cortical plate, induces movement variation. Initially, movement variation especially serves exploration; its associated afferent information is primarily used to sculpt the developing nervous system, and less to adapt motor behavior. In the next phase, beginning at function-specific ages, movement variation starts to serve adaptation. In sucking and swallowing, this phase emerges shortly before term age. In speech, gross and fine motor development, it emerges from 3 to 4 months post-term onwards, i.e., when developmental focus in the primary sensory and motor cortices has shifted to the permanent cortical circuitries. With increasing age and increasing trial-and-error exploration, the infant improves its ability to use adaptive and efficicient forms of upright gross motor behavior, manual activities and vocalizations belonging to the native language.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Dept. Pediatrics - Section Developmental Neurology, Groningen, The Netherlands.
| |
Collapse
|
5
|
Chervyakov AV, Sinitsyn DO, Piradov MA. Variability of Neuronal Responses: Types and Functional Significance in Neuroplasticity and Neural Darwinism. Front Hum Neurosci 2016; 10:603. [PMID: 27932969 PMCID: PMC5122744 DOI: 10.3389/fnhum.2016.00603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022] Open
Abstract
HIGHLIGHTS We suggest classifying variability of neuronal responses as follows: false (associated with a lack of knowledge about the influential factors), "genuine harmful" (noise), "genuine neutral" (synonyms, repeats), and "genuine useful" (the basis of neuroplasticity and learning).The genuine neutral variability is considered in terms of the phenomenon of degeneracy.Of particular importance is the genuine useful variability that is considered as a potential basis for neuroplasticity and learning. This type of variability is considered in terms of the neural Darwinism theory. In many cases, neural signals detected under the same external experimental conditions significantly change from trial to trial. The variability phenomenon, which complicates extraction of reproducible results and is ignored in many studies by averaging, has attracted attention of researchers in recent years. In this paper, we classify possible types of variability based on its functional significance and describe features of each type. We describe the key adaptive significance of variability at the neural network level and the degeneracy phenomenon that may be important for learning processes in connection with the principle of neuronal group selection.
Collapse
Affiliation(s)
| | - Dmitry O Sinitsyn
- Research Center of NeurologyMoscow, Russia; Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscow, Russia
| | | |
Collapse
|
6
|
McGann JP. Associative learning and sensory neuroplasticity: how does it happen and what is it good for? ACTA ACUST UNITED AC 2015; 22:567-76. [PMID: 26472647 PMCID: PMC4749728 DOI: 10.1101/lm.039636.115] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/03/2015] [Indexed: 01/31/2023]
Abstract
Historically, the body's sensory systems have been presumed to provide the brain with raw information about the external environment, which the brain must interpret to select a behavioral response. Consequently, studies of the neurobiology of learning and memory have focused on circuitry that interfaces between sensory inputs and behavioral outputs, such as the amygdala and cerebellum. However, evidence is accumulating that some forms of learning can in fact drive stimulus-specific changes very early in sensory systems, including not only primary sensory cortices but also precortical structures and even the peripheral sensory organs themselves. This review synthesizes evidence across sensory modalities to report emerging themes, including the systems’ flexibility to emphasize different aspects of a sensory stimulus depending on its predictive features and ability of different forms of learning to produce similar plasticity in sensory structures. Potential functions of this learning-induced neuroplasticity are discussed in relation to the challenges faced by sensory systems in changing environments, and evidence for absolute changes in sensory ability is considered. We also emphasize that this plasticity may serve important nonsensory functions, including balancing metabolic load, regulating attentional focus, and facilitating downstream neuroplasticity.
Collapse
Affiliation(s)
- John P McGann
- Behavioral and Systems Neuroscience, Psychology Department, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
7
|
Takahashi H, Tokushige H, Shiramatsu T, Noda T, Kanzaki R. Covariation of pupillary and auditory cortical activity in rats under isoflurane anesthesia. Neuroscience 2015; 300:29-38. [DOI: 10.1016/j.neuroscience.2015.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 11/29/2022]
|
8
|
Noda T, Takahashi H. Anesthetic effects of isoflurane on the tonotopic map and neuronal population activity in the rat auditory cortex. Eur J Neurosci 2015; 42:2298-311. [PMID: 26118739 DOI: 10.1111/ejn.13007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 12/01/2022]
Abstract
Since its discovery nearly four decades ago, sequential microelectrode mapping using hundreds of recording sites has been able to reveal a precise tonotopic organization of the auditory cortex. Despite concerns regarding the effects that anesthesia might have on neuronal responses to tones, anesthesia was essential for these experiments because such dense mapping was elaborate and time-consuming. Here, taking an 'all-at-once' approach, we investigated how isoflurane modifies spatiotemporal activities by using a dense microelectrode array. The array covered the entire auditory cortex in rats, including the core and belt cortices. By comparing neuronal activity in the awake state with activity under isoflurane anesthesia, we made four observations. First, isoflurane anesthesia did not modify the tonotopic topography within the auditory cortex. Second, in terms of general response properties, isoflurane anesthesia decreased the number of active single units and increased their response onset latency. Third, in terms of tuning properties, isoflurane anesthesia shifted the response threshold without changing the shape of the frequency response area and decreased the response quality. Fourth, in terms of population activities, isoflurane anesthesia increased the noise correlations in discharges and phase synchrony in local field potential (LFP) oscillations, suggesting that the anesthesia made neuronal activities redundant at both single-unit and LFP levels. Thus, while isoflurane anesthesia had little effect on the tonotopic topography, its profound effects on neuronal activities decreased the encoding capacity of the auditory cortex.
Collapse
Affiliation(s)
- Takahiro Noda
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hirokazu Takahashi
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904, Japan.,PRESTO, JST, Kawaguchi, Saitama, Japan
| |
Collapse
|
9
|
Yokota R, Aihara K, Kanzaki R, Takahashi H. Learning-stage-dependent plasticity of temporal coherence in the auditory cortex of rats. Brain Topogr 2014; 28:401-10. [PMID: 24615394 DOI: 10.1007/s10548-014-0359-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Temporal coherence among neural populations may contribute importantly to signal encoding, specifically by providing an optimal tradeoff between encoding reliability and efficiency. Here, we considered the possibility that learning modulates the temporal coherence among neural populations in association with well-characterized map plasticity. We previously demonstrated that, in appetitive operant conditioning tasks, the tone-responsive area globally expanded during the early stage of learning, but shrank during the late stage. The present study further showed that phase locking of the first spike to band-specific oscillations of local field potentials (LFPs) significantly increased during the early stage of learning but decreased during the late stage, suggesting that neurons in A1 were more synchronously activated during early learning, whereas they were more asynchronously activated once learning was completed. Furthermore, LFP amplitudes increased during early learning but decreased during later learning. These results suggest that, compared to naïve encoding, early-stage encoding is more reliable but energy-consumptive, whereas late-stage encoding is more energetically efficient. Such a learning-stage-dependent encoding strategy may underlie learning-induced, non-monotonic map plasticity. Accumulating evidence indicates that the cholinergic system is likely to be a shared neural substrate of the processes for perceptual learning and attention, both of which modulate neural encoding in an adaptive manner. Thus, a better understanding of the links between map plasticity and modulation of temporal coherence will likely lead to a more integrated view of learning and attention.
Collapse
Affiliation(s)
- Ryo Yokota
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904, Japan
| | | | | | | |
Collapse
|
10
|
Schreiner CE, Polley DB. Auditory map plasticity: diversity in causes and consequences. Curr Opin Neurobiol 2013; 24:143-56. [PMID: 24492090 DOI: 10.1016/j.conb.2013.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 01/11/2023]
Abstract
Auditory cortical maps have been a long-standing focus of studies that assess the expression, mechanisms, and consequences of sensory plasticity. Here we discuss recent progress in understanding how auditory experience transforms spatially organized sound representations at higher levels of the central auditory pathways. New insights into the mechanisms underlying map changes have been achieved and more refined interpretations of various map plasticity effects and their consequences in terms of behavioral corollaries and learning as well as other cognitive aspects have been offered. The systematic organizational principles of cortical sound processing remain a key aspect in studying and interpreting the role of plasticity in hearing.
Collapse
Affiliation(s)
- Christoph E Schreiner
- Coleman Memorial Laboratory, UCSF Center for Integrative Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Daniel B Polley
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|