1
|
Ras-Carmona A, Reche PA. Analysis of Virus-Specific B Cell Epitopes Reveals Extensive Antigen Degradation Prior to Recognition. Cells 2024; 13:1076. [PMID: 38994930 PMCID: PMC11240346 DOI: 10.3390/cells13131076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
B cell epitopes must be visible for recognition by cognate B cells and/or antibodies. Here, we studied that premise for known linear B cell epitopes that were collected from the Immune Epitope Database as being recognized by humans during microbial infections. We found that the majority of such known B cell epitopes are virus-specific linear B cell epitopes (87.96%), and most are located in antigens that remain enclosed in host cells and/or virus particles, preventing antibody recognition (18,832 out of 29,225 epitopes). Moreover, we estimated that only a minority (32.72%) of the virus-specific linear B cell epitopes that are found in exposed viral regions (e.g., the ectodomains of envelope proteins) are solvent accessible on intact antigens. Hence, we conclude that ample degradation/processing of viral particles and/or infected cells must occur prior to B cell recognition, thus shaping the B cell epitope repertoire.
Collapse
Affiliation(s)
| | - Pedro A. Reche
- Laboratory of Immunomedicine, Department of Immunology & O2, Faculty of Medicine, University Complutense of Madrid, Pza Ramon y Cajal S/N, 28040 Madrid, Spain;
| |
Collapse
|
2
|
Lin N, Miyamoto K, Ogawara T, Sakurai S, Kizaka-Kondoh S, Kadonosono T. Epitope binning for multiple antibodies simultaneously using mammalian cell display and DNA sequencing. Commun Biol 2024; 7:652. [PMID: 38806676 PMCID: PMC11133372 DOI: 10.1038/s42003-024-06363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Epitope binning, an approach for grouping antibodies based on epitope similarities, is a critical step in antibody drug discovery. However, conventional methods are complex, involving individual antibody production. Here, we established Epitope Binning-seq, an epitope binning platform for simultaneously analyzing multiple antibodies. In this system, epitope similarity between the query antibodies (qAbs) displayed on antigen-expressing cells and a fluorescently labeled reference antibody (rAb) targeting a desired epitope is analyzed by flow cytometry. The qAbs with epitope similar to the rAb can be identified by next-generation sequencing analysis of fluorescence-negative cells. Sensitivity and reliability of this system are confirmed using rAbs, pertuzumab and trastuzumab, which target human epidermal growth factor receptor 2. Epitope Binning-seq enables simultaneous epitope evaluation of 14 qAbs at various abundances in libraries, grouping them into respective epitope bins. This versatile platform is applicable to diverse antibodies and antigens, potentially expediting the identification of clinically useful antibodies.
Collapse
Affiliation(s)
- Ning Lin
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kotaro Miyamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takumi Ogawara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Saki Sakurai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
3
|
Ricci AD, Bracco L, Salas-Sarduy E, Ramsey JM, Nolan MS, Lynn MK, Altcheh J, Ballering GE, Torrico F, Kesper N, Villar JC, Marcipar IS, Marco JD, Agüero F. The Trypanosoma cruzi Antigen and Epitope Atlas: antibody specificities in Chagas disease patients across the Americas. Nat Commun 2023; 14:1850. [PMID: 37012236 PMCID: PMC10070320 DOI: 10.1038/s41467-023-37522-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
During an infection the immune system produces pathogen-specific antibodies. These antibody repertoires become specific to the history of infections and represent a rich source of diagnostic markers. However, the specificities of these antibodies are mostly unknown. Here, using high-density peptide arrays we examined the human antibody repertoires of Chagas disease patients. Chagas disease is a neglected disease caused by Trypanosoma cruzi, a protozoan parasite that evades immune mediated elimination and mounts long-lasting chronic infections. We describe a proteome-wide search for antigens, characterised their linear epitopes, and show their reactivity on 71 individuals from diverse human populations. Using single-residue mutagenesis we revealed the core functional residues for 232 of these epitopes. Finally, we show the diagnostic performance of identified antigens on challenging samples. These datasets enable the study of the Chagas antibody repertoire at an unprecedented depth and granularity, while also providing a rich source of serological biomarkers.
Collapse
Affiliation(s)
- Alejandro D Ricci
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Leonel Bracco
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Janine M Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México
| | - Melissa S Nolan
- Laboratory of Vector-borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - M Katie Lynn
- Laboratory of Vector-borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jaime Altcheh
- Hospital de Niños "Ricardo Gutierrez", Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP) - GCBA-CONICET, Buenos Aires, Argentina
| | - Griselda E Ballering
- Hospital de Niños "Ricardo Gutierrez", Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | | | - Norival Kesper
- LIM-49, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Juan C Villar
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga y Fundación Cardioinfantil - Instituto de Cardiología, Bogotá, Colombia
| | - Iván S Marcipar
- Facultad de Ciencias Médicas y Facultad de Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge D Marco
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Abstract
Antibody-mediated neurological diseases constitute an emerging clinical entity that remains to be fully explored. Recent studies identified autoantibodies that directly confer pathogenicity, and it was shown that in these cases immunotherapies can result in profound positive patient responses. These advances highlight the urgent need for improved means to effectively screen patient samples for novel autoantibodies (aAbs) and their subsequent characterization. Here, we discuss challenges and opportunities for peptide microarrays to contribute to the identification, mapping, and characterization of the underlying monospecific disease-defining binding surfaces. We outline control experiments, workflow modifications and bioinformatic filtering methods that enhance the predictive power of array-based studies. Further, we highlight experimental and computer-based display approaches that have the potential to expand the use of synthetic microarrays over the detection of discontinuous epitopes. Knowledge over the autoantibody epitopes in neurological disease will enhance our understanding of the pathological mechanisms and thereby potentially contribute to novel diagnostic approaches or even innovative antigen-specific treatments that avoid the serious adverse effects seen with currently used immunosuppressive therapies.
Collapse
Affiliation(s)
- Ivan Talucci
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Focused B cell response to recurring gluten motif with implications for epitope spreading in celiac disease. Cell Rep 2022; 41:111541. [DOI: 10.1016/j.celrep.2022.111541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
|
6
|
Domain-level epitope mapping of polyclonal antibodies against HER-1 and HER-2 receptors using phage display technology. Sci Rep 2022; 12:12268. [PMID: 35851313 PMCID: PMC9293994 DOI: 10.1038/s41598-022-16411-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
HER-1 and HER-2 are tumor-associated antigens overexpressed in several epithelial tumors, and successfully targeted by therapeutic approaches against cancer. Vaccination with their recombinant extracellular domains has had encouraging results in the pre-clinical setting. As complex humoral responses targeting multiple epitopes within each antigen are the ultimate goal of such active immunotherapy strategies, molecular dissection of the mixture of antibody specificities is required. The current work exploits phage display of antigenic versions of HER-1 and HER-2 domains to accomplish domain-level epitope mapping. Recognition of domains I, III and IV of both antigens by antibodies of immunized mice was shown, indicating diverse responses covering a broad range of antigenic regions. The combination of phage display and site-directed mutagenesis allowed mutational screening of antigen surface, showing polyclonal antibodies' recognition of mutated receptor escape variants known to arise in patients under the selective pressure of the anti-HER-1 antibody cetuximab. Phage-displayed HER domains have thus the potential to contribute to fine specificity characterization of humoral responses during future development of anti-cancer vaccines.
Collapse
|
7
|
Ahn WS, Kim TS, Park YJ, Park YK, Kim HD, Kim J. Production, characterization, and epitope mapping of monoclonal antibodies of ribosomal protein S3 (rpS3). Anim Cells Syst (Seoul) 2021; 25:323-336. [PMID: 34745438 PMCID: PMC8567880 DOI: 10.1080/19768354.2021.1980100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ribosomal protein S3 (rpS3), a member of 40S small ribosomal subunit, is a multifunctional protein with various extra-ribosomal functions including DNA repair endonuclease activity and is secreted from cancer cells. Therefore, antibodies with high specificity against rpS3 protein could be useful cancer biomarkers. In this study, polyclonal antibody (pAb) and monoclonal antibodies (mAbs) were raised against rpS3 protein and epitope mapping was performed for each antibody; the amino acid residues of rpS3 were scanned from amino acid 185 to 243 through peptide scanning to reveal the epitopes of each mAb. Results showed that pAb R2 has an epitope from amino acid 203 to 230, mAb M7 has an epitope from amino acid 213 to 221, and mAb M8 has an epitope from amino acid 197 to 219. Taken together, novel mAbs and pAb against rpS3 were raised and mapped against rpS3 with different specific epitopes.
Collapse
Affiliation(s)
- Woo-Sung Ahn
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Tae-Sung Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Yong Jun Park
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Young Kwang Park
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hag Dong Kim
- HAEL Lab, Korea University, Seoul, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea.,HAEL Lab, Korea University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Li S, Song G, Bai Y, Song N, Zhao J, Liu J, Hu C. Applications of Protein Microarrays in Biomarker Discovery for Autoimmune Diseases. Front Immunol 2021; 12:645632. [PMID: 34012435 PMCID: PMC8126629 DOI: 10.3389/fimmu.2021.645632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/13/2021] [Indexed: 01/18/2023] Open
Abstract
Dysregulated autoantibodies and cytokines were deemed to provide important cues for potential illnesses, such as various carcinomas and autoimmune diseases. Increasing biotechnological approaches have been applied to screen and identify the specific alterations of these biomolecules as distinctive biomarkers in diseases, especially autoimmune diseases. As a versatile and robust platform, protein microarray technology allows researchers to easily profile dysregulated autoantibodies and cytokines associated with autoimmune diseases using various biological specimens, mainly serum samples. Here, we summarize the applications of protein microarrays in biomarker discovery for autoimmune diseases. In addition, the key issues in the process of using this approach are presented for improving future studies.
Collapse
Affiliation(s)
- Siting Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Guang Song
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yina Bai
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Ning Song
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jian Liu
- Department of Rheumatology, Aerospace Center Hospital, Aerospace, Clinical Medical College, Peking University, Beijing, China
| | - Chaojun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| |
Collapse
|
9
|
Haynes WA, Kamath K, Waitz R, Daugherty PS, Shon JC. Protein-Based Immunome Wide Association Studies (PIWAS) for the Discovery of Significant Disease-Associated Antigens. Front Immunol 2021; 12:625311. [PMID: 33986742 PMCID: PMC8110919 DOI: 10.3389/fimmu.2021.625311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Identification of the antigens associated with antibodies is vital to understanding immune responses in the context of infection, autoimmunity, and cancer. Discovering antigens at a proteome scale could enable broader identification of antigens that are responsible for generating an immune response or driving a disease state. Although targeted tests for known antigens can be straightforward, discovering antigens at a proteome scale using protein and peptide arrays is time consuming and expensive. We leverage Serum Epitope Repertoire Analysis (SERA), an assay based on a random bacterial display peptide library coupled with next generation sequencing (NGS), to power the development of Protein-based Immunome Wide Association Study (PIWAS). PIWAS uses proteome-based signals to discover candidate antibody-antigen epitopes that are significantly elevated in a subset of cases compared to controls. After demonstrating statistical power relative to the magnitude and prevalence of effect in synthetic data, we apply PIWAS to systemic lupus erythematosus (SLE, n=31) and observe known autoantigens, Smith and Ribosomal protein P, within the 22 highest scoring candidate protein antigens across the entire human proteome. We validate the magnitude and location of the SLE specific signal against the Smith family of proteins using a cohort of patients who are positive by predicate anti-Sm tests. To test the generalizability of the method in an additional autoimmune disease, we identified and validated autoantigenic signals to SSB, CENPA, and keratin proteins in a cohort of individuals with Sjogren’s syndrome (n=91). Collectively, these results suggest that PIWAS provides a powerful new tool to discover disease-associated serological antigens within any known proteome.
Collapse
Affiliation(s)
| | - Kathy Kamath
- Serimmune, Inc., Santa Barbara, CA, United States
| | | | | | - John C Shon
- Serimmune, Inc., Santa Barbara, CA, United States
| |
Collapse
|
10
|
Chakraborty C, Sharma AR, Bhattacharya M, Sharma G, Lee SS. Immunoinformatics Approach for the Identification and Characterization of T Cell and B Cell Epitopes towards the Peptide-Based Vaccine against SARS-CoV-2. Arch Med Res 2021; 52:362-370. [PMID: 33546870 PMCID: PMC7846223 DOI: 10.1016/j.arcmed.2021.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Presently, immunoinformatics is playing a significant role in epitope identification and vaccine designing for various critical diseases. Using immunoinformatics, several scientists are trying to identify and characterize T cell and B cell epitopes as well as design peptide-based vaccine against SARS-CoV-2. In this review article, we have tried to discuss the importance in adaptive immunity and its significance for designing the SARS-CoV-2 vaccine. Moreover, we have attempted to illustrate several significant key points for utilizing immunoinformatics for vaccine designing, such as the criteria for selection and identification of epitopes, T cell epitope, and B cell epitope prediction and different emerging tools/databases for immunoinformatics. In the current scenario, a few immunoinformatics studies have been performed for various infectious pathogens and related diseases. Thus, we have also summarized and included these current immunoinformatics studies in this review article. Finally, we have discussed about the probable T cell and B cell epitopes and their identification and characterization for vaccine designing against SARS-CoV-2.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India; Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252,Gangwon-do, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252,Gangwon-do, Republic of Korea
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore Odisha, India
| | - Garima Sharma
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252,Gangwon-do, Republic of Korea.
| |
Collapse
|
11
|
Moreno-Yruela C, Bæk M, Vrsanova AE, Schulte C, Maric HM, Olsen CA. Hydroxamic acid-modified peptide microarrays for profiling isozyme-selective interactions and inhibition of histone deacetylases. Nat Commun 2021; 12:62. [PMID: 33397936 PMCID: PMC7782793 DOI: 10.1038/s41467-020-20250-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Histones control gene expression by regulating chromatin structure and function. The posttranslational modifications (PTMs) on the side chains of histones form the epigenetic landscape, which is tightly controlled by epigenetic modulator enzymes and further recognized by so-called reader domains. Histone microarrays have been widely applied to investigate histone-reader interactions, but not the transient interactions of Zn2+-dependent histone deacetylase (HDAC) eraser enzymes. Here, we synthesize hydroxamic acid-modified histone peptides and use them in femtomolar microarrays for the direct capture and detection of the four class I HDAC isozymes. Follow-up functional assays in solution provide insights into their suitability to discover HDAC substrates and inhibitors with nanomolar potency and activity in cellular assays. We conclude that similar hydroxamic acid-modified histone peptide microarrays and libraries could find broad application to identify class I HDAC isozyme-specific substrates and facilitate the development of isozyme-selective HDAC inhibitors and probes.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Michael Bæk
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Adela-Eugenie Vrsanova
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.,Institute of Applied Biosciences & Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, D-76131, Karlsruhe, Germany.,Division of Proteomics of Stem Cells and Cancer, DKFZ German Cancer Research Center, Im Neuenhemier Feld 581, D-69120, Heidelberg, Germany
| | - Clemens Schulte
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, D-97080, Würzburg, Germany
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, D-97080, Würzburg, Germany.
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
12
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
13
|
Haji Abdolvahab M, Venselaar H, Fazeli A, Arab SS, Behmanesh M. Point Mutation Approach to Reduce Antigenicity of Interferon Beta. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09938-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Wendorff M, Garcia Alvarez HM, Østerbye T, ElAbd H, Rosati E, Degenhardt F, Buus S, Franke A, Nielsen M. Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction. Front Immunol 2020; 11:1705. [PMID: 32903714 PMCID: PMC7438773 DOI: 10.3389/fimmu.2020.01705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Human Leukocyte Antigen class II (HLA-II) molecules present peptides to T lymphocytes and play an important role in adaptive immune responses. Characterizing the binding specificity of single HLA-II molecules has profound impacts for understanding cellular immunity, identifying the cause of autoimmune diseases, for immunotherapeutics, and vaccine development. Here, novel high-density peptide microarray technology combined with machine learning techniques were used to address this task at an unprecedented level of high-throughput. Microarrays with over 200,000 defined peptides were assayed with four exemplary HLA-II molecules. Machine learning was applied to mine the signals. The comparison of identified binding motifs, and power for predicting eluted ligands and CD4+ epitope datasets to that obtained using NetMHCIIpan-3.2, confirmed a high quality of the chip readout. These results suggest that the proposed microarray technology offers a novel and unique platform for large-scale unbiased interrogation of peptide binding preferences of HLA-II molecules.
Collapse
Affiliation(s)
- Mareike Wendorff
- Genetics & Bioinformatics, Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Thomas Østerbye
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Hesham ElAbd
- Genetics & Bioinformatics, Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Elisa Rosati
- Genetics & Bioinformatics, Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Frauke Degenhardt
- Genetics & Bioinformatics, Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andre Franke
- Genetics & Bioinformatics, Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Morten Nielsen
- IIBIO, UNSAM-CONICET, Buenos Aires, Argentina.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
15
|
Azcárate IG, Marín-García P, Abad P, Pérez-Benavente S, Paz-Artal E, Reche PA, Fobil JN, Rubio JM, Diez A, Puyet A, Bautista JM. Plasmodium falciparum immunodominant IgG epitopes in subclinical malaria. Sci Rep 2020; 10:9398. [PMID: 32523082 PMCID: PMC7287129 DOI: 10.1038/s41598-020-66384-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/18/2020] [Indexed: 01/30/2023] Open
Abstract
Incomplete non-sterile immunity to malaria is attained in endemic regions after recurrent infections by a large percentage of the adult population, who carry the malaria parasite asymptomatically. Although blood-stage Plasmodium falciparum rapidly elicits IgG responses, the target antigens of partially protective and non-protective IgG antibodies as well as the basis for the acquisition of these antibodies remain largely unknown. We performed IgG-immunomics to screen for P. falciparum antigens and to identify epitopes associated with exposure and clinical disease. Sera from malaria cases identified five prevalent antigens recognized by all analyzed patients' IgGs. Epitope mapping of them, using adult and children sera samples from an endemic malaria region in Ghana segregated into patients with positive or negative subclinical detection of P. falciparum, revealed binding specificity for two 20-mer immunodominant antigenic regions within the START-related lipid transfer protein and the protein disulfide isomerase PDI8. These 20-mer epitopes challenged with sera samples from children under 5 years old displayed specific IgG binding in those with detectable parasitemia, even at subclinical level. These results suggest that humoral response against START and PDI8 antigens may be triggered at submicroscopic parasitemia levels in children and may eventually be used to differentially diagnose subclinical malaria in children.
Collapse
Affiliation(s)
- Isabel G Azcárate
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, 28040, Madrid, Spain.,Isabel G. Azcárate, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, 28922, Madrid, Spain
| | | | - Paloma Abad
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Susana Pérez-Benavente
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Estela Paz-Artal
- Immunodeficiency and Transplant Immunology Unit, Research Institute Hospital 12 de Octubre (Imas12), 28041, Madrid, Spain
| | - Pedro A Reche
- Faculty of Medicine, Department of Immunology, Ophthalmology and ORL, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Julius N Fobil
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, P.O. Box LG 13, Legon, Ghana
| | - José M Rubio
- Malaria & Emerging Parasitic Diseases Laboratory, National Centre of Microbiology. Instituto de Salud Carlos III, 28220, Majadahonda, Spain
| | - Amalia Diez
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Antonio Puyet
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - José M Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
16
|
Osterbye T, Nielsen M, Dudek NL, Ramarathinam SH, Purcell AW, Schafer-Nielsen C, Buus S. HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions. THE JOURNAL OF IMMUNOLOGY 2020; 205:290-299. [PMID: 32482711 DOI: 10.4049/jimmunol.2000224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023]
Abstract
The ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery, something that ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I prediction tools have matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC class I allotypes; in comparison, current MHC class II (MHC-II) predictors are less mature. Because MHC-II restricted CD4+ T cells control and orchestrated most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The ability to generate large panels of peptides and subsequently large bodies of peptide-MHC-II interaction data are key to the solution of this problem, a solution that also will support the improvement of bioinformatics predictors, which critically relies on the availability of large amounts of accurate, diverse, and representative data. In this study, we have used rHLA-DRB1*01:01 and HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates. We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the HLA-DR molecules investigated, suitable of training predictors able to predict T cell epitopes and peptides eluted from human EBV-transformed B cells. Collectively, with a cost per peptide reduced to a few cents, combined with the flexibility of rHLA technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the benefit of generating peptide-MHC-II binding data as well as improving MHC-II prediction tools.
Collapse
Affiliation(s)
- Thomas Osterbye
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, B1650 San Martín, Argentina
| | - Nadine L Dudek
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; and
| | - Sri H Ramarathinam
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; and
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; and
| | | | - Soren Buus
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
17
|
Rahman KS, Kaltenboeck B. Multi-peptide ELISAs overcome cross-reactivity and inadequate sensitivity of conventional Chlamydia pneumoniae serology. Sci Rep 2019; 9:15078. [PMID: 31636331 PMCID: PMC6803651 DOI: 10.1038/s41598-019-51501-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Cross-reactivity of classical chlamydial antigens compromises Chlamydia (C.) pneumoniae serology. By testing with 185 human antisera, we expanded 18 previously discovered C. pneumoniae-specific B-cell epitopes to 48 peptide antigens from 12 C. pneumoniae immunodominant proteins. For specific detection of antibodies against C. pneumoniae, we developed novel ELISAs with strongly reactive individual peptide antigens and mixtures of these peptides. By comparison to a composite reference standard (CRS) for anti-C. pneumoniae antibody status of human sera, the top-performing CpnMixF12 peptide assay showed 91% sensitivity at 95% specificity, significantly higher than 4 commercial anti-C. pneumoniae IgG ELISAs (36-12% sensitivity at 95% specificity). Human C. pneumoniae (Cpn) and C. trachomatis (Ctr) seroreactivity was 54% biased towards co-positivity in commercial Cpn and Ctr ELISAs, but unbiased in Cpn and Ctr peptide antibody assays, suggesting severe cross-reactivity of commercial ELISAs. Using hyperimmune mouse sera against each of 11 Chlamydia spp., we confirm that commercial Cpn and Ctr ELISA antigens are cross-reactive among all Chlamydia spp., but Cpn and Ctr peptide antigens react only with antisera against the cognate chlamydial species. With simultaneously high specificity and sensitivity, and convenient use for non-specialized laboratories, these ELISAs have the potential to improve serodiagnosis of C. pneumoniae infection.
Collapse
Affiliation(s)
- Kh Shamsur Rahman
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| | - Bernhard Kaltenboeck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
18
|
Mattes DS, Jung N, Weber LK, Bräse S, Breitling F. Miniaturized and Automated Synthesis of Biomolecules-Overview and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806656. [PMID: 31033052 DOI: 10.1002/adma.201806656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Chemical synthesis is performed by reacting different chemical building blocks with defined stoichiometry, while meeting additional conditions, such as temperature and reaction time. Such a procedure is especially suited for automation and miniaturization. Life sciences lead the way to synthesizing millions of different oligonucleotides in extremely miniaturized reaction sites, e.g., pinpointing active genes in whole genomes, while chemistry advances different types of automation. Recent progress in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging could match miniaturized chemical synthesis with a powerful analytical tool to validate the outcome of many different synthesis pathways beyond applications in the life sciences. Thereby, due to the radical miniaturization of chemical synthesis, thousands of molecules can be synthesized. This in turn should allow ambitious research, e.g., finding novel synthesis routes or directly screening for photocatalysts. Herein, different technologies are discussed that might be involved in this endeavor. A special emphasis is given to the obstacles that need to be tackled when depositing tiny amounts of materials to many different extremely miniaturized reaction sites.
Collapse
Affiliation(s)
- Daniela S Mattes
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Laura K Weber
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Frank Breitling
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
19
|
Agnew HD, Coppock MB, Idso MN, Lai BT, Liang J, McCarthy-Torrens AM, Warren CM, Heath JR. Protein-Catalyzed Capture Agents. Chem Rev 2019; 119:9950-9970. [PMID: 30838853 DOI: 10.1021/acs.chemrev.8b00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors. In fact, a large degree of generality has now been achieved. Various PCCs have demonstrated utility for selective protein detection, as allosteric or direct inhibitors, as modulators of protein folding, and as tools for in vivo tumor imaging. We provide a historical context for PCCs and place them within the broader scope of biological and synthetic aptamers. The development of PCCs is presented as (i) Generation I PCCs, which are branched ligands engineered through an iterative, nonepitope-targeted process, and (ii) Generation II PCCs, which are typically developed from macrocyclic peptide libraries and are precisely epitope-targeted. We provide statistical comparisons of Generation II PCCs relative to monoclonal antibodies in which the protein target is the same. Finally, we discuss current challenges and future opportunities of PCCs.
Collapse
Affiliation(s)
- Heather D Agnew
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - Matthew B Coppock
- Sensors and Electron Devices Directorate , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
| | - Matthew N Idso
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Bert T Lai
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - JingXin Liang
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Amy M McCarthy-Torrens
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Carmen M Warren
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - James R Heath
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| |
Collapse
|
20
|
Abstract
Many photochemical or photobiological applications require the use of high power ultraviolet light sources, such as high-pressure mercury arc lamps. In addition, many photo-induced chemical, biochemical and biological applications require either a combinatorial setting or a parallel assay of multiple samples under the same environmental conditions to ensure reproducibility. To achieve this, alternative, controllable light sources, such as ultraviolet light emitting diodes (UV LEDs) with high power and spatial control are required. Preferably, LEDs are arranged in a suitable standardized 96-well microtiter plate format. We designed such an array and established the methods required for heat management and enabling stable, controllable illumination over time.
Collapse
|
21
|
Hölz K, Hoi JK, Schaudy E, Somoza V, Lietard J, Somoza MM. High-Efficiency Reverse (5'→3') Synthesis of Complex DNA Microarrays. Sci Rep 2018; 8:15099. [PMID: 30305718 PMCID: PMC6180089 DOI: 10.1038/s41598-018-33311-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
DNA microarrays are important analytical tools in genetics and have recently found multiple new biotechnological roles in applications requiring free 3' terminal hydroxyl groups, particularly as a starting point for enzymatic extension via DNA or RNA polymerases. Here we demonstrate the highly efficient reverse synthesis of complex DNA arrays using a photolithographic approach. The method is analogous to conventional solid phase synthesis but makes use of phosphoramidites with the benzoyl-2-(2-nitrophenyl)-propoxycarbonyl (BzNPPOC) photolabile protecting group on the 3'-hydroxyl group. The use of BzNPPOC, with more than twice the photolytic efficiency of the 2-(2-nitrophenyl)-propoxycarbonyl (NPPOC) previously used for 5'→3' synthesis, combined with additional optimizations to the coupling and oxidation reactions results in an approximately 3-fold improvement in the reverse synthesis efficiency of complex arrays of DNA oligonucleotides. The coupling efficiencies of the reverse phosphoramidites are as good as those of regular phosphoramidites, resulting in comparable yields. Microarrays of DNA surface tethered on the 5' end and with free 3' hydroxyl termini can be synthesized quickly and with similarly high stepwise coupling efficiency as microarrays using conventional 3'→5' synthesis.
Collapse
Affiliation(s)
- Kathrin Hölz
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Julia K Hoi
- Department of Physiological Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Erika Schaudy
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Department of Physiological Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Affiliation(s)
- Lindsey C. Szymczak
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hsin-Yu Kuo
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Putnin T, Jumpathong W, Laocharoensuk R, Jakmunee J, Ounnunkad K. A sensitive electrochemical immunosensor based on poly(2-aminobenzylamine) film modified screen-printed carbon electrode for label-free detection of human immunoglobulin G. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1042-1051. [PMID: 28782437 DOI: 10.1080/21691401.2017.1360322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This work focuses on fabricating poly(2-aminobenzylamine)-modified screen-printed carbon electrode as an electrochemical immunosensor for the label-free detection of human immunoglobulin G. To selectively detect immunoglobulin G, the anti-immunoglobulin G antibody with high affinity to immunoglobulin G was covalently linked with the amine group of poly(2-aminobenzylamine) film-deposited screen-printed carbon electrode. The selectivity for immunoglobulin G was subsequently assured by being challenged with redox-active interferences and adventitious adsorption did not significantly interfere the analyte signal. To obviate the use of costly secondary antibody, the [Fe(CN)6]4-/3- redox probe was instead applied to measure the number of human immunoglobulin G through the immunocomplex formation that is quantitatively related to the level of the differential pulse voltammetric current. The resulting immunosensor exhibited good sensitivity with the detection limit of 0.15 ng mL-1, limit of quantitation of 0.50 ng mL-1 and the linear range from 1.0 to 50 ng mL-1. Given those striking analytical performances and the affordability arising from using cheap screen-printed carbon electrode with label-free detection, the immunosensor serves as a promising model for the next-step development of a diagnostic tool.
Collapse
Affiliation(s)
- Thitirat Putnin
- a Department of Chemistry, Faculty of Science , Chiang Mai University , Chiang Mai , Thailand.,b The Graduate School , Chiang Mai University , Chiang Mai , Thailand
| | - Watthanachai Jumpathong
- a Department of Chemistry, Faculty of Science , Chiang Mai University , Chiang Mai , Thailand.,c Department of Chemical Biology , Chulabhorn Graduate Institute , Bangkok , Thailand
| | - Rawiwan Laocharoensuk
- d Nanostructures and Functional Assembly Laboratory (NFA) , National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) , Pathum Thani , Thailand
| | - Jaroon Jakmunee
- e Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science , Chiang Mai University , Chiang Mai , Thailand
| | - Kontad Ounnunkad
- e Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science , Chiang Mai University , Chiang Mai , Thailand.,f Center of Excellence in Materials Science and Technology , Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
24
|
Anastasina M, Domanska A, Palm K, Butcher S. Human picornaviruses associated with neurological diseases and their neutralization by antibodies. J Gen Virol 2017. [PMID: 28631594 DOI: 10.1099/jgv.0.000780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Picornaviruses are the most commonly encountered infectious agents in mankind. They typically cause mild infections of the gastrointestinal or respiratory tract, but sometimes also invade the central nervous system. There, they can cause severe diseases with long-term sequelae and even be lethal. The most infamous picornavirus is poliovirus, for which significant epidemics of poliomyelitis were reported from the end of the nineteenth century. A successful vaccination campaign has brought poliovirus close to eradication, but neurological diseases caused by other picornaviruses have increasingly been reported since the late 1990s. In this review we focus on enterovirus 71, coxsackievirus A16, enterovirus 68 and human parechovirus 3, which have recently drawn attention because of their links to severe neurological diseases. We discuss the clinical relevance of these viruses and the primary role of humoral immunity in controlling them, and summarize current knowledge on the neutralization of such viruses by antibodies.
Collapse
Affiliation(s)
- Maria Anastasina
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland.,Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia
| | - Aušra Domanska
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| | - Kaia Palm
- Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia.,Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Sarah Butcher
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| |
Collapse
|
25
|
Li J, Wei H, Krystek SR, Bond D, Brender TM, Cohen D, Feiner J, Hamacher N, Harshman J, Huang RYC, Julien SH, Lin Z, Moore K, Mueller L, Noriega C, Sejwal P, Sheppard P, Stevens B, Chen G, Tymiak AA, Gross ML, Schneeweis LA. Mapping the Energetic Epitope of an Antibody/Interleukin-23 Interaction with Hydrogen/Deuterium Exchange, Fast Photochemical Oxidation of Proteins Mass Spectrometry, and Alanine Shave Mutagenesis. Anal Chem 2017; 89:2250-2258. [PMID: 28193005 PMCID: PMC5347259 DOI: 10.1021/acs.analchem.6b03058] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epitope mapping the specific residues of an antibody/antigen interaction can be used to support mechanistic interpretation, antibody optimization, and epitope novelty assessment. Thus, there is a strong need for mapping methods, particularly integrative ones. Here, we report the identification of an energetic epitope by determining the interfacial hot-spot that dominates the binding affinity for an anti-interleukin-23 (anti-IL-23) antibody by using the complementary approaches of hydrogen/deuterium exchange mass spectrometry (HDX-MS), fast photochemical oxidation of proteins (FPOP), alanine shave mutagenesis, and binding analytics. Five peptide regions on IL-23 with reduced backbone amide solvent accessibility upon antibody binding were identified by HDX-MS, and five different peptides over the same three regions were identified by FPOP. In addition, FPOP analysis at the residue level reveals potentially key interacting residues. Mutants with 3-5 residues changed to alanine have no measurable differences from wild-type IL-23 except for binding of and signaling blockade by the 7B7 anti-IL-23 antibody. The M5 IL-23 mutant differs from wild-type by five alanine substitutions and represents the dominant energetic epitope of 7B7. M5 shows a dramatic decrease in binding to BMS-986010 (which contains the 7B7 Fab, where Fab is fragment antigen-binding region of an antibody), yet it maintains functional activity, binding to p40 and p19 specific reagents, and maintains biophysical properties similar to wild-type IL-23 (monomeric state, thermal stability, and secondary structural features).
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4889, USA
| | - Hui Wei
- Biologics Development, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534
| | - Stanley R. Krystek
- Molecular Structure & Design, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Derek Bond
- Process Development, Bristol-Myers Squibb, 1201 Eastlake Ave E., Seattle WA 98102
| | - Ty M. Brender
- Discovery Biology, Bristol-Myers Squibb, 1201 Eastlake Ave E., Seattle WA 98102
| | - Daniel Cohen
- Protein Science, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Jena Feiner
- Applied Genomics, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534
| | - Nels Hamacher
- Molecular Structure & Design, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Johanna Harshman
- Molecular Structure & Design, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Richard Y.-C. Huang
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Susan H. Julien
- Protein Engineering, Bristol-Myers Squibb, 1201 Eastlake Ave E., Seattle WA 98102
| | - Zheng Lin
- Protein Science, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Kristina Moore
- Protein Science, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Luciano Mueller
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Claire Noriega
- Protein Engineering, Bristol-Myers Squibb, 1201 Eastlake Ave E., Seattle WA 98102
| | - Preeti Sejwal
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Paul Sheppard
- Protein Engineering, Bristol-Myers Squibb, 1201 Eastlake Ave E., Seattle WA 98102
| | - Brenda Stevens
- Protein Engineering, Bristol-Myers Squibb, 1201 Eastlake Ave E., Seattle WA 98102
| | - Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Adrienne A. Tymiak
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4889, USA
| | - Lumelle A. Schneeweis
- Protein Science, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| |
Collapse
|
26
|
Zandian A, Forsström B, Häggmark-Månberg A, Schwenk JM, Uhlén M, Nilsson P, Ayoglu B. Whole-Proteome Peptide Microarrays for Profiling Autoantibody Repertoires within Multiple Sclerosis and Narcolepsy. J Proteome Res 2017; 16:1300-1314. [DOI: 10.1021/acs.jproteome.6b00916] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Arash Zandian
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Björn Forsström
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Anna Häggmark-Månberg
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Jochen M. Schwenk
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Mathias Uhlén
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Peter Nilsson
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Burcu Ayoglu
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| |
Collapse
|
27
|
Hansen CS, Østerbye T, Marcatili P, Lund O, Buus S, Nielsen M. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping. PLoS One 2017; 12:e0168453. [PMID: 28095436 PMCID: PMC5240915 DOI: 10.1371/journal.pone.0168453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 12/01/2016] [Indexed: 11/19/2022] Open
Abstract
Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope.
Collapse
Affiliation(s)
- Christian Skjødt Hansen
- Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Thomas Østerbye
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paolo Marcatili
- Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Nielsen
- Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
28
|
Hölz K, Lietard J, Somoza MM. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2017; 5:828-834. [PMID: 28066690 PMCID: PMC5209756 DOI: 10.1021/acssuschemeng.6b02175] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/21/2016] [Indexed: 05/12/2023]
Abstract
Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.
Collapse
Affiliation(s)
| | | | - M. M. Somoza
- Institute of Inorganic Chemistry,
Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), A-1090 Vienna, Austria
| |
Collapse
|
29
|
Kim HJ, Kwag HL, Kim DG, Kang BK, Han SY, Moon H, Hwang JY, Kwon MG, Kang HA, Kim HJ. Assembly of the capsid protein of red-spotted grouper nervous necrosis virus during purification, and role of calcium ions in chromatography. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0256-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Kretschy N, Holik AK, Somoza V, Stengele KP, Somoza MM. o-Nitrobenzyl-photolabile Gruppen der nächsten Generation in der lichtgesteuerten Chemie und der Synthese von Mikroarrays. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Kretschy N, Holik AK, Somoza V, Stengele KP, Somoza MM. Next-Generation o-Nitrobenzyl Photolabile Groups for Light-Directed Chemistry and Microarray Synthesis. Angew Chem Int Ed Engl 2015; 54:8555-9. [PMID: 26036777 PMCID: PMC4531821 DOI: 10.1002/anie.201502125] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 01/11/2023]
Abstract
Light as an external trigger is a valuable and easily controllable tool for directing chemical reactions with high spatial and temporal accuracy. Two o-nitrobenzyl derivatives, benzoyl- and thiophenyl-NPPOC, undergo photo-deprotection with significantly improved efficiency over that of the commonly used NPPOC group. The two- and twelvefold increase in photo-deprotection efficiency was proven using photolithograph synthesis of microarrays.
Collapse
Affiliation(s)
- Nicole Kretschy
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090 Vienna (Austria)
| | - Ann-Katrin Holik
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna (Austria)
| | - Veronika Somoza
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna (Austria).,Christian Doppler Laboratory for Bioactive Aroma Compounds, University of Vienna (Austria)
| | | | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090 Vienna (Austria).
| |
Collapse
|
32
|
Carmona SJ, Nielsen M, Schafer-Nielsen C, Mucci J, Altcheh J, Balouz V, Tekiel V, Frasch AC, Campetella O, Buscaglia CA, Agüero F. Towards High-throughput Immunomics for Infectious Diseases: Use of Next-generation Peptide Microarrays for Rapid Discovery and Mapping of Antigenic Determinants. Mol Cell Proteomics 2015; 14:1871-84. [PMID: 25922409 PMCID: PMC4587317 DOI: 10.1074/mcp.m114.045906] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Indexed: 01/09/2023] Open
Abstract
Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens.
Collapse
Affiliation(s)
- Santiago J Carmona
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Morten Nielsen
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina; §Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | - Juan Mucci
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Jaime Altcheh
- ‖Servicio de Parasitología y Chagas, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, Argentina
| | - Virginia Balouz
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Valeria Tekiel
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Alberto C Frasch
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Oscar Campetella
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Carlos A Buscaglia
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Fernán Agüero
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina;
| |
Collapse
|
33
|
Østerbye T, Buus S. Automated High-Throughput Mapping of Linear B-Cell Epitopes Using a Statistical Analysis of High-Density Peptide Microarray Data. Methods Mol Biol 2015; 1348:215-228. [PMID: 26424275 DOI: 10.1007/978-1-4939-2999-3_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Detailed information of antibodies' specificity is often missing or inadequate even for continuous (i.e., linear) epitopes. Recent developments in peptide microarray technology has enabled the synthesis of up to two million peptides per array thereby allowing linear peptide epitopes to be examined by a systematic amino acid substitution and positional scanning approach. This kind of analysis generates a very large body of data, which needs to be analyzed and interpreted in a robust and automated manner. Here, we describe a rational systematic approach to define linear antibody epitopes using ANOVA statistics to identify not only significant but also important residues involved in antibody recognition. This statistical approach can be used to perform a comprehensive linear epitope discovery. For polyclonal antibodies, this could be extended to entire proteins pinpointing critical residues for each epitope. We argue that the ANOVA analysis levels out issues of unknown peptide concentration/quality and unknown antibody titers leading to identification of epitopes that otherwise would be neglected if the evaluation was based merely on signal strength.
Collapse
Affiliation(s)
- Thomas Østerbye
- Laboraty of experimental Immunology, Faculty of Health Sciences, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Søren Buus
- Laboraty of experimental Immunology, Faculty of Health Sciences, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Abstract
Antibodies recognize their cognate antigens in a precise and effective way. In order to do so, they target regions of the antigenic molecules that have specific features such as large exposed areas, presence of charged or polar atoms, specific secondary structure elements, and lack of similarity to self-proteins. Given the sequence or the structure of a protein of interest, several methods exploit such features to predict the residues that are more likely to be recognized by an immunoglobulin. Here, we present two methods (BepiPred and DiscoTope) to predict linear and discontinuous antibody epitopes from the sequence and/or the three-dimensional structure of a target protein.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Paolo Marcatili
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
35
|
Amartely H, Iosub-Amir A, Friedler A. Identifying protein-protein interaction sites using peptide arrays. J Vis Exp 2014:e52097. [PMID: 25490271 DOI: 10.3791/52097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Protein-protein interactions mediate most of the processes in the living cell and control homeostasis of the organism. Impaired protein interactions may result in disease, making protein interactions important drug targets. It is thus highly important to understand these interactions at the molecular level. Protein interactions are studied using a variety of techniques ranging from cellular and biochemical assays to quantitative biophysical assays, and these may be performed either with full-length proteins, with protein domains or with peptides. Peptides serve as excellent tools to study protein interactions since peptides can be easily synthesized and allow the focusing on specific interaction sites. Peptide arrays enable the identification of the interaction sites between two proteins as well as screening for peptides that bind the target protein for therapeutic purposes. They also allow high throughput SAR studies. For identification of binding sites, a typical peptide array usually contains partly overlapping 10-20 residues peptides derived from the full sequences of one or more partner proteins of the desired target protein. Screening the array for binding the target protein reveals the binding peptides, corresponding to the binding sites in the partner proteins, in an easy and fast method using only small amount of protein. In this article we describe a protocol for screening peptide arrays for mapping the interaction sites between a target protein and its partners. The peptide array is designed based on the sequences of the partner proteins taking into account their secondary structures. The arrays used in this protocol were Celluspots arrays prepared by INTAVIS Bioanalytical Instruments. The array is blocked to prevent unspecific binding and then incubated with the studied protein. Detection using an antibody reveals the binding peptides corresponding to the specific interaction sites between the proteins.
Collapse
Affiliation(s)
- Hadar Amartely
- Institute of Chemistry, The Hebrew University of Jerusalem
| | | | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem;
| |
Collapse
|
36
|
Richer J, Johnston SA, Stafford P. Epitope identification from fixed-complexity random-sequence peptide microarrays. Mol Cell Proteomics 2014; 14:136-47. [PMID: 25368412 DOI: 10.1074/mcp.m114.043513] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Antibodies play an important role in modern science and medicine. They are essential in many biological assays and have emerged as an important class of therapeutics. Unfortunately, current methods for mapping antibody epitopes require costly synthesis or enrichment steps, and no low-cost universal platform exists. In order to address this, we tested a random-sequence peptide microarray consisting of over 330,000 unique peptide sequences sampling 83% of all possible tetramers and 27% of pentamers. It is a single, unbiased platform that can be used in many different types of tests, it does not rely on informatic selection of peptides for a particular proteome, and it does not require iterative rounds of selection. In order to optimize the platform, we developed an algorithm that considers the significance of k-length peptide subsequences (k-mers) within selected peptides that come from the microarray. We tested eight monoclonal antibodies and seven infectious disease cohorts. The method correctly identified five of the eight monoclonal epitopes and identified both reported and unreported epitope candidates in the infectious disease cohorts. This algorithm could greatly enhance the utility of random-sequence peptide microarrays by enabling rapid epitope mapping and antigen identification.
Collapse
Affiliation(s)
- Josh Richer
- From *Arizona State University, Tempe, Arizona 85287
| | | | | |
Collapse
|