1
|
Presynaptic Inhibition of Pain and Touch in the Spinal Cord: From Receptors to Circuits. Int J Mol Sci 2021; 22:ijms22010414. [PMID: 33401784 PMCID: PMC7795800 DOI: 10.3390/ijms22010414] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Sensory primary afferent fibers, conveying touch, pain, itch, and proprioception, synapse onto spinal cord dorsal horn neurons. Primary afferent central terminals express a wide variety of receptors that modulate glutamate and peptide release. Regulation of the amount and timing of neurotransmitter release critically affects the integration of postsynaptic responses and the coding of sensory information. The role of GABA (γ-aminobutyric acid) receptors expressed on afferent central terminals is particularly important in sensory processing, both in physiological conditions and in sensitized states induced by chronic pain. During the last decade, techniques of opto- and chemogenetic stimulation and neuronal selective labeling have provided interesting insights on this topic. This review focused on the recent advances about the modulatory effects of presynaptic GABAergic receptors in spinal cord dorsal horn and the neural circuits involved in these mechanisms.
Collapse
|
2
|
Corticospinal Pathways and Interactions Underpinning Dexterous Forelimb Movement of the Rodent. Neuroscience 2020; 450:184-191. [PMID: 32512136 DOI: 10.1016/j.neuroscience.2020.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
In 2013, Thomas Jessell published a paper with Andrew Miri and Eiman Azim that took on the task of examining corticospinal neuron function during movement (Miri et al., 2013). They took the view that a combination of approaches would be able to shed light on corticospinal function, and that this function must be considered in the context of corticospinal connectivity with spinal circuits. In this review, we will highlight recent developments in this area, along with new information regarding inputs and cross-connectivity of the corticospinal circuit with other circuits across the rodent central nervous system. The genetic and viral manipulations available in these animals have led to new insights into descending circuit interaction and function. As species differences exist in the circuitry profile that contributes to dexterous forelimb movements (Lemon, 2008; Yoshida and Isa, 2018), highlighting important advances in one model could help to compare and contrast with what is known about other models. We will focus on the circuitry underpinning dexterous forelimb movements, including some recent developments from systems besides the corticospinal tract, to build a more holistic understanding of sensorimotor circuits and their control of voluntary movement. The rodent corticospinal system is thus a central point of reference in this review, but not the only focus.
Collapse
|
3
|
Olivares-Moreno R, López-Hidalgo M, Altamirano-Espinoza A, González-Gallardo A, Antaramian A, Lopez-Virgen V, Rojas-Piloni G. Mouse corticospinal system comprises different functional neuronal ensembles depending on their hodology. BMC Neurosci 2019; 20:50. [PMID: 31547806 PMCID: PMC6757377 DOI: 10.1186/s12868-019-0533-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Movement performance depends on the synaptic interactions generated by coherent parallel sensorimotor cortical outputs to different downstream targets. The major outputs of the neocortex to subcortical structures are driven by pyramidal tract neurons (PTNs) located in layer 5B. One of the main targets of PTNs is the spinal cord through the corticospinal (CS) system, which is formed by a complex collection of distinct CS circuits. However, little is known about intracortical synaptic interactions that originate CS commands and how different populations of CS neurons are functionally organized. To further understand the functional organization of the CS system, we analyzed the activity of unambiguously identified CS neurons projecting to different zones of the same spinal cord segment using two-photon calcium imaging and retrograde neuronal tracers. RESULTS Sensorimotor cortex slices obtained from transgenic mice expressing GCaMP6 funder the Thy1 promoter were used to analyze the spontaneous calcium transients in layer 5 pyramidal neurons. Distinct subgroups of CS neurons projecting to dorsal horn and ventral areas of the same segment show more synchronous activity between them than with other subgroups. CONCLUSIONS The results indicate that CS neurons projecting to different spinal cord zones segregated into functional ensembles depending on their hodology, suggesting that a modular organization of CS outputs controls sensorimotor behaviors in a coordinated manner.
Collapse
Affiliation(s)
- Rafael Olivares-Moreno
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Mónica López-Hidalgo
- Escuela Nacional de Estudios Superiores, Juriquilla, UNAM, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Alain Altamirano-Espinoza
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Adriana González-Gallardo
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Anaid Antaramian
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Verónica Lopez-Virgen
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Gerardo Rojas-Piloni
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico.
| |
Collapse
|
4
|
Favorov OV, Pellicer-Morata V, DeJongh Curry AL, Ramshur JT, Brna A, Challener TD, Waters RS. A newly identified nociresponsive region in the transitional zone (TZ) in rat sensorimotor cortex. Brain Res 2019; 1717:228-234. [PMID: 31028729 DOI: 10.1016/j.brainres.2019.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/28/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022]
Abstract
The primary somatosensory cortex (S1) comprises a number of functionally distinct regions, reflecting the diversity of somatosensory receptor submodalities innervating the body. In particular, two spatially and functionally distinct nociceptive regions have been described in primate S1 (Vierck et al., 2013; Whitsel et al., 2019). One region is located mostly in Brodmann cytoarchitectonic area 1, where a subset of neurons exhibit functional characteristics associated with myelinated Aδ nociceptors and perception of 1st/sharp, discriminative pain. The second region is located at the transition between S1 and primary motor cortex (M1) in area 3a, where neurons exhibit functional characteristics associated with unmyelinated C nociceptors and perception of 2nd/slow, burning pain. To test the hypothesis that in rats the transitional zone (TZ) - which is a dysgranular region at the transition between M1 and S1 - is the functional equivalent of the nociresponsive region of area 3a in primates, extracellular spike discharge activity was recorded from TZ neurons in rats under general isoflurane anesthesia. Thermonoxious stimuli were applied by lowering the contralateral forepaw or hindpaw into a 48-51 °C heated water bath for 5-10 s. Neurons in TZ were found to be minimally affected by non-noxious somatosensory stimuli, but highly responsive to thermonoxious skin stimuli in a slow temporal summation manner closely resembling that of nociresponsive neurons in primate area 3a. Selective inactivation of TZ by topical lidocaine application suppressed or delayed the nociceptive withdrawal reflex, suggesting that TZ exerts a tonic facilitatory influence over spinal cord neurons producing this reflex. In conclusion, TZ appears to be a rat homolog of the nociresponsive part of monkey area 3a. A possibility is considered that this region might be primarily engaged in autonomic aspects of nociception.
Collapse
Affiliation(s)
- Oleg V Favorov
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Violeta Pellicer-Morata
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Amy L DeJongh Curry
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| | - John T Ramshur
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| | - Andrew Brna
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Timothy D Challener
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Robert S Waters
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
5
|
Whitsel BL, Vierck CJ, Waters RS, Tommerdahl M, Favorov OV. Contributions of Nociresponsive Area 3a to Normal and Abnormal Somatosensory Perception. THE JOURNAL OF PAIN 2019; 20:405-419. [PMID: 30227224 PMCID: PMC6420406 DOI: 10.1016/j.jpain.2018.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/12/2018] [Accepted: 08/11/2018] [Indexed: 12/29/2022]
Abstract
Traditionally, cytoarchitectonic area 3a of primary somatosensory cortex (SI) has been regarded as a proprioceptive relay to motor cortex. However, neuronal spike-train recordings and optical intrinsic signal imaging, obtained from nonhuman sensorimotor cortex, show that neuronal activity in some of the cortical columns in area 3a can be readily triggered by a C-nociceptor afferent drive. These findings indicate that area 3a is a critical link in cerebral cortical encoding of secondary/slow pain. Also, area 3a contributes to abnormal pain processing in the presence of activity-dependent reversal of gamma-aminobutyric acid A receptor-mediated inhibition. Accordingly, abnormal processing within area 3a may contribute mechanistically to generation of clinical pain conditions. PERSPECTIVE: Optical imaging and neurophysiological mapping of area 3a of SI has revealed substantial driving from unmyelinated cutaneous nociceptors, complementing input to areas 3b and 1 of SI from myelinated nociceptors and non-nociceptors. These and related findings force a reconsideration of mechanisms for SI processing of pain.
Collapse
Affiliation(s)
- Barry L Whitsel
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Charles J Vierck
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
| | - Robert S Waters
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee
| | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Oleg V Favorov
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
6
|
Béjar-Alonso J, Martínez-Lorenzana G, González-Hernández A, Cortes U, Condés-Lara M. Recurrent inhibition in the cerebral cortex. Neurosci Lett 2019; 696:20-27. [DOI: 10.1016/j.neulet.2018.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/14/2018] [Accepted: 12/09/2018] [Indexed: 11/16/2022]
|
7
|
Ueno M, Nakamura Y, Li J, Gu Z, Niehaus J, Maezawa M, Crone SA, Goulding M, Baccei ML, Yoshida Y. Corticospinal Circuits from the Sensory and Motor Cortices Differentially Regulate Skilled Movements through Distinct Spinal Interneurons. Cell Rep 2018; 23:1286-1300.e7. [PMID: 29719245 PMCID: PMC6608728 DOI: 10.1016/j.celrep.2018.03.137] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/04/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
Little is known about the organizational and functional connectivity of the corticospinal (CS) circuits that are essential for voluntary movement. Here, we map the connectivity between CS neurons in the forelimb motor and sensory cortices and various spinal interneurons, demonstrating that distinct CS-interneuron circuits control specific aspects of skilled movements. CS fibers originating in the mouse motor cortex directly synapse onto premotor interneurons, including those expressing Chx10. Lesions of the motor cortex or silencing of spinal Chx10+ interneurons produces deficits in skilled reaching. In contrast, CS neurons in the sensory cortex do not synapse directly onto premotor interneurons, and they preferentially connect to Vglut3+ spinal interneurons. Lesions to the sensory cortex or inhibition of Vglut3+ interneurons cause deficits in food pellet release movements in goal-oriented tasks. These findings reveal that CS neurons in the motor and sensory cortices differentially control skilled movements through distinct CS-spinal interneuron circuits.
Collapse
Affiliation(s)
- Masaki Ueno
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan; Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| | - Yuka Nakamura
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Jie Li
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Zirong Gu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jesse Niehaus
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Mari Maezawa
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Steven A Crone
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark L Baccei
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
8
|
LeBlanc BW, Cross B, Smith KA, Roach C, Xia J, Chao YC, Levitt J, Koyama S, Moore CI, Saab CY. Thalamic Bursts Down-regulate Cortical Theta and Nociceptive Behavior. Sci Rep 2017; 7:2482. [PMID: 28559582 PMCID: PMC5449396 DOI: 10.1038/s41598-017-02753-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/18/2017] [Indexed: 12/24/2022] Open
Abstract
We tested the relation between pain behavior, theta (4-8 Hz) oscillations in somatosensory cortex and burst firing in thalamic neurons in vivo. Optically-induced thalamic bursts attenuated cortical theta and mechanical allodynia. It is proposed that thalamic bursts are an adaptive response to pain that de-synchronizes cortical theta and decreases sensory salience.
Collapse
Affiliation(s)
- Brian W LeBlanc
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Brent Cross
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Kelsey A Smith
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Catherine Roach
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Jimmy Xia
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Yu-Chieh Chao
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Joshua Levitt
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | - Suguru Koyama
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
- Laboratory for Pharmacology, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | | | - Carl Y Saab
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.
- Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
9
|
The rat corticospinal system is functionally and anatomically segregated. Brain Struct Funct 2017; 222:3945-3958. [PMID: 28528380 DOI: 10.1007/s00429-017-1447-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/15/2017] [Indexed: 01/09/2023]
Abstract
The descending corticospinal (CS) projection has been considered a key element for motor control, which results from direct and indirect modulation of spinal cord pre-motor interneurons in the intermediate gray matter of the spinal cord, which, in turn, influences motoneurons in the ventral horn. The CS tract (CST) is also involved in a selective and complex modulation of sensory information in the dorsal horn. However, little is known about the spinal network engaged by the CST and the organization of CS projections that may encode different cortical outputs to the spinal cord. This study addresses the issue of whether the CS system exerts parallel control on different spinal networks, which together participate in sensorimotor integration. Here, we show that in the adult rat, two different and partially intermingled CS neurons in the sensorimotor cortex activate, with different time latencies, distinct spinal cord neurons located in the dorsal horn and intermediate zone of the same segment. The fact that different populations of CS neurons project in a segregated manner suggests that CST is composed of subsystems controlling different spinal cord circuits that modulate motor outputs and sensory inputs in a coordinated manner.
Collapse
|
10
|
Moreno-López Y, Olivares-Moreno R, Cordero-Erausquin M, Rojas-Piloni G. Sensorimotor Integration by Corticospinal System. Front Neuroanat 2016; 10:24. [PMID: 27013985 PMCID: PMC4783411 DOI: 10.3389/fnana.2016.00024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/24/2016] [Indexed: 12/23/2022] Open
Abstract
The corticospinal (CS) tract is a complex system which targets several areas of the spinal cord. In particular, the CS descending projection plays a major role in motor command, which results from direct and indirect control of spinal cord pre-motor interneurons as well as motoneurons. But in addition, this system is also involved in a selective and complex modulation of sensory feedback. Despite recent evidence confirms that CS projections drive distinct segmental neural circuits that are part of the sensory and pre-motor pathways, little is known about the spinal networks engaged by the corticospinal tract (CST), the organization of CS projections, the intracortical microcircuitry, and the synaptic interactions in the sensorimotor cortex (SMC) that may encode different cortical outputs to the spinal cord. Here is stressed the importance of integrated approaches for the study of sensorimotor function of CS system, in order to understand the functional compartmentalization and hierarchical organization of layer 5 output neurons, who are key elements for motor control and hence, of behavior.
Collapse
Affiliation(s)
- Yunuen Moreno-López
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla Querétaro, México
| | - Rafael Olivares-Moreno
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla Querétaro, México
| | - Matilde Cordero-Erausquin
- Unité Propre de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, UPR 3212 CNRS Strasbourg, France
| | - Gerardo Rojas-Piloni
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla Querétaro, México
| |
Collapse
|