1
|
Montalt R, Cuenca J, Vives MC, Mournet P, Navarro L, Ollitrault P, Aleza P. Genotyping by Sequencing for SNP-Based Linkage Analysis and the Development of KASPar Markers for Male Sterility and Polyembryony in Citrus. PLANTS (BASEL, SWITZERLAND) 2023; 12:1567. [PMID: 37050193 PMCID: PMC10096700 DOI: 10.3390/plants12071567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Polyembryony and male sterility (MS) are essential characters for citrus breeding. MS, coupled with parthenocarpy, allows for addressing the diversification of diploid seedless mandarin varieties, and nucleocytoplasmic MS is the most prevalent system. Polyembryony limits the use of seed parents in scion breeding programs, and the recovery of monoembryonic hybrids to be used as female parents is a crucial pre-breeding component. The objectives of this work were the identification of SNPs closely linked with the genes implied in these traits for marker-assisted selection. Genotyping by sequencing was used to genotype 61 diploid hybrids from an F1 progeny recovered from crossing 'Kiyomi' and 'Murcott' tangors. A total of 6444 segregating markers were identified and used to establish the two parental genetic maps. They consisted of 1374 and 697 markers encompassing 1416.287 and 1339.735 cM for 'Kiyomi' and 'Murcott', respectively. Phenotyping for MS and polyembryony was performed. The genotype-trait association study identified a genomic region on LG8 which was significantly associated with MS, and a genomic region on LG1 which was significantly associated with polyembryony. Annotation of the identified region for MS revealed 19 candidate genes. One SNP KASPar marker was developed and fully validated for each trait.
Collapse
Affiliation(s)
- Rafael Montalt
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| | - José Cuenca
- Agrupación de Viveristas de Agrios (AVASA), 12570 Castellón, Spain
| | - María Carmen Vives
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| | - Pierre Mournet
- UMR AGAP, CIRAD, 34398 Montpellier, France
- UMR AGAP, Institut Agro, CIRAD, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Luis Navarro
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| | - Patrick Ollitrault
- UMR AGAP, CIRAD, 34398 Montpellier, France
- UMR AGAP, Institut Agro, CIRAD, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| |
Collapse
|
2
|
Yang X, Ye J, Niu F, Feng Y, Song X. Identification and verification of genes related to pollen development and male sterility induced by high temperature in the thermo-sensitive genic male sterile wheat line. PLANTA 2021; 253:83. [PMID: 33770279 DOI: 10.1007/s00425-021-03601-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Bioinformatic analysis identified the function of genes regulating wheat fertility. Barley stripe mosaic virus-induced gene silencing verified that the genes TaMut11 and TaSF3 are involved in pollen development and related to fertility conversion. Environment-sensitive genic male sterility is of vital importance to hybrid vigor in crop production and breeding. Therefore, it is meaningful to study the function of the genes related to pollen development and male sterility, which is still not fully understand currently. In this study, YanZhan 4110S, a new thermo-sensitive genic male sterility wheat line, and its near-isogenic line YanZhan 4110 were analyzed. Through comparative transcriptome basic bioinformatics and weighted gene co-expression network to further identify some hub genes, the genes TaMut11 and TaSF3 associated with pollen development and male sterility induced by high-temperature were identified in YanZhan 4110S. Further verification through barley stripe mosaic virus-induced gene silencing elucidated that the silencing of TaMut11 and TaSF3 caused pollen abortion, finally resulting in the declination of fertility. These findings provided data on the abortive mechanism in environment-sensitive genic male sterility wheat.
Collapse
Affiliation(s)
- Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiali Ye
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Feng
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Hu R, Xiao J, Zhang Q, Gu T, Chang J, Yang G, He G. A light-regulated gene, TaLWD1L-A, affects flowering time in transgenic wheat (Triticum aestivum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110623. [PMID: 32900433 DOI: 10.1016/j.plantsci.2020.110623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Flowering time is an important agronomic trait that greatly influences plant architecture and grain yield in cereal crops. The present study identified a light-regulated gene, TaLWD1L-A, from hexaploid wheat that encodes a WD40 domain-containing protein. TaLWD1L-A was localized in the nucleus. Phenotypic analysis demonstrated that TaLWD1L-A overexpression in transgenic wheat led to an obvious early flowering phenotype. Upregulation of the floral activator gene TaFT1 caused the early flowering phenotype in transgenic wheat plants. TaLWD1L-A also affected the expression of circadian clock genes, including TaTOC1, TaLHY, TaPRR59, TaPRR73 and TaPRR95, and indirectly regulated the expression of the TaFT1 in transgenic plants by affecting the expression of vernalization-related genes TaVRN1 and TaVRN2 and photoperiod-related genes TaPpd-1 and TaGI. The early flowering phenotype in TaLWD1L-A-overexpressing transgenic lines led to a relatively shorter phenotype and yield reduction. Our results revealed that TaLWD1L-A affected the expression of circadian clock-related genes and played an important role in wheat flowering regulation by influencing the expression of genes related to vernalization and photoperiod pathways.
Collapse
Affiliation(s)
- Rui Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jie Xiao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ting Gu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
4
|
Markulin L, Drouet S, Corbin C, Decourtil C, Garros L, Renouard S, Lopez T, Mongelard G, Gutierrez L, Auguin D, Lainé E, Hano C. The control exerted by ABA on lignan biosynthesis in flax (Linum usitatissimum L.) is modulated by a Ca 2+ signal transduction involving the calmodulin-like LuCML15b. JOURNAL OF PLANT PHYSIOLOGY 2019; 236:74-87. [PMID: 30928768 DOI: 10.1016/j.jplph.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 05/23/2023]
Abstract
The LuPLR1 gene encodes a pinoresinol lariciresinol reductase responsible for the biosynthesis of (+)-secoisolariciresinol, a cancer chemopreventive lignan, highly accumulated in the seedcoat of flax (Linum usitatissimum L.). Abscisic acid (ABA) plays a key role in the regulation of LuPLR1 gene expression and lignan accumulation in both seeds and cell suspensions, which require two cis-acting elements (ABRE and MYB2) for this regulation. Ca2+ is a universal secondary messenger involved in a wide range of physiological processes including ABA signaling. Therefore, Ca2+ may be involved as a mediator of LuPLR1 gene expression and lignan biosynthesis regulation exerted by ABA. To test the potential implication of Ca2+ signaling, a pharmacological approach was conducted using both flax cell suspensions and maturing seed systems coupled with a ß-glucuronidase reporter gene experiment, RT-qPCR analysis, lignan quantification as well as Ca2+ fluorescence imaging. Exogenous ABA application results in an increase in the intracellular Ca2+ cytosolic concentration, originating mainly from the extracellular medium. Promoter-reporter deletion experiments suggest that the ABRE and MYB2 cis-acting elements of the LuPLR1 gene promoter functioned as Ca2+-sensitive sequences involved in the ABA-mediated regulation. The use of specific inhibitors pointed the crucial roles of the Ca2+ sensors calmodulin-like proteins and Ca2+-dependent protein kinases in this regulation. This regulation appeared conserved in the two different studied systems, i.e. cell suspensions and maturing seeds. A calmodulin-like, LuCML15b, identified from gene network analysis is proposed as a key player involved in this signal transduction since RNAi experiments provided direct evidences of this role. Taken together, these results provide new information on the regulation of plant defense and human health-promoting compounds, which could be used to optimize their production.
Collapse
Affiliation(s)
- Lucija Markulin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Cyrielle Corbin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Cédric Decourtil
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Sullivan Renouard
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Tatiana Lopez
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Gaëlle Mongelard
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, F-80039 Amiens, France
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, F-80039 Amiens, France
| | - Daniel Auguin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Eric Lainé
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France.
| |
Collapse
|
5
|
Corbin C, Drouet S, Markulin L, Auguin D, Lainé É, Davin LB, Cort JR, Lewis NG, Hano C. A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation. PLANT MOLECULAR BIOLOGY 2018; 97:73-101. [PMID: 29713868 DOI: 10.1007/s11103-018-0725-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/02/2018] [Indexed: 05/21/2023]
Abstract
Identification of DIR encoding genes in flax genome. Analysis of phylogeny, gene/protein structures and evolution. Identification of new conserved motifs linked to biochemical functions. Investigation of spatio-temporal gene expression and response to stress. Dirigent proteins (DIRs) were discovered during 8-8' lignan biosynthesis studies, through identification of stereoselective coupling to afford either (+)- or (-)-pinoresinols from E-coniferyl alcohol. DIRs are also involved or potentially involved in terpenoid, allyl/propenyl phenol lignan, pterocarpan and lignin biosynthesis. DIRs have very large multigene families in different vascular plants including flax, with most still of unknown function. DIR studies typically focus on a small subset of genes and identification of biochemical/physiological functions. Herein, a genome-wide analysis and characterization of the predicted flax DIR 44-membered multigene family was performed, this species being a rich natural grain source of 8-8' linked secoisolariciresinol-derived lignan oligomers. All predicted DIR sequences, including their promoters, were analyzed together with their public gene expression datasets. Expression patterns of selected DIRs were examined using qPCR, as well as through clustering analysis of DIR gene expression. These analyses further implicated roles for specific DIRs in (-)-pinoresinol formation in seed-coats, as well as (+)-pinoresinol in vegetative organs and/or specific responses to stress. Phylogeny and gene expression analysis segregated flax DIRs into six distinct clusters with new cluster-specific motifs identified. We propose that these findings can serve as a foundation to further systematically determine functions of DIRs, i.e. other than those already known in lignan biosynthesis in flax and other species. Given the differential expression profiles and inducibility of the flax DIR family, we provisionally propose that some DIR genes of unknown function could be involved in different aspects of secondary cell wall biosynthesis and plant defense.
Collapse
Affiliation(s)
- Cyrielle Corbin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Université d'Orléans, 28000, Chartres, France
- COSM'ACTIFS, CNRS GDR3711, 28000, Chartres, France
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Université d'Orléans, 28000, Chartres, France
- COSM'ACTIFS, CNRS GDR3711, 28000, Chartres, France
| | - Lucija Markulin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Université d'Orléans, 28000, Chartres, France
- COSM'ACTIFS, CNRS GDR3711, 28000, Chartres, France
| | - Daniel Auguin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Université d'Orléans, 28000, Chartres, France
- COSM'ACTIFS, CNRS GDR3711, 28000, Chartres, France
| | - Éric Lainé
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Université d'Orléans, 28000, Chartres, France
- COSM'ACTIFS, CNRS GDR3711, 28000, Chartres, France
| | - Laurence B Davin
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | - John R Cort
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Norman G Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA.
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Université d'Orléans, 28000, Chartres, France.
- COSM'ACTIFS, CNRS GDR3711, 28000, Chartres, France.
- Pôle Universitaire d'Eure et Loir, 21 Rue de Loigny la Bataille, 28000, Chartres, France.
| |
Collapse
|
6
|
Tripathi S, Sangwan RS, Narnoliya LK, Srivastava Y, Mishra B, Sangwan NS. Transcription factor repertoire in Ashwagandha (Withania somnifera) through analytics of transcriptomic resources: Insights into regulation of development and withanolide metabolism. Sci Rep 2017; 7:16649. [PMID: 29192149 PMCID: PMC5709440 DOI: 10.1038/s41598-017-14657-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/03/2017] [Indexed: 11/17/2022] Open
Abstract
Transcription factors (TFs) are important regulators of cellular and metabolic functions including secondary metabolism. Deep and intensive RNA-seq analysis of Withania somnifera using transcriptomic databases provided 3532 annotated transcripts of transcription factors in leaf and root tissues, belonging to 90 different families with major abundance for WD-repeat (174 and 165 transcripts) and WRKY (93 and 80 transcripts) in root and leaf tissues respectively, followed by that of MYB, BHLH and AP2-ERF. Their detailed comparative analysis with Arabidopsis thaliana, Capsicum annum, Nicotiana tabacum and Solanum lycopersicum counterparts together gave interesting patterns. However, no homologs for WsWDR representatives, LWD1 and WUSCHEL, were observed in other Solanaceae species. The data extracted from the sequence read archives (SRA) in public domain databases were subjected to re-annotation, re-mining, re-analysis and validation for dominant occurrence of WRKY and WD-repeat (WDR) gene families. Expression of recombinant LWD1 and WUSCHEL proteins in homologous system led to enhancements in withanolide content indicating their regulatory role in planta in the biosynthesis. Contrasting expression profiles of WsLWD1 and WsWUSCHEL provided tissue-specific insights for their participation in the regulation of developmental processes. The in-depth analysis provided first full-spectrum and comparative characteristics of TF-transcripts across plant species, in the perspective of integrated tissue-specific regulation of metabolic processes including specialized metabolism.
Collapse
Affiliation(s)
- Sandhya Tripathi
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by an Act of Parliament),, AcSIR Campus, CSIR-HRDC, Sector-19, Kamla Nehru Nagar, Ghaziabad, Ghaziabad, 201002, Uttar Pradesh, India
| | - Rajender Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Center of Innovative and Applied Bioprocessing (A National Institute under Department of Biotechnology, Govt. of India), Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by an Act of Parliament),, AcSIR Campus, CSIR-HRDC, Sector-19, Kamla Nehru Nagar, Ghaziabad, Ghaziabad, 201002, Uttar Pradesh, India
| | - Lokesh Kumar Narnoliya
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Yashdeep Srivastava
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Bhawana Mishra
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by an Act of Parliament),, AcSIR Campus, CSIR-HRDC, Sector-19, Kamla Nehru Nagar, Ghaziabad, Ghaziabad, 201002, Uttar Pradesh, India
| | - Neelam Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by an Act of Parliament),, AcSIR Campus, CSIR-HRDC, Sector-19, Kamla Nehru Nagar, Ghaziabad, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
7
|
Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Sci Rep 2017; 7:46137. [PMID: 28447607 PMCID: PMC5406838 DOI: 10.1038/srep46137] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/13/2017] [Indexed: 01/25/2023] Open
Abstract
Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.
Collapse
|
8
|
Response of microRNAs to cold treatment in the young spikes of common wheat. BMC Genomics 2017; 18:212. [PMID: 28241738 PMCID: PMC5330121 DOI: 10.1186/s12864-017-3556-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/03/2017] [Indexed: 12/04/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in biotic and abiotic stresses by regulating their target genes. For common wheat, spring frost damage frequently occurs, especially when low temperature coincides with plants at early floral organ differentiation, which may result in significant yield loss. Up to date, the role of miRNAs in wheat response to frost stress is not well understood. Results We report here the sequencing of small RNA transcriptomes from the young spikes that were treated with cold stress and the comparative analysis with those of the control. A total of 192 conserved miRNAs from 105 families and nine novel miRNAs were identified. Among them, 34 conserved and five novel miRNAs were differentially expressed between the cold-stressed samples and the controls. The expression patterns of 18 miRNAs were further validated by quantitative real time polymerase chain reaction (qRT-PCR). Moreover, nearly half of the miRNAs were cross inducible by biotic and abiotic stresses when compared with previously published work. Target genes were predicted and validated by degradome sequencing. Gene Ontology (GO) enrichment analysis showed that the target genes of differentially expressed miRNAs were enriched for response to the stimulus, regulation of transcription, and ion transport functions. Since many targets of differentially expressed miRNAs were transcription factors that are associated with floral development such as ARF, SPB (Squamosa Promoter Binding like protein), MADS-box (MCM1, AG, DEFA and SRF), MYB, SPX (SYG1, Pho81 and XPR1), TCP (TEOSINTE BRANCHED, Cycloidea and PCF), and PPR (PentatricoPeptide Repeat) genes, cold-altered miRNA expression may cause abnormal reproductive organ development. Conclusion Analysis of small RNA transcriptomes and their target genes provide new insight into miRNA regulation in developing wheat inflorescences under cold stress. MiRNAs provide another layer of gene regulation in cold stress response that can be genetically manipulated to reduce yield loss in wheat. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3556-2) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Thambugala D, Ragupathy R, Cloutier S. Structural organization of fatty acid desaturase loci in linseed lines with contrasting linolenic acid contents. Funct Integr Genomics 2016; 16:429-39. [PMID: 27142663 DOI: 10.1007/s10142-016-0494-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 01/15/2023]
Abstract
Flax (Linum usitatissimum L.), the richest crop source of omega-3 fatty acids (FAs), is a diploid plant with an estimated genome size of ~370 Mb and is well suited for studying genomic organization of agronomically important traits. In this study, 12 bacterial artificial chromosome clones harbouring the six FA desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b from the conventional variety CDC Bethune and the high linolenic acid line M5791 were sequenced, analysed and compared to determine the structural organization of these loci and to gain insights into the genetic mechanisms underlying FA composition in flax. With one gene every 3.2-4.6 kb, the desaturase loci have a higher gene density than the genome's average of one gene per 7.8-8.2 kb. The gene order and orientation across the two genotypes were generally conserved with the exception of the sad1 locus that was predicted to have additional genes in CDC Bethune. High sequence conservation in both genic and intergenic regions of the sad and fad2b loci contrasted with the significant level of variation of the fad2a and fad3 loci, with SNPs being the most frequently observed mutation type. The fad2a locus had 297 SNPs and 36 indels over ~95 kb contrasting with the fad2b locus that had a mere seven SNPs and four indels in ~110 kb. Annotation of the gene-rich loci revealed other genes of known role in lipid or carbohydrate metabolic/catabolic pathways. The organization of the fad2b locus was particularly complex with seven copies of the fad2b gene in both genotypes. The presence of Gypsy, Copia, MITE, Mutator, hAT and other novel repeat elements at the desaturase loci was similar to that of the whole genome. This structural genomic analysis provided some insights into the genomic organization and composition of the main desaturase loci of linseed and of their complex evolution through both tandem and whole genome duplications.
Collapse
Affiliation(s)
- Dinushika Thambugala
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada
| | - Raja Ragupathy
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada
| | - Sylvie Cloutier
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada. .,Ottawa Research and Development Centre, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
10
|
Zhao Q, Gao J, Suo J, Chen S, Wang T, Dai S. Cytological and proteomic analyses of horsetail (Equisetum arvense L.) spore germination. FRONTIERS IN PLANT SCIENCE 2015; 6:441. [PMID: 26136760 PMCID: PMC4469821 DOI: 10.3389/fpls.2015.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/29/2015] [Indexed: 05/25/2023]
Abstract
Spermatophyte pollen tubes and root hairs have been used as single-cell-type model systems to understand the molecular processes underlying polar growth of plant cells. Horsetail (Equisetum arvense L.) is a perennial herb species in Equisetopsida, which creates separately growing spring and summer stems in its life cycle. The mature chlorophyllous spores produced from spring stems can germinate without dormancy. Here we report the cellular features and protein expression patterns in five stages of horsetail spore germination (mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Using 2-DE combined with mass spectrometry, 80 proteins were found to be abundance changed upon spore germination. Among them, proteins involved in photosynthesis, protein turnover, and energy supply were over-represented. Thirteen proteins appeared as proteoforms on the gels, indicating the potential importance of post-translational modification. In addition, the dynamic changes of ascorbate peroxidase, peroxiredoxin, and dehydroascorbate reductase implied that reactive oxygen species homeostasis is critical in regulating cell division and tip-growth. The time course of germination and diverse expression patterns of proteins in photosynthesis, energy supply, lipid and amino acid metabolism indicated that heterotrophic and autotrophic metabolism were necessary in light-dependent germination of the spores. Twenty-six proteins were involved in protein synthesis, folding, and degradation, indicating that protein turnover is vital to spore germination and rhizoid tip-growth. Furthermore, the altered abundance of 14-3-3 protein, small G protein Ran, actin, and caffeoyl-CoA O-methyltransferase revealed that signaling transduction, vesicle trafficking, cytoskeleton dynamics, and cell wall modulation were critical to cell division and polar growth. These findings lay a foundation toward understanding the molecular mechanisms underlying fern spore asymmetric division and rhizoid polar growth.
Collapse
Affiliation(s)
- Qi Zhao
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Jing Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry UniversityHarbin, China
| | - Jinwei Suo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry UniversityHarbin, China
| | - Sixue Chen
- Department of Biology, Interdisciplinary Center for Biotechnology Research, Genetics Institute, Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Tai Wang
- Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| |
Collapse
|
11
|
Avina-Padilla K, Martinez de la Vega O, Rivera-Bustamante R, Martinez-Soriano JP, Owens RA, Hammond RW, Vielle-Calzada JP. In silico prediction and validation of potential gene targets for pospiviroid-derived small RNAs during tomato infection. Gene 2015; 564:197-205. [DOI: 10.1016/j.gene.2015.03.076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/13/2015] [Accepted: 03/24/2015] [Indexed: 12/31/2022]
|
12
|
Thambugala D, Cloutier S. Fatty acid composition and desaturase gene expression in flax (Linum usitatissimum L.). J Appl Genet 2014; 55:423-32. [PMID: 24871199 PMCID: PMC4185102 DOI: 10.1007/s13353-014-0222-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 10/29/2022]
Abstract
Little is known about the relationship between expression levels of fatty acid desaturase genes during seed development and fatty acid (FA) composition in flax. In the present study, we looked at promoter structural variations of six FA desaturase genes and their relative expression throughout seed development. Computational analysis of the nucleotide sequences of the sad1, sad2, fad2a, fad2b, fad3a and fad3b promoters showed several basic transcriptional elements including CAAT and TATA boxes, and several putative target-binding sites for transcription factors, which have been reported to be involved in the regulation of lipid metabolism. Using semi-quantitative reverse transcriptase PCR, the expression patterns throughout seed development of the six FA desaturase genes were measured in six flax genotypes that differed for FA composition but that carried the same desaturase isoforms. FA composition data were determined by phenotyping the field grown genotypes over four years in two environments. All six genes displayed a bell-shaped pattern of expression peaking at 20 or 24 days after anthesis. Sad2 was the most highly expressed. The expression of all six desaturase genes did not differ significantly between genotypes (P = 0.1400), hence there were no correlations between FA desaturase gene expression and variations in FA composition in relatively low, intermediate and high linolenic acid genotypes expressing identical isoforms for all six desaturases. These results provide further clues towards understanding the genetic factors responsible for FA composition in flax.
Collapse
Affiliation(s)
- Dinushika Thambugala
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, Canada, R3T 2N2
| | | |
Collapse
|