1
|
Grossi S, Berno E, Chiofalo P, Chiaravalli AM, Cinquetti R, Bruno A, Palano MT, Gallazzi M, La Rosa S, Sessa F, Acquati F, Campomenosi P. Proline Dehydrogenase (PRODH) Is Expressed in Lung Adenocarcinoma and Modulates Cell Survival and 3D Growth by Inducing Cellular Senescence. Int J Mol Sci 2024; 25:714. [PMID: 38255788 PMCID: PMC10815008 DOI: 10.3390/ijms25020714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The identification of markers for early diagnosis, prognosis, and improvement of therapeutic options represents an unmet clinical need to increase survival in Non-Small Cell Lung Cancer (NSCLC), a neoplasm still characterized by very high incidence and mortality. Here, we investigated whether proline dehydrogenase (PRODH), a mitochondrial flavoenzyme catalyzing the key step in proline degradation, played a role in NSCLC tumorigenesis. PRODH expression was investigated by immunohistochemistry; digital PCR, quantitative PCR, immunoblotting, measurement of reactive oxygen species (ROS), and functional cellular assays were carried out. PRODH expression was found in the majority of lung adenocarcinomas (ADCs). Patients with PRODH-positive tumors had better cancer-free specific and overall survival compared to those with negative tumors. Ectopic modulation of PRODH expression in NCI-H1299 and the other tested lung ADC cell lines decreased cell survival. Moreover, cell proliferation curves showed delayed growth in NCI-H1299, Calu-6 and A549 cell lines when PRODH-expressing clones were compared to control clones. The 3D growth in soft agar was also impaired in the presence of PRODH. PRODH increased reactive oxygen species production and induced cellular senescence in the NCI-H1299 cell line. This study supports a role of PRODH in decreasing survival and growth of lung ADC cells by inducing cellular senescence.
Collapse
Affiliation(s)
- Sarah Grossi
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
| | - Elena Berno
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
| | - Priscilla Chiofalo
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
| | - Anna Maria Chiaravalli
- Unità di Anatomia Patologica, Ospedale di Circolo e Fondazione Macchi, Via O. Rossi 9, 21100 Varese, Italy; (A.M.C.); (S.L.R.); (F.S.)
- Centro di Ricerca per lo Studio dei Tumori Eredo-Famigliari, Università degli Studi dell’Insubria, 21100 Varese, Italy
| | - Raffaella Cinquetti
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
| | - Antonino Bruno
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
- Laboratorio di Immunità Innata, Unità di Patologia Molecolare, Biochimica, e Immunologia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (M.T.P.); (M.G.)
- Centro di Ricerca per l’Invecchiamento di Successo (CRIS), Università degli Studi dell’Insubria, 21100 Varese, Italy
| | - Maria Teresa Palano
- Laboratorio di Immunità Innata, Unità di Patologia Molecolare, Biochimica, e Immunologia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (M.T.P.); (M.G.)
| | - Matteo Gallazzi
- Laboratorio di Immunità Innata, Unità di Patologia Molecolare, Biochimica, e Immunologia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (M.T.P.); (M.G.)
| | - Stefano La Rosa
- Unità di Anatomia Patologica, Ospedale di Circolo e Fondazione Macchi, Via O. Rossi 9, 21100 Varese, Italy; (A.M.C.); (S.L.R.); (F.S.)
- Centro di Ricerca per lo Studio dei Tumori Eredo-Famigliari, Università degli Studi dell’Insubria, 21100 Varese, Italy
- Dipartimento di Medicina e Innovazione Tecnologica, DIMIT, Università degli Studi dell’Insubria, Via Guicciardini 9, 21100 Varese, Italy
| | - Fausto Sessa
- Unità di Anatomia Patologica, Ospedale di Circolo e Fondazione Macchi, Via O. Rossi 9, 21100 Varese, Italy; (A.M.C.); (S.L.R.); (F.S.)
- Dipartimento di Medicina e Innovazione Tecnologica, DIMIT, Università degli Studi dell’Insubria, Via Guicciardini 9, 21100 Varese, Italy
| | - Francesco Acquati
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
- Centro di Ricerca per l’Invecchiamento di Successo (CRIS), Università degli Studi dell’Insubria, 21100 Varese, Italy
| | - Paola Campomenosi
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
- Centro di Ricerca per l’Invecchiamento di Successo (CRIS), Università degli Studi dell’Insubria, 21100 Varese, Italy
| |
Collapse
|
2
|
Dyachenko EI, Bel’skaya LV. The Role of Amino Acids in Non-Enzymatic Antioxidant Mechanisms in Cancer: A Review. Metabolites 2023; 14:28. [PMID: 38248831 PMCID: PMC10818545 DOI: 10.3390/metabo14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Currently, the antioxidant properties of amino acids and their role in the physicochemical processes accompanying oxidative stress in cancer remain unclear. Cancer cells are known to extensively uptake amino acids, which are used as an energy source, antioxidant precursors that reduce oxidative stress in cancer, and as regulators of inhibiting or inducing tumor cell-associated gene expression. This review examines nine amino acids (Cys, His, Phe, Met, Trp, Tyr, Pro, Arg, Lys), which play a key role in the non-enzymatic oxidative process in various cancers. Conventionally, these amino acids can be divided into two groups, in one of which the activity increases (Cys, Phe, Met, Pro, Arg, Lys) in cancer, and in the other, it decreases (His, Trp, Tyr). The review examines changes in the metabolism of nine amino acids in eleven types of oncology. We have identified the main nonspecific mechanisms of changes in the metabolic activity of amino acids, and described direct and indirect effects on the redox homeostasis of cells. In the future, this will help to understand better the nature of life of a cancer cell and identify therapeutic targets more effectively.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, Omsk 644099, Russia;
| |
Collapse
|
3
|
Xu X, Zhang G, Chen Y, Xu W, Liu Y, Ji G, Xu H. Can proline dehydrogenase-a key enzyme involved in proline metabolism-be a novel target for cancer therapy? Front Oncol 2023; 13:1254439. [PMID: 38023181 PMCID: PMC10661406 DOI: 10.3389/fonc.2023.1254439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Emerging evidence suggests that proline metabolism is important for regulating the survival and death of different types of cancer cells. Proline dehydrogenase (PRODH), an enzyme catalyzing proline catabolism, and the degradation products of proline by PRODH, such as ATP and ROS, are known to play critical roles in cancer progression. Notably, the role of PRODH in cancer is still complicated and unclear, and primarily depends on the cancer type and tumor microenvironment. For instance, PRODH induces apoptosis and senescence through ROS signaling in different types of cancers, while as a protumor factor, PRODH promotes malignant phenotypes of certain tumors under stresses such as hypoxia. In order to assess whether PRODH can serve as a novel target for cancer therapy, we will provide an overview of the biological functions of PRODH and its double-edged role in cancer in this article.
Collapse
Affiliation(s)
- Xiangyuan Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijia Chen
- Department of Gynecology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weina Xu
- Shanghai Pudong New Area Zhoujiadu Community Health Service Center, Shanghai, China
| | - Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| |
Collapse
|
4
|
Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S, Dharmarajan A, Gandhirajan RK. Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites 2023; 13:metabo13040560. [PMID: 37110218 PMCID: PMC10141515 DOI: 10.3390/metabo13040560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma. Ovarian carcinogenesis has been long attributed to endometriosis which is a chronic inflammation of the reproductive tract leading to progressive accumulation of mutations. Due to the advent of multi-omics datasets, the consequences of somatic mutations and their role in altered tumor metabolism has been well elucidated. Several oncogenes and tumor suppressor genes have been implicated in the progression of ovarian cancer. In this review, we highlight the genetic alterations undergone by the key oncogenes and tumor suppressor genes responsible for the development of ovarian cancer. We also summarize the role of these oncogenes and tumor suppressor genes and their association with a deregulated network of fatty acid, glycolysis, tricarboxylic acid and amino acid metabolism in ovarian cancers. Identification of genomic and metabolic circuits will be useful in clinical stratification of patients with complex etiologies and in identifying drug targets for personalized therapies against cancer.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Vaishnavi Balasubramaniam
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| |
Collapse
|
5
|
Jakoube P, Cutano V, González-Morena JM, Keckesova Z. Mitochondrial Tumor Suppressors-The Energetic Enemies of Tumor Progression. Cancer Res 2021; 81:4652-4667. [PMID: 34183354 PMCID: PMC9397617 DOI: 10.1158/0008-5472.can-21-0518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Tumor suppressors represent a critical line of defense against tumorigenesis. Their mechanisms of action and the pathways they are involved in provide important insights into cancer progression, vulnerabilities, and treatment options. Although nuclear and cytosolic tumor suppressors have been extensively investigated, relatively little is known about tumor suppressors localized within the mitochondria. However, recent research has begun to uncover the roles of these important proteins in suppressing tumorigenesis. Here, we review this newly developing field and summarize available information on mitochondrial tumor suppressors.
Collapse
Affiliation(s)
- Pavel Jakoube
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Valentina Cutano
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Juan M. González-Morena
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Keckesova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Corresponding Author: Zuzana Keckesova, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 16000, Czech Republic. Phone: 420-2201-83584; E-mail:
| |
Collapse
|
6
|
ETV7 regulates breast cancer stem-like cell features by repressing IFN-response genes. Cell Death Dis 2021; 12:742. [PMID: 34315857 PMCID: PMC8316333 DOI: 10.1038/s41419-021-04005-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) represent a population of cells within the tumor able to drive tumorigenesis and known to be highly resistant to conventional chemotherapy and radiotherapy. In this work, we show a new role for ETV7, a transcriptional repressor member of the ETS family, in promoting breast cancer stem-like cells plasticity and resistance to chemo- and radiotherapy in breast cancer (BC) cells. We observed that MCF7 and T47D BC-derived cells stably over-expressing ETV7 showed reduced sensitivity to the chemotherapeutic drug 5-fluorouracil and to radiotherapy, accompanied by an adaptive proliferative behavior observed in different culture conditions. We further noticed that alteration of ETV7 expression could significantly affect the population of breast CSCs, measured by CD44+/CD24low cell population and mammosphere formation efficiency. By transcriptome profiling, we identified a signature of Interferon-responsive genes significantly repressed in cells over-expressing ETV7, which could be responsible for the increase in the breast CSCs population, as this could be partially reverted by the treatment with IFN-β. Lastly, we show that the expression of the IFN-responsive genes repressed by ETV7 could have prognostic value in breast cancer, as low expression of these genes was associated with a worse prognosis. Therefore, we propose a novel role for ETV7 in breast cancer stem cells’ plasticity and associated resistance to conventional chemotherapy and radiotherapy, which involves the repression of a group of IFN-responsive genes, potentially reversible upon IFN-β treatment. We, therefore, suggest that an in-depth investigation of this mechanism could lead to novel breast CSCs targeted therapies and to the improvement of combinatorial regimens, possibly involving the therapeutic use of IFN-β, with the aim of avoiding resistance development and relapse in breast cancer.
Collapse
|
7
|
Liu Y, Mao C, Liu S, Xiao D, Shi Y, Tao Y. Proline dehydrogenase in cancer: apoptosis, autophagy, nutrient dependency and cancer therapy. Amino Acids 2021; 53:1891-1902. [PMID: 34283310 DOI: 10.1007/s00726-021-03032-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/27/2021] [Indexed: 01/03/2023]
Abstract
L-proline catabolism is emerging as a key pathway that is critical to cellular metabolism, growth, survival, and death. Proline dehydrogenase (PRODH) enzyme, which catalyzes the first step of proline catabolism, has diverse functional roles in regulating many pathophysiological processes, including apoptosis, autophagy, cell senescence, and cancer metastasis. Notably, accumulated evidence demonstrated that PRODH plays complex role in many types of cancers. In this review, we briefly introduce the function of PRODH, then its expression in different types of cancer. We next discuss the regulation of PRODH in cancer, the downstream pathways of PRODH and the therapies that are under investigation. Finally, we propose novel insights for future perspectives on the modulation of PRODH.
Collapse
Affiliation(s)
- Yating Liu
- Postdoctoral Research Station of Clinical Medicine & Department of Hematology and Critical Care Medicine, Central South University, the 3rd Xiangya Hospital, Changsha, 410000, People's Republic of China.,Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Chao Mao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Center for Geriatric Disorders, National Clinical Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Ying Shi
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Yongguang Tao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China. .,Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
8
|
Lahalle A, Lacroix M, De Blasio C, Cissé MY, Linares LK, Le Cam L. The p53 Pathway and Metabolism: The Tree That Hides the Forest. Cancers (Basel) 2021; 13:cancers13010133. [PMID: 33406607 PMCID: PMC7796211 DOI: 10.3390/cancers13010133] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The p53 pathway is a major tumor suppressor pathway that prevents the propagation of abnormal cells by regulating DNA repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by p53 were more recently extended to the control of metabolism, and many studies support the notion that perturbations of p53-associated metabolic activities are linked to cancer development. Converging lines of evidence support the notion that, in addition to p53, other key components of this molecular cascade are also important regulators of metabolism. Here, we illustrate the underestimated complexity of the metabolic network controlled by the p53 pathway and show how its perturbation contributes to human diseases including cancer, aging, and metabolic diseases. Abstract The p53 pathway is functionally inactivated in most, if not all, human cancers. The p53 protein is a central effector of numerous stress-related molecular cascades. p53 controls a safeguard mechanism that prevents accumulation of abnormal cells and their transformation by regulating DNA repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by p53 were more recently extended to the control of metabolism and many studies support the notion that perturbations of p53-associated metabolic activities are linked to cancer development, as well as to other pathophysiological conditions including aging, type II diabetes, and liver disease. Although much less documented than p53 metabolic activities, converging lines of evidence indicate that other key components of this tumor suppressor pathway are also involved in cellular metabolism through p53-dependent as well as p53-independent mechanisms. Thus, at least from a metabolic standpoint, the p53 pathway must be considered as a non-linear pathway, but the complex metabolic network controlled by these p53 regulators and the mechanisms by which their activities are coordinated with p53 metabolic functions remain poorly understood. In this review, we highlight some of the metabolic pathways controlled by several central components of the p53 pathway and their role in tissue homeostasis, metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Airelle Lahalle
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Matthieu Lacroix
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Carlo De Blasio
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Madi Y. Cissé
- Department of Molecular Metabolism, Harvard, T.H Chan School of Public Health, Boston, MA 02115, USA;
| | - Laetitia K. Linares
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
| | - Laurent Le Cam
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
- Correspondence:
| |
Collapse
|
9
|
Chari NS, Ivan C, Le X, Li J, Mijiti A, Patel AA, Osman AA, Peterson CB, Williams MD, Pickering CR, Caulin C, Myers JN, Calin GA, Lai SY. Disruption of TP63-miR-27a* Feedback Loop by Mutant TP53 in Head and Neck Cancer. J Natl Cancer Inst 2020; 112:266-277. [PMID: 31124563 DOI: 10.1093/jnci/djz097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Alterations in the epidermal growth factor receptor and PI3K pathways in head and neck squamous cell carcinomas (HNSCCs) are frequent events that promote tumor progression. Ectopic expression of the epidermal growth factor receptor-targeting microRNA (miR), miR-27a* (miR-27a-5p), inhibits tumor growth. We sought to identify mechanisms mediating repression of miR-27a* in HNSCC, which have not been previously identified. METHODS We quantified miR-27a* in 47 oral cavity squamous cell carcinoma patient samples along with analysis of miR-27a* in 73 oropharyngeal and 66 human papillomavirus-positive (HPV+) samples from The Cancer Genome Atlas. In vivo and in vitro TP53 models engineered to express mutant TP53, along with promoter analysis using chromatin immunoprecipitation and luciferase assays, were used to identify the role of TP53 and TP63 in miR-27a* transcription. An HNSCC cell line engineered to conditionally express miR-27a* was used in vitro to determine effects of miR-27a* on target genes and tumor cells. RESULTS miR-27a* expression was repressed in 47 oral cavity tumor samples vs matched normal tissue (mean log2 difference = -0.023, 95% confidence interval = -0.044 to -0.002; two-sided paired t test, P = .03), and low miR-27a* levels were associated with poor survival in HPV+ and oropharyngeal HNSCC samples. Binding of ΔNp63α to the promoter led to an upregulation of miR-27a*. In vitro and in vivo findings showed that mutant TP53 represses the miR-27a* promoter, downregulating miR-27a* levels. ΔNp63α and nucleoporin 62, a protein involved in ΔNP63α transport, were validated as novel targets of miR-27a*. CONCLUSION Our results characterize a negative feedback loop between TP63 and miR-27a*. Genetic alterations in TP53, a frequent event in HNSCC, disrupt this regulatory loop by repressing miR-27a* expression, promoting tumor survival.
Collapse
Affiliation(s)
- Nikhil S Chari
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Cristina Ivan
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xiandong Le
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jinzhong Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ainiwaer Mijiti
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Stomatology, Shenzen Luohu People's Hospital, Shenzen, Guandong, China
| | - Ameeta A Patel
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Abdullah A Osman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michelle D Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Carlos Caulin
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Otolaryngology-Head and Neck Surgery, The University of Arizona and University of Arizona Cancer Center, Tucson, AZ
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - George A Calin
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephen Y Lai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
10
|
Campbell AC, Becker DF, Gates KS, Tanner JJ. Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate. ACS Chem Biol 2020; 15:936-944. [PMID: 32159324 DOI: 10.1021/acschembio.9b00935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the FAD-dependent 2-electron oxidation of l-proline to Δ1-pyrroline-5-carboxylate. PRODH has emerged as a possible cancer therapy target, and thus the inhibition of PRODH is of interest. Here we show that the proline analogue thiazolidine-2-carboxylate (T2C) is a mechanism-based inactivator of PRODH. Structures of the bifunctional proline catabolic enzyme proline utilization A (PutA) determined from crystals grown in the presence of T2C feature strong electron density for a 5-membered ring species resembling l-T2C covalently bound to the N5 of the FAD in the PRODH domain. The modified FAD exhibits a large butterfly bend angle, indicating that the FAD is locked into the 2-electron reduced state. Reduction of the FAD is consistent with the crystals lacking the distinctive yellow color of the oxidized enzyme and stopped-flow kinetic data showing that T2C is a substrate for the PRODH domain of PutA. A mechanism is proposed in which PRODH catalyzes the oxidation of T2C at the C atom adjacent to the S atom of the thiazolidine ring (C5). Then, the N5 atom of the reduced FAD attacks the C5 of the oxidized T2C species, resulting in the covalent adduct observed in the crystal structure. To our knowledge, this is the first report of T2C inactivating (or inhibiting) PRODH or any other flavoenzyme. These results may inform the design of new mechanism-based inactivators of PRODH for use as chemical probes to study the roles of proline metabolism in cancer.
Collapse
Affiliation(s)
- Ashley C. Campbell
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Kent S. Gates
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
11
|
Farooqi K, Ghazvini M, Pride LD, Mazzella L, White D, Pramanik A, Bargonetti J, Moore CW. A Protein in the Yeast Saccharomyces cerevisiae Presents DNA Binding Homology to the p53 Checkpoint Protein and Tumor Suppressor. Biomolecules 2020; 10:E417. [PMID: 32156076 PMCID: PMC7175211 DOI: 10.3390/biom10030417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Saccharomyces cerevisiae does not contain a p53 homolog. Utilizing this yeast as an in vivo test tube model, our aim was to investigate if a yeast protein would show p53 DNA binding homology. Electrophoretic mobility shift analyses revealed the formation of specific DNA-protein complexes consisting of S. cerevisiae nuclear protein(s) and oligonucleotides containing p53 DNA binding sites. A S. cerevisiae p53 binding site factor (Scp53BSF) bound to a p53 synthetic DNA-consensus sequence (SCS) and a p53 binding-site sequence from the MDM2 oncogene. The complexes were of comparable size. Like mammalian p53, the affinity of Scp53BSF for the SCS oligonucleotide was higher than for the MDM2 oligonucleotide. Binding of Scp53BSF to the SCS and MDM2 oligonucleotides was strongly competed by unlabeled oligonucleotides containing mammalian p53 sites, but very little by a mutated site oligonucleotide. Importantly, Scp53BSF-DNA binding activity was significantly induced in extracts from cells with DNA damage. This resulted in dose-dependent coordinated activation of transcription when using p53-binding site reporter constructs. An ancient p53-like DNA binding protein may have been found, and activation of DNA-associated factors to p53 response elements may have functions not yet determined.
Collapse
Affiliation(s)
- Kanwal Farooqi
- Department of Molecular, Cellular and Biomedical Studies, City University of New York School of Medicine and B.S.-M.D. Program, Harris Hall, 160 Convent Avenue, New York, NY 10031, USA; (K.F.); (M.G.); (L.D.P.); (L.M.); (A.P.)
| | - Marjan Ghazvini
- Department of Molecular, Cellular and Biomedical Studies, City University of New York School of Medicine and B.S.-M.D. Program, Harris Hall, 160 Convent Avenue, New York, NY 10031, USA; (K.F.); (M.G.); (L.D.P.); (L.M.); (A.P.)
| | - Leah D. Pride
- Department of Molecular, Cellular and Biomedical Studies, City University of New York School of Medicine and B.S.-M.D. Program, Harris Hall, 160 Convent Avenue, New York, NY 10031, USA; (K.F.); (M.G.); (L.D.P.); (L.M.); (A.P.)
- City University of New York Graduate Center, Programs in Biochemistry and Biology, 365 Fifth Ave, New York, NY 10016, USA; (D.W.); (J.B.)
| | - Louis Mazzella
- Department of Molecular, Cellular and Biomedical Studies, City University of New York School of Medicine and B.S.-M.D. Program, Harris Hall, 160 Convent Avenue, New York, NY 10031, USA; (K.F.); (M.G.); (L.D.P.); (L.M.); (A.P.)
| | - David White
- City University of New York Graduate Center, Programs in Biochemistry and Biology, 365 Fifth Ave, New York, NY 10016, USA; (D.W.); (J.B.)
- Department of Biology, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | - Ajay Pramanik
- Department of Molecular, Cellular and Biomedical Studies, City University of New York School of Medicine and B.S.-M.D. Program, Harris Hall, 160 Convent Avenue, New York, NY 10031, USA; (K.F.); (M.G.); (L.D.P.); (L.M.); (A.P.)
| | - Jill Bargonetti
- City University of New York Graduate Center, Programs in Biochemistry and Biology, 365 Fifth Ave, New York, NY 10016, USA; (D.W.); (J.B.)
- Department of Biology, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | - Carol Wood Moore
- Department of Molecular, Cellular and Biomedical Studies, City University of New York School of Medicine and B.S.-M.D. Program, Harris Hall, 160 Convent Avenue, New York, NY 10031, USA; (K.F.); (M.G.); (L.D.P.); (L.M.); (A.P.)
- City University of New York Graduate Center, Programs in Biochemistry and Biology, 365 Fifth Ave, New York, NY 10016, USA; (D.W.); (J.B.)
| |
Collapse
|
12
|
Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab 2020; 33:2-22. [PMID: 31685430 PMCID: PMC7056927 DOI: 10.1016/j.molmet.2019.10.002] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. However, converging evidence indicates that p53 also plays a major role in metabolism in both normal and cancer cells. SCOPE OF REVIEW We provide an overview of the current knowledge on the metabolic activities of wild type (WT) p53 and highlight some of the mechanisms by which p53 contributes to whole body energy homeostasis. We will also pinpoint some evidences suggesting that deregulation of p53-associated metabolic activities leads to human pathologies beyond cancer, including obesity, diabetes, liver, and cardiovascular diseases. MAJOR CONCLUSIONS p53 is activated when cells are metabolically challenged but the origin, duration, and intensity of these stresses will dictate the outcome of the p53 response. p53 plays pivotal roles both upstream and downstream of several key metabolic regulators and is involved in multiple feedback-loops that ensure proper cellular homeostasis. The physiological roles of p53 in metabolism involve complex mechanisms of regulation implicating both cell autonomous effects as well as autocrine loops. However, the mechanisms by which p53 coordinates metabolism at the organismal level remain poorly understood. Perturbations of p53-regulated metabolic activities contribute to various metabolic disorders and are pivotal during cancer progression.
Collapse
Affiliation(s)
- Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giuseppe Arena
- Gustave Roussy Cancer Campus, INSERM U1030, Villejuif, France
| | - Laetitia Karine Linares
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France.
| |
Collapse
|
13
|
Cancer progression is mediated by proline catabolism in non-small cell lung cancer. Oncogene 2020; 39:2358-2376. [PMID: 31911619 DOI: 10.1038/s41388-019-1151-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Dysregulated metabolism contributes to cancer initiation and progression, but the key drivers of these pathways are just being discovered. Here, we report a critical role for proline catabolism in non-small cell lung cancer (NSCLC). Proline dehydrogenase (PRODH) is activated to reduce proline levels by the chromatin remodeling factor lymphoid-specific helicase (LSH), an epigenetic driver of NSCLC. PRODH promotes NSCLC tumorigenesis by inducing epithelial to mesenchymal transition (EMT) and IKKα-dependent inflammatory genes, including CXCL1, LCN2, and IL17C. Consistently, proline addition promotes the expression of these inflammatory genes, as well as EMT, tumor cell proliferation, and migration in vitro and tumor growth in vivo, while the depletion or inhibition of PRODH blocks these phenotypes. In summary, we reveal an essential metabolic pathway amenable to targeting in NSCLC.
Collapse
|
14
|
Buchalski B, Wood KD, Challa A, Fargue S, Holmes RP, Lowther WT, Knight J. The effects of the inactivation of Hydroxyproline dehydrogenase on urinary oxalate and glycolate excretion in mouse models of primary hyperoxaluria. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165633. [PMID: 31821850 PMCID: PMC7047938 DOI: 10.1016/j.bbadis.2019.165633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023]
Abstract
The major clinical manifestation of the Primary Hyperoxalurias (PH) is increased production of oxalate, as a consequence of genetic mutations that lead to aberrant glyoxylate and hydroxyproline metabolism. Hyperoxaluria can lead to the formation of calcium-oxalate kidney stones, nephrocalcinosis and renal failure. Current therapeutic approaches rely on organ transplants and more recently modifying the pathway of oxalate synthesis using siRNA therapy. We have recently reported that the metabolism of trans-4-hydroxy-L-proline (Hyp), an amino acid derived predominantly from collagen metabolism, is a significant source of oxalate production in individuals with PH2 and PH3. Thus, the first enzyme in the Hyp degradation pathway, hydroxyproline dehydrogenase (HYPDH), represents a promising therapeutic target for reducing endogenous oxalate production in these individuals. This is supported by the observation that individuals with inherited mutations in HYPDH (PRODH2 gene) have no pathological consequences. The creation of mouse models that do not express HYPDH will facilitate research evaluating HYPDH as a target. We describe the phenotype of the Prodh2 knock out mouse model and show that the lack of HYPDH in PH mouse models results in lower levels of urinary oxalate excretion, consistent with our previous metabolic tracer and siRNA-based knockdown studies. The double knockout mouse, Grhpr KO (PH2 model) and Prodh2 KO, prevented calcium-oxalate crystal deposition in the kidney, when placed on a 1% Hyp diet. These observations support the use of the Grhpr KO mice to screen HYPDH inhibitors in vivo. Altogether these data support HYPDH as an attractive therapeutic target for PH2 and PH3 patients.
Collapse
Affiliation(s)
- Brianna Buchalski
- Department of Urology, University of Alabama at Birmingham, 720 20(th) Street South, Birmingham, AL, 35294, United States of America
| | - Kyle D Wood
- Department of Urology, University of Alabama at Birmingham, 720 20(th) Street South, Birmingham, AL, 35294, United States of America
| | - Anil Challa
- Department of Genetics, University of Alabama at Birmingham, 720 20(th) Street South, Birmingham, AL 35294, United States of America
| | - Sonia Fargue
- Department of Urology, University of Alabama at Birmingham, 720 20(th) Street South, Birmingham, AL, 35294, United States of America
| | - Ross P Holmes
- Department of Urology, University of Alabama at Birmingham, 720 20(th) Street South, Birmingham, AL, 35294, United States of America
| | - W Todd Lowther
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, United States of America.
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, 720 20(th) Street South, Birmingham, AL, 35294, United States of America.
| |
Collapse
|
15
|
Abstract
SIGNIFICANCE It is increasingly clear that proline metabolism plays an important role in metabolic reprogramming, not only in cancer but also in related fields such as aging, senescence, and development. Although first focused on proline catabolism, recent studies from a number of laboratories have emphasized the regulatory effects of proline synthesis and proline cycling. Recent Advances: Although proline dehydrogenase/proline oxidase (PRODH/POX) has been known as a tumor protein 53 (P53)-activated source of redox signaling for initiating apoptosis and autophagy, senescence has been added to the responses. On the biosynthetic side, two well-recognized oncogenes, c-MYC and phosphoinositide 3-kinase (PI3K), markedly upregulate enzymes of proline synthesis; mechanisms affected include augmented redox cycling and maintenance of pyridine nucleotides. The reprogramming has been shown to shift in clonogenesis and/or metastasis. CRITICAL ISSUES Although PRODH/POX generates reactive oxygen species (ROS) for signaling, the cellular endpoint is variable and dependent on metabolic context; the switches for these responses remain unknown. On the synthetic side, the enzymes require more complete characterization in various cancers, and demonstration of coupling of proline metabolites to other pathways may require studies of protein-protein interactions, membrane transporters, and shuttles. FUTURE DIRECTIONS The proline metabolic axis can serve as a scaffold on which a variety of regulatory mechanisms are integrated. Once understood as a central mechanism in cancer metabolism, proline metabolism may be a good target for adjunctive cancer therapy.
Collapse
Affiliation(s)
- James M Phang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, NIH , Frederick, Maryland
| |
Collapse
|
16
|
Simabuco FM, Morale MG, Pavan IC, Morelli AP, Silva FR, Tamura RE. p53 and metabolism: from mechanism to therapeutics. Oncotarget 2018; 9:23780-23823. [PMID: 29805774 PMCID: PMC5955117 DOI: 10.18632/oncotarget.25267] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics.
Collapse
Affiliation(s)
- Fernando M. Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mirian G. Morale
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Isadora C.B. Pavan
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana P. Morelli
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando R. Silva
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo E. Tamura
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Thiamine antagonists trigger p53-dependent apoptosis in differentiated SH-SY5Y cells. Sci Rep 2017; 7:10632. [PMID: 28878400 PMCID: PMC5587765 DOI: 10.1038/s41598-017-10878-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidences suggest that p53 is a key coordinator of cellular events triggered by oxidative stress often associated with the impairment in thiamine metabolism and its functions. However, there are limited data regarding the pursuant feedback between p53 transactivation and thiamine homeostasis. Impairment in thiamine metabolism can be induced experimentally via interference with the thiamine uptake and/or inhibition of the thiamin pyrophosphate–dependent enzymes using thiamine antagonists - amprolium (AM), oxythiamine (OT) or pyrithiamine (PT). We found that exposure of neuronally differentiated SH-SY5Y cells to AM, OT and PT triggered upregulation of p53 gene expression, post-translational modification of p53 via phosphorylation and activation of p53 DNA-binding activity. Phosphorylation of p53 at Ser20 was equally efficient in upregulation of thiamine transporter 1 (THTR1) by all antagonists. However, induction of the expressions of the pyruvate dehydrogenase E1 component subunit beta (PDHB) and oxoglutarate dehydrogenase (OGDH) required dual phosphorylation of p53 at Ser9 and Ser20, seen in cells treated with PT and OT. Moreover, pretreatment of the cells with a decoy oligonucleotide carrying wild-type p53-response element markedly attenuated OT-induced THTR1, PDHB and OGDH gene expression suggesting an important role of p53 in transactivation of these genes. Finally, analysis of gene and metabolic networks showed that OT triggers cell apoptosis through the p53-dependent intrinsic pathway.
Collapse
|
18
|
Nagano T, Nakashima A, Onishi K, Kawai K, Awai Y, Kinugasa M, Iwasaki T, Kikkawa U, Kamada S. Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. J Cell Sci 2017; 130:1413-1420. [PMID: 28264926 DOI: 10.1242/jcs.196469] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/23/2017] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence is a complex stress response characterized by permanent loss of proliferative capacity and is implicated in age-related disorders. Although the transcriptional activity of p53 (encoded by TP53) is known to be vital for senescence induction, the downstream effector genes critical for senescence remain unsolved. Recently, we have identified the proline dehydrogenase gene (PRODH) to be upregulated specifically in senescent cells in a p53-dependent manner, and the functional relevance of this to senescence is yet to be defined. Here, we conducted functional analyses to explore the relationship between PRODH and the senescence program. We found that genetic and pharmacological inhibition of PRODH suppressed senescent phenotypes induced by DNA damage. Furthermore, ectopic expression of wild-type PRODH, but not enzymatically inactive forms, induced senescence associated with the increase in reactive oxygen species (ROS) and the accumulation of DNA damage. Treatment with N-acetyl-L-cysteine, a ROS scavenger, prevented senescence induced by PRODH overexpression. These results indicate that PRODH plays a causative role in DNA damage-induced senescence through the enzymatic generation of ROS.
Collapse
Affiliation(s)
- Taiki Nagano
- Division of Signal Pathways, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Akio Nakashima
- Division of Signal Functions, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kengo Onishi
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kosuke Kawai
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yuto Awai
- Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Mizuki Kinugasa
- Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Tetsushi Iwasaki
- Division of Signal Pathways, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Ushio Kikkawa
- Division of Signal Functions, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shinji Kamada
- Division of Signal Pathways, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan .,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
19
|
Nagano T, Nakano M, Nakashima A, Onishi K, Yamao S, Enari M, Kikkawa U, Kamada S. Identification of cellular senescence-specific genes by comparative transcriptomics. Sci Rep 2016; 6:31758. [PMID: 27545311 PMCID: PMC4992837 DOI: 10.1038/srep31758] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is defined as permanent cell cycle arrest induced by various stresses. Although the p53 transcriptional activity is essential for senescence induction, the downstream genes that are crucial for senescence remain unsolved. Here, by using a developed experimental system in which cellular senescence or apoptosis is induced preferentially by altering concentration of etoposide, a DNA-damaging drug, we compared gene expression profiles of senescent and apoptotic cells by microarray analysis. Subtraction of the expression profile of apoptotic cells identified 20 genes upregulated specifically in senescent cells. Furthermore, 6 out of 20 genes showed p53-dependent upregulation by comparing gene expression between p53-proficient and -deficient cells. These 6 genes were also upregulated during replicative senescence of normal human diploid fibroblasts, suggesting that upregulation of these genes is a general phenomenon in senescence. Among these genes, 2 genes (PRODH and DAO) were found to be directly regulated by p53, and ectopic expression of 4 genes (PRODH, DAO, EPN3, and GPR172B) affected senescence phenotypes induced by etoposide treatment. Collectively, our results identified several proteins as novel downstream effectors of p53-mediated senescence and provided new clues for further research on the complex signalling networks underlying the induction and maintenance of senescence.
Collapse
Affiliation(s)
- Taiki Nagano
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masayuki Nakano
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Akio Nakashima
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kengo Onishi
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shunsuke Yamao
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masato Enari
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shinji Kamada
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
20
|
Bisio A, Zámborszky J, Zaccara S, Lion M, Tebaldi T, Sharma V, Raimondi I, Alessandrini F, Ciribilli Y, Inga A. Cooperative interactions between p53 and NFκB enhance cell plasticity. Oncotarget 2015; 5:12111-25. [PMID: 25401416 PMCID: PMC4322992 DOI: 10.18632/oncotarget.2545] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/01/2014] [Indexed: 12/31/2022] Open
Abstract
The p53 and NFκB sequence-specific transcription factors play crucial roles in cell proliferation and survival with critical, even if typically opposite, effects on cancer progression. To investigate a possible crosstalk between p53 and NFκB driven by chemotherapy-induced responses in the context of an inflammatory microenvironment, we performed a proof of concept study using MCF7 cells. Transcriptome analyses upon single or combined treatments with doxorubicin (Doxo, 1.5μM) and the NFκB inducer TNF-alpha (TNF⍺, 5ng/ml) revealed 432 up-regulated (log2 FC> 2), and 390 repressed genes (log2 FC< -2) for the Doxo+TNF⍺ treatment. 239 up-regulated and 161 repressed genes were synergistically regulated by the double treatment. Annotation and pathway analyses of Doxo+TNF⍺ selectively up-regulated genes indicated strong enrichment for cell migration terms. A panel of genes was examined by qPCR coupled to p53 activation by Doxo, 5-Fluoruracil and Nutlin-3a, or to p53 or NFκB inhibition. Transcriptome data were confirmed for 12 of 15 selected genes and seven (PLK3, LAMP3, ETV7, UNC5B, NTN1, DUSP5, SNAI1) were synergistically up-regulated after Doxo+TNF⍺ and dependent both on p53 and NFκB. Migration assays consistently showed an increase in motility for MCF7 cells upon Doxo+TNF⍺. A signature of 29 Doxo+TNF⍺ highly synergistic genes exhibited prognostic value for luminal breast cancer patients, with adverse outcome correlating with higher relative expression. We propose that the crosstalk between p53 and NFκB can lead to the activation of specific gene expression programs that may impact on cancer phenotypes and potentially modify the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Alessandra Bisio
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Judit Zámborszky
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy. Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Sara Zaccara
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Mattia Lion
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy. Department of Genetics, Massachusetts General Hospital, Boston, MA, USA
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Vasundhara Sharma
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Ivan Raimondi
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Federica Alessandrini
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| |
Collapse
|
21
|
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology; Medical School ; University of Leipzig ; Leipzig , Germany
| | | | | |
Collapse
|
22
|
Napoli E, Tassone F, Wong S, Angkustsiri K, Simon TJ, Song G, Giulivi C. Mitochondrial Citrate Transporter-dependent Metabolic Signature in the 22q11.2 Deletion Syndrome. J Biol Chem 2015. [PMID: 26221035 DOI: 10.1074/jbc.m115.672360] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The congenital disorder 22q11.2 deletion syndrome (22qDS), characterized by a hemizygous deletion of 1.5-3 Mb on chromosome 22 at locus 11.2, is the most common microdeletion disorder (estimated prevalence of 1 in 4000) and the second risk factor for schizophrenia. Nine of ∼30 genes involved in 22qDS have the potential of disrupting mitochondrial metabolism (COMT, UFD1L, DGCR8, MRPL40, PRODH, SLC25A1, TXNRD2, T10, and ZDHHC8). Deficits in bioenergetics during early postnatal brain development could set the basis for a disrupted neuronal metabolism or synaptic signaling, partly explaining the higher incidence in developmental and behavioral deficits in these individuals. Here, we investigated whether mitochondrial outcomes and metabolites from 22qDS children segregated with the altered dosage of one or several of these mitochondrial genes contributing to 22qDS etiology and/or morbidity. Plasma metabolomics, lymphocytic mitochondrial outcomes, and epigenetics (histone H3 Lys-4 trimethylation and 5-methylcytosine) were evaluated in samples from 11 22qDS children and 13 age- and sex-matched neurotypically developing controls. Metabolite differences between 22qDS children and controls reflected a shift from oxidative phosphorylation to glycolysis (higher lactate/pyruvate ratios) accompanied by an increase in reductive carboxylation of α-ketoglutarate (increased concentrations of 2-hydroxyglutaric acid, cholesterol, and fatty acids). Altered metabolism in 22qDS reflected a critical role for the haploinsufficiency of the mitochondrial citrate transporter SLC25A1, further enhanced by HIF-1α, MYC, and metabolite controls. This comprehensive profiling served to clarify the biochemistry of this disease underlying its broad, complex phenotype.
Collapse
Affiliation(s)
- Eleonora Napoli
- From the Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, California 95616
| | - Flora Tassone
- the Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, the Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, California 95817
| | - Sarah Wong
- From the Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, California 95616
| | - Kathleen Angkustsiri
- the Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, the Department of Pediatrics, and
| | - Tony J Simon
- the Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, the Department of Psychiatry, UC Davis Medical Center, Sacramento, California 95817, and
| | - Gyu Song
- From the Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, California 95616
| | - Cecilia Giulivi
- From the Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, California 95616, the Medical Investigations of Neurodevelopmental Disorders (MIND) Institute,
| |
Collapse
|
23
|
Sharma V, Jordan JJ, Ciribilli Y, Resnick MA, Bisio A, Inga A. Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast-Based Functional Assay. PLoS One 2015; 10:e0130170. [PMID: 26147604 PMCID: PMC4493129 DOI: 10.1371/journal.pone.0130170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
The NF-κB transcription factor family plays a central role in innate immunity and inflammation processes and is frequently dysregulated in cancer. We developed an NF-κB functional assay in yeast to investigate the following issues: transactivation specificity of NF-κB proteins acting as homodimers or heterodimers; correlation between transactivation capacity and in vitro DNA binding measurements; impact of co-expressed interacting proteins or of small molecule inhibitors on NF-κB-dependent transactivation. Full-length p65 and p50 cDNAs were cloned into centromeric expression vectors under inducible GAL1 promoter in order to vary their expression levels. Since p50 lacks a transactivation domain (TAD), a chimeric construct containing the TAD derived from p65 was also generated (p50TAD) to address its binding and transactivation potential. The p50TAD and p65 had distinct transactivation specificities towards seventeen different κB response elements (κB-REs) where single nucleotide changes could greatly impact transactivation. For four κB-REs, results in yeast were predictive of transactivation potential measured in the human MCF7 cell lines treated with the NF-κB activator TNFα. Transactivation results in yeast correlated only partially with in vitro measured DNA binding affinities, suggesting that features other than strength of interaction with naked DNA affect transactivation, although factors such as chromatin context are kept constant in our isogenic yeast assay. The small molecules BAY11-7082 and ethyl-pyruvate as well as expressed IkBα protein acted as NF-κB inhibitors in yeast, more strongly towards p65. Thus, the yeast-based system can recapitulate NF-κB features found in human cells, thereby providing opportunities to address various NF-κB functions, interactions and chemical modulators.
Collapse
Affiliation(s)
- Vasundhara Sharma
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jennifer J. Jordan
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michael A. Resnick
- Chromosome Stability Group; National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Alessandra Bisio
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
24
|
Tebaldi T, Zaccara S, Alessandrini F, Bisio A, Ciribilli Y, Inga A. Whole-genome cartography of p53 response elements ranked on transactivation potential. BMC Genomics 2015; 16:464. [PMID: 26081755 PMCID: PMC4470028 DOI: 10.1186/s12864-015-1643-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
Background Many recent studies using ChIP-seq approaches cross-referenced to trascriptome data and also to potentially unbiased in vitro DNA binding selection experiments are detailing with increasing precision the p53-directed gene regulatory network that, nevertheless, is still expanding. However, most experiments have been conducted in established cell lines subjected to specific p53-inducing stimuli, both factors potentially biasing the results. Results We developed p53retriever, a pattern search algorithm that maps p53 response elements (REs) and ranks them according to predicted transactivation potentials in five classes. Besides canonical, full site REs, we developed specific pattern searches for non-canonical half sites and 3/4 sites and show that they can mediate p53-dependent responsiveness of associated coding sequences. Using ENCODE data, we also mapped p53 REs in about 44,000 distant enhancers and identified a 16-fold enrichment for high activity REs within those sites in the comparison with genomic regions near transcriptional start sites (TSS). Predictions from our pattern search were cross-referenced to ChIP-seq, ChIP-exo, expression, and various literature data sources. Based on the mapping of predicted functional REs near TSS, we examined expression changes of thirteen genes as a function of different p53-inducing conditions, providing further evidence for PDE2A, GAS6, E2F7, APOBEC3H, KCTD1, TRIM32, DICER, HRAS, KITLG and TGFA p53-dependent regulation, while MAP2K3, DNAJA1 and potentially YAP1 were identified as new direct p53 target genes. Conclusions We provide a comprehensive annotation of canonical and non-canonical p53 REs in the human genome, ranked on predicted transactivation potential. We also establish or corroborate direct p53 transcriptional control of thirteen genes. The entire list of identified and functionally classified p53 REs near all UCSC-annotated genes and within ENCODE mapped enhancer elements is provided. Our approach is distinct from, and complementary to, existing methods designed to identify p53 response elements. p53retriever is available as an R package at: http://tomateba.github.io/p53retriever. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1643-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Toma Tebaldi
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Sara Zaccara
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Federica Alessandrini
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Alessandra Bisio
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Yari Ciribilli
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Alberto Inga
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| |
Collapse
|
25
|
Lion M, Raimondi I, Donati S, Jousson O, Ciribilli Y, Inga A. Evolution of p53 transactivation specificity through the lens of a yeast-based functional assay. PLoS One 2015; 10:e0116177. [PMID: 25668429 PMCID: PMC4323202 DOI: 10.1371/journal.pone.0116177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
Co-evolution of transcription factors (TFs) with their respective cis-regulatory network enhances functional diversity in the course of evolution. We present a new approach to investigate transactivation capacity of sequence-specific TFs in evolutionary studies. Saccharomyces cerevisiae was used as an in vivo test tube and p53 proteins derived from human and five commonly used animal models were chosen as proof of concept. p53 is a highly conserved master regulator of environmental stress responses. Previous reports indicated conserved p53 DNA binding specificity in vitro, even for evolutionary distant species. We used isogenic yeast strains where p53-dependent transactivation was measured towards chromosomally integrated p53 response elements (REs). Ten REs were chosen to sample a wide range of DNA binding affinity and transactivation capacity for human p53 and proteins were expressed at two levels using an inducible expression system. We showed that the assay is amenable to study thermo-sensitivity of frog p53, and that chimeric constructs containing an ectopic transactivation domain could be rapidly developed to enhance the activity of proteins, such as fruit fly p53, that are poorly effective in engaging the yeast transcriptional machinery. Changes in the profile of relative transactivation towards the ten REs were measured for each p53 protein and compared to the profile obtained with human p53. These results, which are largely independent from relative p53 protein levels, revealed widespread evolutionary divergence of p53 transactivation specificity, even between human and mouse p53. Fruit fly and human p53 exhibited the largest discrimination among REs while zebrafish p53 was the least selective.
Collapse
Affiliation(s)
- Mattia Lion
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Mattarello, Trento, Italy
| | - Ivan Raimondi
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Mattarello, Trento, Italy
| | - Stefano Donati
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Mattarello, Trento, Italy
| | - Olivier Jousson
- Laboratory of Microbial Genomics, Centre for Integrative Biology (CIBIO), University of Trento, Mattarello, Trento, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Mattarello, Trento, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Mattarello, Trento, Italy
- * E-mail:
| |
Collapse
|
26
|
Monti P, Ciribilli Y, Bisio A, Foggetti G, Raimondi I, Campomenosi P, Menichini P, Fronza G, Inga A. ∆N-P63α and TA-P63α exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites. Oncotarget 2015; 5:2116-30. [PMID: 24926492 PMCID: PMC4039150 DOI: 10.18632/oncotarget.1845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TP63 is a member of the TP53 gene family that encodes for up to ten different TA and ΔN isoforms through alternative promoter usage and alternative splicing. Besides being a master regulator of gene expression for squamous epithelial proliferation, differentiation and maintenance, P63, through differential expression of its isoforms, plays important roles in tumorigenesis. All P63 isoforms share an immunoglobulin-like folded DNA binding domain responsible for binding to sequence-specific response elements (REs), whose overall consensus sequence is similar to that of the canonical p53 RE. Using a defined assay in yeast, where P63 isoforms and RE sequences are the only variables, and gene expression assays in human cell lines, we demonstrated that human TA- and ΔN-P63α proteins exhibited differences in transactivation specificity not observed with the corresponding P73 or P53 protein isoforms. These differences 1) were dependent on specific features of the RE sequence, 2) could be related to intrinsic differences in their oligomeric state and cooperative DNA binding, and 3) appeared to be conserved in evolution. Since genotoxic stress can change relative ratio of TA- and ΔN-P63α protein levels, the different transactivation specificity of each P63 isoform could potentially influence cellular responses to specific stresses.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Proline metabolism impacts a number of regulatory targets in both animals and plants and is especially important in cancer. Glutamine, a related amino acid, is considered second in importance only to glucose as a substrate for tumors. But proline and glutamine are interconvertible and linked in their metabolism. In animals, proline and glutamine have specific regulatory functions and their respective physiologic sources. A comparison of the metabolism of proline and glutamine would help us understand the importance of these two nonessential amino acids in cancer metabolism. RECENT FINDINGS The regulatory functions of proline metabolism proposed 3 decades ago have found relevance in many areas. For cancer, these functions play a role in apoptosis, autophagy and in response to nutrient and oxygen deprivation. Importantly, proline-derived reactive oxygen species served as a driving signal for reprogramming. This model has been applied by others to metabolic regulation for the insulin-prosurvival axis, induction of adipose triglyceride lipase for lipid metabolism and regulation of embryonic stem cell development. Of special interest, modulatory proteins such as parkinson protein 7 and oral cancer overexpressed 1 interact with pyrroline-5-carboxylate reductase, a critical component of the proline regulatory axis. Although the interconvertibility of proline and glutamine has been long established, recent findings showed that the proto-oncogene, cellular myelocytomatosis oncogene, upregulates glutamine utilization (glutaminase) and routes glutamate to proline biosynthesis (pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductases). Additionally, collagen, which contains large amounts of proline, may be metabolized to serve as a reservoir for proline. This metabolic relationship as well as the new regulatory targets of proline metabolism invites an elucidation of the differential effects of these nonessential amino acids and their production, storage and mobilization. SUMMARY Mechanisms by which the proline regulatory axis modulates the cancer phenotype are being revealed. Proline can be synthesized from glutamine as well as derived from collagen degradation. The metabolism of proline serves as a source of energy during stress, provides signaling reactive oxygen species for epigenetic reprogramming and regulates redox homeostasis.
Collapse
Affiliation(s)
- James M Phang
- Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | | | | | | |
Collapse
|