1
|
Balius TE, Tan YS, Chakrabarti M. DOCK 6: Incorporating hierarchical traversal through precomputed ligand conformations to enable large-scale docking. J Comput Chem 2024; 45:47-63. [PMID: 37743732 DOI: 10.1002/jcc.27218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
To allow DOCK 6 access to unprecedented chemical space for screening billions of small molecules, we have implemented features from DOCK 3.7 into DOCK 6, including a search routine that traverses precomputed ligand conformations stored in a hierarchical database. We tested them on the DUDE-Z and SB2012 test sets. The hierarchical database search routine is 16 times faster than anchor-and-grow. However, the ability of hierarchical database search to reproduce the experimental pose is 16% worse than that of anchor-and-grow. The enrichment performance is on average similar, but DOCK 3.7 has better enrichment than DOCK 6, and DOCK 6 is on average 1.7 times slower. However, with post-docking torsion minimization, DOCK 6 surpasses DOCK 3.7. A large-scale virtual screen is performed with DOCK 6 on 23 million fragment molecules. We use current features in DOCK 6 to complement hierarchical database calculations, including torsion minimization, which is not available in DOCK 3.7.
Collapse
Affiliation(s)
- Trent E Balius
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Y Stanley Tan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Mayukh Chakrabarti
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| |
Collapse
|
2
|
Stachowski TR, Fischer M. Large-Scale Ligand Perturbations of the Protein Conformational Landscape Reveal State-Specific Interaction Hotspots. J Med Chem 2022; 65:13692-13704. [PMID: 35970514 PMCID: PMC9619398 DOI: 10.1021/acs.jmedchem.2c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Protein flexibility is important for ligand binding but
often ignored
in drug design. Considering proteins as ensembles rather than static
snapshots creates opportunities to target dynamic proteins that lack
FDA-approved drugs, such as the human chaperone, heat shock protein
90 (Hsp90). Hsp90α accommodates ligands with a dynamic lid domain,
yet no comprehensive analysis relating lid conformations to ligand
properties is available. To date, ∼300 ligand-bound Hsp90α
crystal structures are deposited in the Protein Data Bank, which enables
us to consider ligand binding as a perturbation of the protein conformational
landscape. By estimating binding site volumes, we classified structures
into distinct major and minor lid conformations. Supported by retrospective
docking, each conformation creates unique hotspots that bind chemically
distinguishable ligands. Clustering revealed insightful exceptions
and the impact of crystal packing. Overall, Hsp90α’s
plasticity provides a cautionary tale of overinterpreting individual
crystal structures and motivates an ensemble-based view of drug design.
Collapse
Affiliation(s)
- Timothy R Stachowski
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Marcus Fischer
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
3
|
Stachowski TR, Vanarotti M, Seetharaman J, Lopez K, Fischer M. Water Networks Repopulate Protein-Ligand Interfaces with Temperature. Angew Chem Int Ed Engl 2022; 61:e202112919. [PMID: 35648650 PMCID: PMC9329195 DOI: 10.1002/anie.202112919] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/14/2022]
Abstract
High-resolution crystal structures highlight the importance of water networks in protein-ligand interactions. However, as these are typically determined at cryogenic temperature, resulting insights may be structurally precise but not biologically accurate. By collecting 10 matched room-temperature and cryogenic datasets of the biomedical target Hsp90α, we identified changes in water networks that impact protein conformations at the ligand binding interface. Water repositioning with temperature repopulates protein ensembles and ligand interactions. We introduce Flipper conformational barcodes to identify temperature-sensitive regions in electron density maps. This revealed that temperature-responsive states coincide with ligand-responsive regions and capture unique binding signatures that disappear upon cryo-cooling. Our results have implications for discovering Hsp90 selective ligands, and, more generally, for the utility of hidden protein and water conformations in drug discovery.
Collapse
Affiliation(s)
- Timothy R. Stachowski
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTN 38105USA
| | - Murugendra Vanarotti
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTN 38105USA
| | - Jayaraman Seetharaman
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTN 38105USA
| | - Karlo Lopez
- School of Natural SciencesMathematicsand EngineeringCalifornia State UniversityBakersfieldCA 93311USA
| | - Marcus Fischer
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTN 38105USA
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTN 38105USA
| |
Collapse
|
4
|
Stachowski TR, Vanarotti M, Seetharaman J, Lopez K, Fischer M. Water Networks Repopulate Protein‐Ligand Interfaces With Temperature. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Timothy R Stachowski
- St Jude Children's Research Hospital Chemical Biology & Therapeutics UNITED STATES
| | - Murugendra Vanarotti
- St Jude Children's Research Hospital Chemical Biology & Therapeutics UNITED STATES
| | | | - Karlo Lopez
- California State University - Bakersfield School of Natural Sciences, Mathematics, and Engineering UNITED STATES
| | - Marcus Fischer
- St. Jude Children's Research Hospital Chemical Biology & Therapeutics 262 Danny Thomas Place 38105 Memphis UNITED STATES
| |
Collapse
|
5
|
He P, Sarkar S, Gallicchio E, Kurtzman T, Wickstrom L. Role of Displacing Confined Solvent in the Conformational Equilibrium of β-Cyclodextrin. J Phys Chem B 2019; 123:8378-8386. [PMID: 31509409 DOI: 10.1021/acs.jpcb.9b07028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study investigates the role of hydration and its relationship to the conformational equilibrium of the host molecule β-cyclodextrin. Molecular dynamics simulations indicate that the unbound β-cyclodextrin exhibits two state behavior in explicit solvent due to the opening and closing of its cavity. In implicit solvent, these transitions are not observed, and there is one dominant conformation of β-cyclodextrin with an open cavity. Based on these observations, we investigate the hypothesis that the expulsion of thermodynamically unfavorable water molecules into the bulk plays an important role in controlling the accessibility of the closed macrostate at room temperature. We compare the results of the molecular mechanics analytical generalized Born plus nonpolar solvation approach to those obtained through grid inhomogeneous solvation theory analysis with explicit solvation to elucidate the thermodynamic forces at play. The work illustrates the use of continuum solvent models to tease out solvation effects related to the inhomogeneity and the molecular nature of water and demonstrates the key role of the thermodynamics of enclosed hydration in driving the conformational equilibrium of molecules in solution.
Collapse
Affiliation(s)
- Peng He
- Center for Biophysics & Computational Biology/ICMS, Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Sheila Sarkar
- Department of Science , Borough of Manhattan Community College, The City University of New York , New York , New York 10007 , United States
| | - Emilio Gallicchio
- Department of Chemistry , Brooklyn College, The City University of New York , Brooklyn , New York 11210 , United States.,Ph.D. Programs in Chemistry & Biochemistry , The Graduate Center of the City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Tom Kurtzman
- Department of Chemistry , Lehman College, The City University of New York , Bronx , New York 10468 , United States.,Ph.D. Programs in Chemistry & Biochemistry , The Graduate Center of the City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Lauren Wickstrom
- Department of Science , Borough of Manhattan Community College, The City University of New York , New York , New York 10007 , United States
| |
Collapse
|
6
|
Ghasemi M, Ramsheh SM, Sharma S. Quantitative Assessment of Thermodynamic Theory in Elucidating the Behavior of Water under Hydrophobic Confinement. J Phys Chem B 2018; 122:12087-12096. [PMID: 30475618 DOI: 10.1021/acs.jpcb.8b09026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A macroscopic thermodynamics-based theory that can quantitatively describe the behavior of water confined between hydrophobic solutes has so far remained elusive. In this work, we progress toward this goal by comparing the predictions of macroscopic theory with the results from computer simulations. We have determined free energy profiles of water confined between two nanometer-sized surfaces of varying hydrophobicity using molecular simulations and have estimated thermodynamic properties such as contact angle, line tension, and size of the critical vapor tube from independent simulations. We show that the scaling of free energy barrier to evaporation is fairly well captured by the factor ( D/2 + λ/ϒLV)2, where D is the confinement gap and λ/ ϒLV is the ratio of line-tension and liquid-vapor surface tension. The radius of the critical vapor tube necessary for nucleating evaporation scales by the factor ( D/2 + λ/ϒLV). Exclusion of the line-tension term from thermodynamic theory leads to a qualitative disagreement between theoretical predictions and results from molecular simulations. We also demonstrate that macroscopic theory that includes the line-tension term is able to quantitatively match the entire free energy profile associated with the formation of a vapor-tube inside the confined region for conditions when the vapor state is the most stable state. The match is however only qualitatively correct for the conditions when the liquid state is more stable. Overall, the conclusion is that the inclusion of line-tension in macroscopic theory is necessary to describe the behavior of water under nanoscale confinement between two hydrophobic solutes.
Collapse
Affiliation(s)
- Mohsen Ghasemi
- Department of Mechanical Engineering , Ohio University , Athens , Ohio 45701 , United States
| | - Saeed Miri Ramsheh
- Department of Chemical and Biomolecular Engineering , Ohio University , Athens , Ohio 45701 , United States
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering , Ohio University , Athens , Ohio 45701 , United States
| |
Collapse
|
7
|
Testing inhomogeneous solvation theory in structure-based ligand discovery. Proc Natl Acad Sci U S A 2017; 114:E6839-E6846. [PMID: 28760952 DOI: 10.1073/pnas.1703287114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Binding-site water is often displaced upon ligand recognition, but is commonly neglected in structure-based ligand discovery. Inhomogeneous solvation theory (IST) has become popular for treating this effect, but it has not been tested in controlled experiments at atomic resolution. To do so, we turned to a grid-based version of this method, GIST, readily implemented in molecular docking. Whereas the term only improves docking modestly in retrospective ligand enrichment, it could be added without disrupting performance. We thus turned to prospective docking of large libraries to investigate GIST's impact on ligand discovery, geometry, and water structure in a model cavity site well-suited to exploring these terms. Although top-ranked docked molecules with and without the GIST term often overlapped, many ligands were meaningfully prioritized or deprioritized; some of these were selected for testing. Experimentally, 13/14 molecules prioritized by GIST did bind, whereas none of the molecules that it deprioritized were observed to bind. Nine crystal complexes were determined. In six, the ligand geometry corresponded to that predicted by GIST, for one of these the pose without the GIST term was wrong, and three crystallographic poses differed from both predictions. Notably, in one structure, an ordered water molecule with a high GIST displacement penalty was observed to stay in place. Inclusion of this water-displacement term can substantially improve the hit rates and ligand geometries from docking screens, although the magnitude of its effects can be small and its impact in drug binding sites merits further controlled studies.
Collapse
|
8
|
Abstract
It is now plausible to dock libraries of 10 million molecules against targets over several days or weeks. When the molecules screened are commercially available, they may be rapidly tested to find new leads. Although docking retains important liabilities (it cannot calculate affinities accurately nor even reliably rank order high-scoring molecules), it can often can distinguish likely from unlikely ligands, often with hit rates above 10%. Here we summarize the improvements in libraries, target quality, and methods that have supported these advances, and the open access resources that make docking accessible. Recent docking screens for new ligands are sketched, as are the binding, crystallographic, and in vivo assays that support them. Like any technique, controls are crucial, and key experimental ones are reviewed. With such controls, docking campaigns can find ligands with new chemotypes, often revealing the new biology that may be docking's greatest impact over the next few years.
Collapse
Affiliation(s)
- John J Irwin
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| |
Collapse
|
9
|
Frieg B, Görg B, Homeyer N, Keitel V, Häussinger D, Gohlke H. Molecular Mechanisms of Glutamine Synthetase Mutations that Lead to Clinically Relevant Pathologies. PLoS Comput Biol 2016; 12:e1004693. [PMID: 26836257 PMCID: PMC4737493 DOI: 10.1371/journal.pcbi.1004693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022] Open
Abstract
Glutamine synthetase (GS) catalyzes ATP-dependent ligation of ammonia and glutamate to glutamine. Two mutations of human GS (R324C and R341C) were connected to congenital glutamine deficiency with severe brain malformations resulting in neonatal death. Another GS mutation (R324S) was identified in a neurologically compromised patient. However, the molecular mechanisms underlying the impairment of GS activity by these mutations have remained elusive. Molecular dynamics simulations, free energy calculations, and rigidity analyses suggest that all three mutations influence the first step of GS catalytic cycle. The R324S and R324C mutations deteriorate GS catalytic activity due to loss of direct interactions with ATP. As to R324S, indirect, water-mediated interactions reduce this effect, which may explain the suggested higher GS residual activity. The R341C mutation weakens ATP binding by destabilizing the interacting residue R340 in the apo state of GS. Additionally, the mutation is predicted to result in a significant destabilization of helix H8, which should negatively affect glutamate binding. This prediction was tested in HEK293 cells overexpressing GS by dot-blot analysis: Structural stability of H8 was impaired through mutation of amino acids interacting with R341, as indicated by a loss of masking of an epitope in the glutamate binding pocket for a monoclonal anti-GS antibody by L-methionine-S-sulfoximine; in contrast, cells transfected with wild type GS showed the masking. Our analyses reveal complex molecular effects underlying impaired GS catalytic activity in three clinically relevant mutants. Our findings could stimulate the development of ATP binding-enhancing molecules by which the R324S mutant can be repaired extrinsically. Glutamine synthetase (GS) catalyzes the ATP-dependent ligation of ammonia and glutamate to glutamine, which makes the enzyme essential for human nitrogen metabolism. Three mutations in human GS, R324C, R324S, and R341C, had been identified previously that lead to a glutamine deficiency, resulting in neonatal death in the case of R324C and R341C. However, the molecular mechanisms underlying this impairment of GS activity have remained elusive. Our results from computational biophysics approaches suggest that all three mutants influence the first step of GS’ catalytic cycle, namely ATP or glutamate binding. The analyses reveal a complex set of effects including the loss of direct interactions to substrates, the involvement of water-mediated interactions that alleviate part of the mutation effect, and long-range effects between the catalytic site and structural parts distant from it. As to the latter, experimental validation is in line with our prediction of a significant destabilization of helix H8 in the R341C mutant, which should negatively affect glutamate binding. Finally, our findings could stimulate the development of ATP-binding enhancing molecules for the R324S mutant, which has been suggested to have residual activity, that way extrinsically “repairing” the mutant.
Collapse
Affiliation(s)
- Benedikt Frieg
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nadine Homeyer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (DH); (HG)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (DH); (HG)
| |
Collapse
|
10
|
Gupta A, Chaudhary N, Kakularam KR, Pallu R, Polamarasetty A. The Augmenting Effects of Desolvation and Conformational Energy Terms on the Predictions of Docking Programs against mPGES-1. PLoS One 2015; 10:e0134472. [PMID: 26305898 PMCID: PMC4549307 DOI: 10.1371/journal.pone.0134472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/10/2015] [Indexed: 01/03/2023] Open
Abstract
In this study we introduce a rescoring method to improve the accuracy of docking programs against mPGES-1. The rescoring method developed is a result of extensive computational study in which different scoring functions and molecular descriptors were combined to develop consensus and rescoring methods. 127 mPGES-1 inhibitors were collected from literature and were segregated into training and external test sets. Docking of the 27 training set compounds was carried out using default settings in AutoDock Vina, AutoDock, DOCK6 and GOLD programs. The programs showed low to moderate correlation with the experimental activities. In order to introduce the contributions of desolvation penalty and conformation energy of the inhibitors various molecular descriptors were calculated. Later, rescoring method was developed as empirical sum of normalised values of docking scores, LogP and Nrotb. The results clearly indicated that LogP and Nrotb recuperate the predictions of these docking programs. Further the efficiency of the rescoring method was validated using 100 test set compounds. The accurate prediction of binding affinities for analogues of the same compounds is a major challenge for many of the existing docking programs; in the present study the high correlation obtained for experimental and predicted pIC50 values for the test set compounds validates the efficiency of the scoring method.
Collapse
Affiliation(s)
- Ashish Gupta
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh– 176215, India
| | - Neha Chaudhary
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh– 176215, India
| | - Kumar Reddy Kakularam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana– 500046, India
| | - Reddanna Pallu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana– 500046, India
| | - Aparoy Polamarasetty
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh– 176215, India
- * E-mail:
| |
Collapse
|
11
|
Fischer M, Shoichet BK, Fraser JS. One Crystal, Two Temperatures: Cryocooling Penalties Alter Ligand Binding to Transient Protein Sites. Chembiochem 2015; 16:1560-4. [PMID: 26032594 PMCID: PMC4539595 DOI: 10.1002/cbic.201500196] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 11/08/2022]
Abstract
Interrogating fragment libraries by X-ray crystallography is a powerful strategy for discovering allosteric ligands for protein targets. Cryocooling of crystals should theoretically increase the fraction of occupied binding sites and decrease radiation damage. However, it might also perturb protein conformations that can be accessed at room temperature. Using data from crystals measured consecutively at room temperature and at cryogenic temperature, we found that transient binding sites could be abolished at the cryogenic temperatures employed by standard approaches. Changing the temperature at which the crystallographic data was collected could provide a deliberate perturbation to the equilibrium of protein conformations and help to visualize hidden sites with great potential to allosterically modulate protein function.
Collapse
Affiliation(s)
- Marcus Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., Byers Hall, BH-501, Box 2550, San Francisco, CA 94158 (USA)
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., Byers Hall, BH-501, Box 2550, San Francisco, CA 94158 (USA)
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 600 16th St., Genentech Hall, S472E, Box 2240, San Francisco, CA 94158 (USA).
| |
Collapse
|
12
|
Assessing protein kinase target similarity: Comparing sequence, structure, and cheminformatics approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1605-16. [PMID: 26001898 DOI: 10.1016/j.bbapap.2015.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022]
Abstract
In just over two decades, structure based protein kinase inhibitor discovery has grown from trial and error approaches, using individual target structures, to structure and data driven approaches that may aim to optimize inhibition properties across several targets. This is increasingly enabled by the growing availability of potent compounds and kinome-wide binding data. Assessing the prospects for adapting known compounds to new therapeutic uses is thus a key priority for current drug discovery efforts. Tools that can successfully link the diverse information regarding target sequence, structure, and ligand binding properties now accompany a transformation of protein kinase inhibitor research, away from single, block-buster drug models, and toward "personalized medicine" with niche applications and highly specialized research groups. Major hurdles for the transformation to data driven drug discovery include mismatches in data types, and disparities of methods and molecules used; at the core remains the problem that ligand binding energies cannot be predicted precisely from individual structures. However, there is a growing body of experimental data for increasingly successful focussing of efforts: focussed chemical libraries, drug repurposing, polypharmacological design, to name a few. Protein kinase target similarity is easily quantified by sequence, and its relevance to ligand design includes broad classification by key binding sites, evaluation of resistance mutations, and the use of surrogate proteins. Although structural evaluation offers more information, the flexibility of protein kinases, and differences between the crystal and physiological environments may make the use of crystal structures misleading when structures are considered individually. Cheminformatics may enable the "calibration" of sequence and crystal structure information, with statistical methods able to identify key correlates to activity but also here, "the devil is in the details." Examples from specific repurposing and polypharmacology applications illustrate these points. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
|
13
|
Yuriev E, Holien J, Ramsland PA. Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. J Mol Recognit 2015; 28:581-604. [PMID: 25808539 DOI: 10.1002/jmr.2471] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/16/2015] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
Molecular docking is a computational method for predicting the placement of ligands in the binding sites of their receptor(s). In this review, we discuss the methodological developments that occurred in the docking field in 2012 and 2013, with a particular focus on the more difficult aspects of this computational discipline. The main challenges and therefore focal points for developments in docking, covered in this review, are receptor flexibility, solvation, scoring, and virtual screening. We specifically deal with such aspects of molecular docking and its applications as selection criteria for constructing receptor ensembles, target dependence of scoring functions, integration of higher-level theory into scoring, implicit and explicit handling of solvation in the binding process, and comparison and evaluation of docking and scoring methods.
Collapse
Affiliation(s)
- Elizabeth Yuriev
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Jessica Holien
- ACRF Rational Drug Discovery Centre and Structural Biology Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Paul A Ramsland
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia.,Department of Surgery Austin Health, University of Melbourne, Melbourne, Victoria, 3084, Australia.,Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, 3004, Australia.,School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia, 6845, Australia
| |
Collapse
|
14
|
Persch E, Dumele O, Diederich F. Molekulare Erkennung in chemischen und biologischen Systemen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408487] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angew Chem Int Ed Engl 2015; 54:3290-327. [PMID: 25630692 DOI: 10.1002/anie.201408487] [Citation(s) in RCA: 424] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 12/13/2022]
Abstract
Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water.
Collapse
Affiliation(s)
- Elke Persch
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
| | | | | |
Collapse
|
16
|
Huang W, Blinov N, Wishart DS, Kovalenko A. Role of water in ligand binding to maltose-binding protein: insight from a new docking protocol based on the 3D-RISM-KH molecular theory of solvation. J Chem Inf Model 2015; 55:317-28. [PMID: 25545470 DOI: 10.1021/ci500520q] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maltose-binding protein is a periplasmic binding protein responsible for transport of maltooligosaccarides through the periplasmic space of Gram-negative bacteria, as a part of the ABC transport system. The molecular mechanisms of the initial ligand binding and induced large scale motion of the protein's domains still remain elusive. In this study, we use a new docking protocol that combines a recently proposed explicit water placement algorithm based on the 3D-RISM-KH molecular theory of solvation and conventional docking software (AutoDock Vina) to explain the mechanisms of maltotriose binding to the apo-open state of a maltose-binding protein. We confirm the predictions of previous NMR spectroscopic experiments on binding modes of the ligand. We provide the molecular details on the binding mode that was not previously observed in the X-ray experiments. We show that this mode, which is defined by the fine balance between the protein-ligand direct interactions and solvation effects, can trigger the protein's domain motion resulting in the holo-closed structure of the maltose-binding protein with the maltotriose ligand in excellent agreement with the experimental data. We also discuss the role of water in blocking unfavorable binding sites and water-mediated interactions contributing to the stability of observable binding modes of maltotriose.
Collapse
Affiliation(s)
- WenJuan Huang
- Department of Mechanical Engineering, University of Alberta , Edmonton, AB T6G 2G8, Canada
| | | | | | | |
Collapse
|
17
|
Desaphy J, Bret G, Rognan D, Kellenberger E. sc-PDB: a 3D-database of ligandable binding sites--10 years on. Nucleic Acids Res 2014; 43:D399-404. [PMID: 25300483 PMCID: PMC4384012 DOI: 10.1093/nar/gku928] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The sc-PDB database (available at http://bioinfo-pharma.u-strasbg.fr/scPDB/) is a comprehensive and up-to-date selection of ligandable binding sites of the Protein Data Bank. Sites are defined from complexes between a protein and a pharmacological ligand. The database provides the all-atom description of the protein, its ligand, their binding site and their binding mode. Currently, the sc-PDB archive registers 9283 binding sites from 3678 unique proteins and 5608 unique ligands. The sc-PDB database was publicly launched in 2004 with the aim of providing structure files suitable for computational approaches to drug design, such as docking. During the last 10 years we have improved and standardized the processes for (i) identifying binding sites, (ii) correcting structures, (iii) annotating protein function and ligand properties and (iv) characterizing their binding mode. This paper presents the latest enhancements in the database, specifically pertaining to the representation of molecular interaction and to the similarity between ligand/protein binding patterns. The new website puts emphasis in pictorial analysis of data.
Collapse
Affiliation(s)
- Jérémy Desaphy
- Laboratoire d'innovation thérapeutique, Medalis Drug Discovery Center, UMR7200 CNRS-Université de Strasbourg, F-67400 Illkirch, France
| | - Guillaume Bret
- Laboratoire d'innovation thérapeutique, Medalis Drug Discovery Center, UMR7200 CNRS-Université de Strasbourg, F-67400 Illkirch, France
| | - Didier Rognan
- Laboratoire d'innovation thérapeutique, Medalis Drug Discovery Center, UMR7200 CNRS-Université de Strasbourg, F-67400 Illkirch, France
| | - Esther Kellenberger
- Laboratoire d'innovation thérapeutique, Medalis Drug Discovery Center, UMR7200 CNRS-Université de Strasbourg, F-67400 Illkirch, France
| |
Collapse
|
18
|
Biedermann F, Nau WM, Schneider HJ. Neues zum hydrophoben Effekt - Studien mit supramolekularen Komplexen zeigen hochenergetisches Wasser als nichtkovalente Bindungstriebkraft. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310958] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Biedermann F, Nau WM, Schneider HJ. The hydrophobic effect revisited--studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew Chem Int Ed Engl 2014; 53:11158-71. [PMID: 25070083 DOI: 10.1002/anie.201310958] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 01/14/2023]
Abstract
Traditional descriptions of the hydrophobic effect on the basis of entropic arguments or the calculation of solvent-occupied surfaces must be questioned in view of new results obtained with supramolecular complexes. In these studies, it was possible to separate hydrophobic from dispersive interactions, which are strongest in aqueous systems. Even very hydrophobic alkanes associate significantly only in cavities containing water molecules with an insufficient number of possible hydrogen bonds. The replacement of high-energy water in cavities by guest molecules is the essential enthalpic driving force for complexation, as borne out by data for complexes of cyclodextrins, cyclophanes, and cucurbiturils, for which complexation enthalpies of up to -100 kJ mol(-1) were reached for encapsulated alkyl residues. Water-box simulations were used to characterize the different contributions from high-energy water and enabled the calculation of the association free enthalpies for selected cucurbituril complexes to within a 10% deviation from experimental values. Cavities in artificial receptors are more apt to show the enthalpic effect of high-energy water than those in proteins or nucleic acids, because they bear fewer or no functional groups in the inner cavity to stabilize interior water molecules.
Collapse
Affiliation(s)
- Frank Biedermann
- ISIS-Institut de Science et d'Ingénierie Supramoléculaires, 67083 Strasbourg (France).
| | | | | |
Collapse
|
20
|
Fischer M, Coleman RG, Fraser JS, Shoichet BK. Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery. Nat Chem 2014; 6:575-83. [PMID: 24950326 PMCID: PMC4144196 DOI: 10.1038/nchem.1954] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/11/2014] [Indexed: 12/04/2022]
Abstract
Proteins fluctuate between alternative conformations, which presents a challenge for ligand discovery because such flexibility is difficult to treat computationally owing to problems with conformational sampling and energy weighting. Here we describe a flexible docking method that samples and weights protein conformations using experimentally derived conformations as a guide. The crystallographically refined occupancies of these conformations, which are observable in an apo receptor structure, define energy penalties for docking. In a large prospective library screen, we identified new ligands that target specific receptor conformations of a cavity in cytochrome c peroxidase, and we confirm both ligand pose and associated receptor conformation predictions by crystallography. The inclusion of receptor flexibility led to ligands with new chemotypes and physical properties. By exploiting experimental measures of loop and side-chain flexibility, this method can be extended to the discovery of new ligands for hundreds of targets in the Protein Data Bank for which similar experimental information is available.
Collapse
Affiliation(s)
- Marcus Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
- Faculty of Pharmacy, Donnelly Center, University of Toronto, 160 College St. Toronto Ontario M5S 3E1
| | - Ryan G. Coleman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
- Faculty of Pharmacy, Donnelly Center, University of Toronto, 160 College St. Toronto Ontario M5S 3E1
| |
Collapse
|
21
|
Coleman RG, Carchia M, Sterling T, Irwin JJ, Shoichet BK. Ligand pose and orientational sampling in molecular docking. PLoS One 2013; 8:e75992. [PMID: 24098414 PMCID: PMC3787967 DOI: 10.1371/journal.pone.0075992] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/13/2013] [Indexed: 12/19/2022] Open
Abstract
Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and extendability of the orientation sampling, and the throughput of the method, become pressing. Here we explore sampling techniques that eliminate stochastic behavior in DOCK3.6, allowing us to optimize the method for regularly variable sampling of orientations. This also enabled a focused effort to optimize the code for efficiency, with a three-fold increase in the speed of the program. This, in turn, facilitated extensive testing of the method on the 102 targets, 22,805 ligands and 1,411,214 decoys of the Directory of Useful Decoys - Enhanced (DUD-E) benchmarking set, at multiple levels of sampling. Encouragingly, we observe that as sampling increases from 50 to 500 to 2000 to 5000 to 20000 molecular orientations in the binding site (and so from about 1×1010 to 4×1010 to 1×1011 to 2×1011 to 5×1011 mean atoms scored per target, since multiple conformations are sampled per orientation), the enrichment of ligands over decoys monotonically increases for most DUD-E targets. Meanwhile, including internal electrostatics in the evaluation ligand conformational energies, and restricting aromatic hydroxyls to low energy rotamers, further improved enrichment values. Several of the strategies used here to improve the efficiency of the code are broadly applicable in the field.
Collapse
Affiliation(s)
- Ryan G. Coleman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Michael Carchia
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Teague Sterling
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - John J. Irwin
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|