1
|
Jiang C. Progress in gut microbiota-host interaction. SCIENCE CHINA. LIFE SCIENCES 2024; 67:851-853. [PMID: 38619755 DOI: 10.1007/s11427-024-2577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Zhu Y, Luo B, Mou X, Song Y, Zhou Y, Luo Y, Sun B, Luo Y, Tang H, Su Z, Bao R. Pseudomonas aeruginosa regulator PvrA binds simultaneously to multiple pseudo-palindromic sites for efficient transcription activation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:900-912. [PMID: 37938507 DOI: 10.1007/s11427-022-2363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/10/2023] [Indexed: 11/09/2023]
Abstract
Tetracycline repressor (TetR) family regulators (TFRs) are the largest group of DNA-binding transcription factors and are widely distributed in bacteria and archaea. TFRs play vital roles in controlling the expression of various genes and regulating diverse physiological processes. Recently, a TFR protein Pseudomonas virulence regulator A (PvrA), was identified from Pseudomonas aeruginosa as the transcriptional activator of genes involved in fatty acid utilization and bacterial virulence. Here, we show that PvrA can simultaneously bind to multiple pseudo-palindromic sites and upregulate the expression levels of target genes. Cryo-electron microscopy (cryo-EM) analysis indicates the simultaneous DNA recognition mechanism of PvrA and suggests that the bound DNA fragments consist of a distorted B-DNA double helix. The crystal structure and functional analysis of PvrA reveal a hinge region that secures the correct domain motion for recognition of the promiscuous promoter. Additionally, our results showed that mutations disrupting the regulatory hinge region have differential effects on biofilm formation and pyocyanin biosynthesis, resulting in attenuated bacterial virulence. Collectively, these findings will improve the understanding of the relationship between the structure and function of the TetR family and provide new insights into the mechanism of regulation of P. aeruginosa virulence.
Collapse
Affiliation(s)
- Yibo Zhu
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Accurate Biotechnology (Hunan) Co., Ltd, Changsha, 410006, China
| | - Bingnan Luo
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xingyu Mou
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Yonghong Zhou
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Yongbo Luo
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Youfu Luo
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhaoming Su
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Kanak KR, Dass RS, Pan A. Anti-quorum sensing potential of selenium nanoparticles against LasI/R, RhlI/R, and PQS/MvfR in Pseudomonas aeruginosa: a molecular docking approach. Front Mol Biosci 2023; 10:1203672. [PMID: 37635941 PMCID: PMC10449602 DOI: 10.3389/fmolb.2023.1203672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Pseudomonas aeruginosa is an infectious pathogen which has the ability to cause primary and secondary contagions in the blood, lungs, and other body parts of immunosuppressed individuals, as well as community-acquired diseases, such as folliculitis, osteomyelitis, pneumonia, and others. This opportunistic bacterium displays drug resistance and regulates its pathogenicity via the quorum sensing (QS) mechanism, which includes the LasI/R, RhlI/R, and PQS/MvfR systems. Targeting the QS systems might be an excellent way to treat P. aeruginosa infections. Although a wide array of antibiotics, namely, newer penicillins, cephalosporins, and combination drugs are being used, the use of selenium nanoparticles (SeNPs) to cure P. aeruginosa infections is extremely rare as their mechanistic interactions are weakly understood, which results in carrying out this study. The present study demonstrates a computational approach of binding the interaction pattern between SeNPs and the QS signaling proteins in P. aeruginosa, utilizing multiple bioinformatics approaches. The computational investigation revealed that SeNPs were acutely 'locked' into the active region of the relevant proteins by the abundant residues in their surroundings. The PatchDock-based molecular docking analysis evidently indicated the strong and significant interaction between SeNPs and the catalytic cleft of LasI synthase (Phe105-Se = 2.7 Å and Thr121-Se = 3.8 Å), RhlI synthase (Leu102-Se = 3.7 Å and Val138-Se = 3.2 Å), transcriptional receptor protein LasR (Lys42-Se = 3.9 Å, Arg122-Se = 3.2 Å, and Glu124-Se = 3.9 Å), RhlR (Tyr43-Se = 2.9 Å, Tyr45-Se = 3.4 Å, and His61-Se = 3.5 Å), and MvfR (Leu208-Se = 3.2 Å and Arg209-Se = 4.0 Å). The production of acyl homoserine lactones (AHLs) was inhibited by the use of SeNPs, thereby preventing QS as well. Obstructing the binding affinity of transcriptional regulatory proteins may cause the suppression of LasR, RhlR, and MvfR systems to become inactive, thereby blocking the activation of QS-regulated virulence factors along with their associated gene expression. Our findings clearly showed that SeNPs have anti-QS properties against the established QS systems of P. aeruginosa, which strongly advocated that SeNPs might be a potent solution to tackle drug resistance and a viable alternative to conventional antibiotics along with being helpful in therapeutic development to cure P. aeruginosa infections.
Collapse
Affiliation(s)
- Kanak Raj Kanak
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| | - Regina Sharmila Dass
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| | - Archana Pan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| |
Collapse
|
4
|
Yahya AH, Harston SR, Colton WL, Cabeen MT. Distinct Screening Approaches Uncover PA14_36820 and RecA as Negative Regulators of Biofilm Phenotypes in Pseudomonas aeruginosa PA14. Microbiol Spectr 2023; 11:e0377422. [PMID: 36971546 PMCID: PMC10100956 DOI: 10.1128/spectrum.03774-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
Pseudomonas aeruginosa commonly infects hospitalized patients and the lungs of individuals with cystic fibrosis. This species is known for forming biofilms, which are communities of bacterial cells held together and encapsulated by a self-produced extracellular matrix. The matrix provides extra protection to the constituent cells, making P. aeruginosa infections challenging to treat. We previously identified a gene, PA14_16550, which encodes a DNA-binding TetR-type repressor and whose deletion reduced biofilm formation. Here, we assessed the transcriptional impact of the 16550 deletion and found six differentially regulated genes. Among them, our results implicated PA14_36820 as a negative regulator of biofilm matrix production, while the remaining 5 had modest effects on swarming motility. We also screened a transposon library in a biofilm-impaired ΔamrZ Δ16550 strain for restoration of matrix production. Surprisingly, we found that disruption or deletion of recA increased biofilm matrix production, both in biofilm-impaired and wild-type strains. Because RecA functions both in recombination and in the DNA damage response, we asked which function of RecA is important with respect to biofilm formation by using point mutations in recA and lexA to specifically disable each function. Our results implied that loss of either function of RecA impacts biofilm formation, suggesting that enhanced biofilm formation may be one physiological response of P. aeruginosa cells to loss of either RecA function. IMPORTANCE Pseudomonas aeruginosa is a notorious human pathogen well known for forming biofilms, communities of bacteria that protect themselves within a self-secreted matrix. Here, we sought to find genetic determinants that impacted biofilm matrix production in P. aeruginosa strains. We identified a largely uncharacterized protein (PA14_36820) and, surprisingly, RecA, a widely conserved bacterial DNA recombination and repair protein, as negatively regulating biofilm matrix production. Because RecA has two main functions, we used specific mutations to isolate each function and found that both functions influenced matrix production. Identifying negative regulators of biofilm production may suggest future strategies to reduce the formation of treatment-resistant biofilms.
Collapse
Affiliation(s)
- Amal H. Yahya
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sophie R. Harston
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - William L. Colton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matthew T. Cabeen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
5
|
Ranjani J, Sivakumar R, Gunasekaran P, Velmurugan G, Ramasamy S, Rajendhran J. Genome-wide identification of genetic requirements of Pseudomonas aeruginosa PAO1 for rat cardiomyocyte (H9C2) infection by insertion sequencing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105231. [PMID: 35104681 DOI: 10.1016/j.meegid.2022.105231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 12/18/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa is a major infectious agent among Gram-negative bacteria, which causes both acute and chronic infections. Infections due to P. aeruginosa are hard to treat, as it entails various strategies like virulence factors synthesis, drug efflux systems & resistance and protein secretion systems during pathogenesis. Despite extensive research in Pseudomonas pathogenesis, novel drug targets and potential therapeutic strategies are urgently needed. In this study, we investigated the genetic requirements of P. aeruginosa PAO1 for rat cardiomyocyte (H9C2) infection by insertion sequencing (INSeq). A mutant library comprising ~70,000 mutants of PAO1 was generated and the differentiated form of H9C2 cells (d-H9C2) was infected with the library. The infected d-H9C2 cells were maintained with antibiotic-protection and without any antibiotics in the growth media for 24 h. Subsequently, DNA library for INSeq was prepared, sequenced and fitness analysis was performed. One hundred and thirteen mutants were negatively selected in the infection condition with antibiotic-protection, whereas 143 mutants were negatively selected in antibiotic-free condition. Surprisingly, a higher number of mutants showed enriched fitness than the mutants of reduced fitness during the infection. We demonstrated that the genes associated with flagella and T3SS are important for adhesion and invasion of cardiomyocytes, while pili and proteases are conditionally essential during host cell lysis. Hence, our findings highlight the essential genes for cardiomyocyte infection, particularly during the intracellular phase. The aerotaxis receptor Aer, plays a critical role during intracellular life. Genes such as flgE, flgF, flhA, flhB, fliA, fliC, fliF, motA, aotJ, aer, wbpJ, ponA, fleQ, PA5205, hmgA, trkH and pslH are essential for infection.
Collapse
Affiliation(s)
- Jothi Ranjani
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Ramamoorthy Sivakumar
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Paramasamy Gunasekaran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Ganesan Velmurugan
- Chemomicrobiomics Laboratory, Department of Biochemistry & Microbiology, KMCH Research Foundation, Coimbatore 641014, Tamil Nadu, India
| | - Subbiah Ramasamy
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
6
|
Trouillon J, Imbert L, Villard AM, Vernet T, Attrée I, Elsen S. Determination of the two-component systems regulatory network reveals core and accessory regulations across Pseudomonas aeruginosa lineages. Nucleic Acids Res 2021; 49:11476-11490. [PMID: 34718721 PMCID: PMC8599809 DOI: 10.1093/nar/gkab928] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa possesses one of the most complex bacterial regulatory networks, which largely contributes to its success as a pathogen. However, most of its transcription factors (TFs) are still uncharacterized and the potential intra-species variability in regulatory networks has been mostly ignored so far. Here, we used DAP-seq to map the genome-wide binding sites of all 55 DNA-binding two-component systems (TCSs) response regulators (RRs) across the three major P. aeruginosa lineages. The resulting networks encompass about 40% of all genes in each strain and contain numerous new regulatory interactions across most major physiological processes. Strikingly, about half of the detected targets are specific to only one or two strains, revealing a previously unknown large functional diversity of TFs within a single species. Three main mechanisms were found to drive this diversity, including differences in accessory genome content, as exemplified by the strain-specific plasmid in IHMA87 outlier strain which harbors numerous binding sites of conserved chromosomally-encoded RRs. Additionally, most RRs display potential auto-regulation or RR-RR cross-regulation, bringing to light the vast complexity of this network. Overall, we provide the first complete delineation of the TCSs regulatory network in P. aeruginosa that will represent an important resource for future studies on this pathogen.
Collapse
Affiliation(s)
- Julian Trouillon
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, 38044 Grenoble, France
| | - Lionel Imbert
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044 Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, EMBL, ISBG UAR 3518, 38044 Grenoble, France
| | - Anne-Marie Villard
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044 Grenoble, France
| | - Thierry Vernet
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044 Grenoble, France
| | - Ina Attrée
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, 38044 Grenoble, France
| | - Sylvie Elsen
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, 38044 Grenoble, France
| |
Collapse
|
7
|
Tan Lim AM, Oyong GG, Tan MCS, Chang Shen C, Ragasa CY, Cabrera EC. Quorum quenching activity of Andrographis paniculata (Burm f.) Nees andrographolide compounds on metallo-β-lactamase-producing clinical isolates of Pseudomonas aeruginosa PA22 and PA247 and their effect on lasR gene expression. Heliyon 2021; 7:e07002. [PMID: 34027192 PMCID: PMC8131311 DOI: 10.1016/j.heliyon.2021.e07002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/03/2020] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Andrographis paniculata (Burm f.) Nees is a tropical plant native to Southeast Asia that has been used as an effective remedy for a wide variety of illnesses in traditional Chinese and Ayurvedic medicine. The antimicrobial activity of its crude extract had been shown to be due to its quorum quenching activity. The study determined the effect of purified extracted compounds from the leaf of A. paniculata, namely: andrographolide, 14-deoxyandrographolide, 14-deoxy-12-hydroxyandrographolide and neoandrographolide on quorum sensing-mediated virulence mechanisms in clinical isolates of metallo-β-lactamase (MβL)-producing Pseudomonas aeruginosa. Their effect on the expression of the lasR gene, which codes for LasR, a transcription activator protein of the quorum sensing system in P. aeruginosa was also determined using RT-qPCR. All the pure compounds significantly decreased the biofilm formation, protease production and swarming motility of the P. aeruginosa isolates compared to the untreated controls (p < 0.05). Results of the RT-qPCR assay showed that all compounds significantly downregulated the expression of lasR compared to the untreated control (p < 0.05), supporting the position that the lower virulence activities of the treated group were due to quorum quenching activity of the pure compounds. Multiple comparisons using Tukey's HSD analysis revealed that the means of the relative expression of lasR of the isolates treated with the different compounds were not significantly different from each other (p > 0.05), suggesting equal potencies. Results show the potential of the isolated pure compounds from A. paniculata for use as antimicrobial agents as a result of their quorum quenching activities.
Collapse
Affiliation(s)
- An Margarete Tan Lim
- Biology Department, College of Science, De La Salle University, Manila, Philippines.,School of Medical Technology, Centro Escolar University, Manila, Philippines
| | - Glenn G Oyong
- Molecular Science Unit Laboratory, Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines
| | - Maria Carmen S Tan
- Chemistry Department, College of Science, De La Salle University, Manila, Philippines
| | - Chien Chang Shen
- Chinese Medicinal Chemistry, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Consolacion Y Ragasa
- Chemistry Department, College of Science, De La Salle University, Manila, Philippines
| | - Esperanza C Cabrera
- Biology Department, College of Science, De La Salle University, Manila, Philippines.,Molecular Science Unit Laboratory, Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines
| |
Collapse
|
8
|
Butea monosperma seed extract mediated biosynthesis of ZnO NPs and their antibacterial, antibiofilm and anti-quorum sensing potentialities. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
9
|
Liu J, Sun X, Ma Y, Zhang J, Xu C, Zhou S. Quorum Quenching Mediated Bacteria Interruption as a Probable Strategy for Drinking Water Treatment against Bacterial Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249539. [PMID: 33419234 PMCID: PMC7765942 DOI: 10.3390/ijerph17249539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 02/04/2023]
Abstract
Pseudomonas aeruginosa in water lines may cause bacteria pollution indrinking fountains that could affect the quality of potable water, thus posing a risk to public health. A clean and efficient strategy is required for drinking water treatment for food safety. In this study, an AiiA-homologous lactonase was cloned from a deep-sea probiotics Bacillus velezensis (DH82 strain), and was heterologously expressed so that the capacity of the enzyme on the N-acyl-L-homoserine lactone (AHL)-degrading, effect of bacterial proliferation, biofilm formation and toxic factors release, and membrane pollution from P. aeruginosa could each be investigated to analyze the effect of the enzyme on water treatment. The enzyme effectively degraded the signal molecules of P. aeruginosa (C6-HSL and C12-HSL), inhibited early proliferation and biofilm formation, significantly reduced toxic products (pyocyanin and rhamnolipid), and inhibited bacterial fouling on the filter membrane, which prevented the secondary contamination of P. aeruginosa in drinking water. The findings demonstrated that the quorum quenching enzyme from probiotics could prevent bacteria pollution and improve potable water quality, and that the enzyme treatment could be used as a probable strategy for drinking water treatment.
Collapse
Affiliation(s)
- Jia Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (J.L.); (Y.M.); (J.Z.)
| | - Xiaohui Sun
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (J.L.); (Y.M.); (J.Z.)
- Correspondence: (X.S.); (S.Z.); Tel./Fax: +86-59-2616-2300 (X.S.); +86-59-2616-2288 (S.Z.)
| | - Yuting Ma
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (J.L.); (Y.M.); (J.Z.)
| | - Junyi Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (J.L.); (Y.M.); (J.Z.)
| | - Changan Xu
- Engineering Research Center of Marine Biological Resources Comprehensive Utilization, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
| | - Shufeng Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (J.L.); (Y.M.); (J.Z.)
- Correspondence: (X.S.); (S.Z.); Tel./Fax: +86-59-2616-2300 (X.S.); +86-59-2616-2288 (S.Z.)
| |
Collapse
|
10
|
Skopelja-Gardner S, Theprungsirikul J, Lewis KA, Hammond JH, Carlson KM, Hazlett HF, Nymon A, Nguyen D, Berwin BL, Hogan DA, Rigby WFC. Regulation of Pseudomonas aeruginosa-Mediated Neutrophil Extracellular Traps. Front Immunol 2019; 10:1670. [PMID: 31379861 PMCID: PMC6657737 DOI: 10.3389/fimmu.2019.01670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is the most prevalent opportunistic pathogen in the airways of cystic fibrosis (CF) patients. The pulmonary disorder is characterized by recurrent microbial infections and an exaggerated host inflammatory immune response led primarily by influx of neutrophils. Under these conditions, chronic colonization with P. aeruginosa is associated with diminished pulmonary function and increased morbidity and mortality. P. aeruginosa has a wide array of genetic mechanisms that facilitate its persistent colonization of the airway despite extensive innate host immune responses. Loss of function mutations in the quorum sensing regulatory gene lasR have been shown to confer survival advantage and a more pathogenic character to P. aeruginosa in CF patients. However, the strategies used by LasR-deficient P. aeruginosa to modulate neutrophil-mediated bactericidal functions are unknown. We sought to understand the role of LasR in P. aeruginosa-mediated neutrophil extracellular trap (NET) formation, an important anti-microbial mechanism deployed by neutrophils, the first-line responder in the infected airway. We observe mechanistic and phenotypic differences between NETs triggered by LasR-sufficient and LasR-deficient P. aeruginosa strains. We uncover that LasR-deficient P. aeruginosa strains fail to induce robust NET formation in both human and murine neutrophils, independently of bacterial motility or LPS expression. LasR does not mediate NET release via downstream quorum sensing signaling pathways but rather via transcriptional regulation of virulence factors, including, but not restricted to, LasB elastase and LasA protease. Finally, our studies uncover the differential requirements for NADPH oxidase in NET formation triggered by different P. aeruginosa strains.
Collapse
Affiliation(s)
- Sladjana Skopelja-Gardner
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Jomkuan Theprungsirikul
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kimberley A Lewis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - John H Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kyrsten M Carlson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Haley F Hazlett
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Amanda Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Dao Nguyen
- Department of Microbiology and Immunology, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Brent L Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - William F C Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.,Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
11
|
Antiquorum sensing activity of silver nanoparticles in P. aeruginosa: an in silico study. In Silico Pharmacol 2017; 5:12. [PMID: 29098138 DOI: 10.1007/s40203-017-0031-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/05/2017] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa an opportunistic pathogen regulates its virulence through Quorum sensing (QS) mechanism comprising of Las and Rhl system. Targeting of QS mechanism could be an ideal strategy to combat infection caused by P. aeruginosa. Silver nanoparticles (AgNPs) have been broadly applied as antimicrobial agents against a number of pathogenic bacterial and fungal strains, but have not been reported as an anti-QS agent. Therefore, the aim of present work was to show the computational analysis for the interaction of AgNPs with the QS system using an In silico approach. In silico studies showed that AgNPs got 'locked' deeply into the active site of respective proteins with their surrounding residues. The molecular docking analysis clearly demonstrated that AgNPs got bound to the catalytic cleft of LasI synthase (Asp73-Ag = 3.1 Å), RhlI synthase (His52-Ag = 2.8 Å), transcriptional receptor protein LasR (Leu159-Ag = 2.3 Å) and RhlR (Trp10-Ag = 3.1 Å and Glu34-Ag = 3.2 Å). The inhibition of LasI/RhlI synthase by AgNPs blocked the biosynthesis of AHLs, thus no AHL produced, no QS occurred. Further, interference with transcriptional regulatory proteins led to the inactivation of LasR/RhlR system that finally blocked the expression of QS-controlled virulence genes. Our findings clearly demonstrate the anti-QS property of AgNPs in P. aeruginosa which could be an alternative approach to the use of traditional antibiotics for the treatment of P. aeruginosa infection.
Collapse
|
12
|
Devescovi G, Kojic M, Covaceuszach S, Cámara M, Williams P, Bertani I, Subramoni S, Venturi V. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum. Front Microbiol 2017; 8:349. [PMID: 28326068 PMCID: PMC5339254 DOI: 10.3389/fmicb.2017.00349] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
In Chromobacteium violaceum, the purple pigment violacein is under positive regulation by the N-acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control.
Collapse
Affiliation(s)
- Giulia Devescovi
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Milan Kojic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Sonia Covaceuszach
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, U.O.S di Trieste Trieste, Italy
| | - Miguel Cámara
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham Nottingham, UK
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham Nottingham, UK
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Sujatha Subramoni
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| |
Collapse
|
13
|
Bondí R, Longo F, Messina M, D'Angelo F, Visca P, Leoni L, Rampioni G. The multi-output incoherent feedforward loop constituted by the transcriptional regulators LasR and RsaL confers robustness to a subset of quorum sensing genes in Pseudomonas aeruginosa. MOLECULAR BIOSYSTEMS 2017; 13:1080-1089. [DOI: 10.1039/c7mb00040e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thelasmulti-output IFFL-1 splits the QS regulon into two distinct sub-regulons with different robustness with respect to LasR fluctuations.
Collapse
Affiliation(s)
- Roslen Bondí
- Department of Science
- University Roma Tre
- Rome
- Italy
| | | | | | | | - Paolo Visca
- Department of Science
- University Roma Tre
- Rome
- Italy
| | - Livia Leoni
- Department of Science
- University Roma Tre
- Rome
- Italy
| | | |
Collapse
|
14
|
Pawar SV, Messina M, Rinaldo S, Cutruzzolà F, Kaever V, Rampioni G, Leoni L. Novel genetic tools to tackle c-di-GMP-dependent signalling in Pseudomonas aeruginosa. J Appl Microbiol 2016; 120:205-17. [PMID: 26497534 DOI: 10.1111/jam.12984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/01/2015] [Accepted: 10/09/2015] [Indexed: 11/30/2022]
Abstract
AIMS To develop new genetic tools for studying 3',5'-cyclic diguanylic acid (c-di-GMP) signalling in Pseudomonas aeruginosa. METHODS AND RESULTS Plasmid pPcdrA::lux, carrying a transcriptional fusion between the c-di-GMP responsive promoter PcdrA and the luxCDABE reporter genes, has been generated and validated in purpose-built P. aeruginosa strains in which c-di-GMP levels can be increased or reduced upon arabinose-dependent induction of c-di-GMP synthetizing or degrading enzymes. CONCLUSIONS The reporter systems described so far were able to detect a decrease in the c-di-GMP levels only in engineered strains overproducing c-di-GMP. Conversely, pPcdrA::lux could be used for studying any process or chemical compound expected to cause both an increase or a decrease with respect to the c-di-GMP levels produced by wild type P. aeruginosa. Another relevant aspect of this study has been the development of novel and improved genetic devices for the fine arabinose-dependent control of c-di-GMP levels in P. aeruginosa. SIGNIFICANCE AND IMPACT OF THE STUDY The genetic tools developed and validated in this study could facilitate investigations tackling the c-di-GMP signalling process on different fields, from cellular physiology to drug-discovery research.
Collapse
Affiliation(s)
| | - M Messina
- Department of Science, University Roma Tre, Rome, Italy
| | - S Rinaldo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - F Cutruzzolà
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - V Kaever
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - G Rampioni
- Department of Science, University Roma Tre, Rome, Italy
| | - L Leoni
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
15
|
Mamani S, Moinier D, Denis Y, Soulère L, Queneau Y, Talla E, Bonnefoy V, Guiliani N. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog. Front Microbiol 2016; 7:1365. [PMID: 27683573 PMCID: PMC5021923 DOI: 10.3389/fmicb.2016.01365] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022] Open
Abstract
While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.
Collapse
Affiliation(s)
- Sigde Mamani
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche ScientifiqueMarseille, France; Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universitad de ChileSantiago, Chile
| | - Danielle Moinier
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Yann Denis
- Plateforme Transcriptome, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Laurent Soulère
- Université Lyon, Institut National des Sciences Appliquées de Lyon, UMR 5246, Centre National de la Recherche Scientifique, Université Lyon 1, École Supérieure de Chimie Physique Electronique de Lyon, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires Villeurbanne, France
| | - Yves Queneau
- Université Lyon, Institut National des Sciences Appliquées de Lyon, UMR 5246, Centre National de la Recherche Scientifique, Université Lyon 1, École Supérieure de Chimie Physique Electronique de Lyon, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires Villeurbanne, France
| | - Emmanuel Talla
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Violaine Bonnefoy
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Nicolas Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universitad de Chile Santiago, Chile
| |
Collapse
|
16
|
Vyshnava SS, Kanderi DK, Panjala SP, Pandian K, Bontha RR, Goukanapalle PKR, Banaganapalli B. Effect of Silver Nanoparticles Against the Formation of Biofilm by Pseudomonas aeruginosa an In silico Approach. Appl Biochem Biotechnol 2016; 180:426-437. [DOI: 10.1007/s12010-016-2107-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/27/2016] [Indexed: 11/28/2022]
|
17
|
Cabeen MT, Leiman SA, Losick R. Colony-morphology screening uncovers a role for the Pseudomonas aeruginosa nitrogen-related phosphotransferase system in biofilm formation. Mol Microbiol 2016; 99:557-70. [PMID: 26483285 PMCID: PMC5130288 DOI: 10.1111/mmi.13250] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2015] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen whose survival is aided by forming communities known as biofilms, in which cells are encased in a self-produced matrix. We devised a mutant screen based on colony morphology to identify additional genes with previously unappreciated roles in biofilm formation. Our screen, which identified most known biofilm-related genes, also uncovered PA14_16550 and PA14_69700, deletions of which abrogated and augmented biofilm formation respectively. We also identified ptsP, which encodes enzyme I of the nitrogen-regulated phosphotransferase (PTS(Ntr)) system, as being important for cyclic-di-GMP production and for biofilm formation. Further experiments showed that biofilm formation is hindered in the absence of phosphotransfer through the PTS(Ntr), but only in the presence of enzyme II (PtsN), the putative regulatory module of the PTS(Ntr). These results implicate unphosphorylated PtsN as a negative regulator of biofilm formation and establish one of the first known roles of the PTS(Ntr) in P. aeruginosa.
Collapse
Affiliation(s)
- Matthew T Cabeen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Sara A Leiman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
18
|
Scaccabarozzi L, Leoni L, Ballarini A, Barberio A, Locatelli C, Casula A, Bronzo V, Pisoni G, Jousson O, Morandi S, Rapetti L, García-Fernández A, Moroni P. Pseudomonas aeruginosa in Dairy Goats: Genotypic and Phenotypic Comparison of Intramammary and Environmental Isolates. PLoS One 2015; 10:e0142973. [PMID: 26606430 PMCID: PMC4659641 DOI: 10.1371/journal.pone.0142973] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/29/2015] [Indexed: 11/18/2022] Open
Abstract
Following the identification of a case of severe clinical mastitis in a Saanen dairy goat (goat A), an average of 26 lactating goats in the herd was monitored over a period of 11 months. Milk microbiological analysis revealed the presence of Pseudomonas aeruginosa in 7 of the goats. Among these 7 does, only goat A showed clinical signs of mastitis. The 7 P. aeruginosa isolates from the goat milk and 26 P. aeruginosa isolates from environmental samples were clustered by RAPD-PCR and PFGE analyses in 3 genotypes (G1, G2, G3) and 4 clusters (A, B, C, D), respectively. PFGE clusters A and B correlated with the G1 genotype and included the 7 milk isolates. Although it was not possible to identify the infection source, these results strongly suggest a spreading of the infection from goat A. Clusters C and D overlapped with genotypes G2 and G3, respectively, and included only environmental isolates. The outcome of the antimicrobial susceptibility test performed on the isolates revealed 2 main patterns of multiple resistance to beta-lactam antibiotics and macrolides. Virulence related phenotypes were analyzed, such as swarming and swimming motility, production of biofilm and production of secreted virulence factors. The isolates had distinct phenotypic profiles, corresponding to genotypes G1, G2 and G3. Overall, correlation analysis showed a strong correlation between sampling source, RAPD genotype, PFGE clusters, and phenotypic clusters. The comparison of the levels of virulence related phenotypes did not indicate a higher pathogenic potential in the milk isolates as compared to the environmental isolates.
Collapse
Affiliation(s)
- Licia Scaccabarozzi
- Università degli Studi di Milano, Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Milano, Italy
| | - Livia Leoni
- Dipartimento di Scienze, Università degli Studi di Roma “Roma Tre”, Rome, Italy
| | - Annalisa Ballarini
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Antonio Barberio
- Università degli Studi di Milano, Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Milano, Italy
- Istituto Zooprofilattico Sperimentale delle Venezie, Sez. Terr. Vicenza, Vicenza, Italy
| | - Clara Locatelli
- Università degli Studi di Milano, Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Milano, Italy
| | - Antonio Casula
- Università degli Studi di Milano, Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Milano, Italy
| | - Valerio Bronzo
- Università degli Studi di Milano, Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Milano, Italy
| | - Giuliano Pisoni
- Università degli Studi di Milano, Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Milano, Italy
| | - Olivier Jousson
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Stefano Morandi
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Luca Rapetti
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Milan, Italy
| | - Aurora García-Fernández
- Dipartimento Malattie Infettive, Parassitarie e Immunologiche Istituto superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paolo Moroni
- Università degli Studi di Milano, Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Milano, Italy
- Cornell University, Animal Health Diagnostic Center, Quality Milk Production Services, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Bondí R, Messina M, De Fino I, Bragonzi A, Rampioni G, Leoni L. Affecting Pseudomonas aeruginosa phenotypic plasticity by quorum sensing dysregulation hampers pathogenicity in murine chronic lung infection. PLoS One 2014; 9:e112105. [PMID: 25420086 PMCID: PMC4242533 DOI: 10.1371/journal.pone.0112105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/13/2014] [Indexed: 11/27/2022] Open
Abstract
In Pseudomonas aeruginosa quorum sensing (QS) activates the production of virulence factors, playing a critical role in pathogenesis. Multiple negative regulators modulate the timing and the extent of the QS response either in the pre-quorum or post-quorum phases of growth. This regulation likely increases P. aeruginosa phenotypic plasticity and population fitness, facilitating colonization of challenging environments such as higher organisms. Accordingly, in addition to the factors required for QS signals synthesis and response, also QS regulators have been proposed as targets for anti-virulence therapies. However, while it is known that P. aeruginosa mutants impaired in QS are attenuated in their pathogenic potential, the effect of mutations causing a dysregulated timing and/or magnitude of the QS response has been poorly investigated so far in animal models of infection. In order to investigate the impact of QS dysregulation on P. aeruginosa pathogenesis in a murine model of lung infection, the QteE and RsaL proteins have been selected as representatives of negative regulators controlling P. aeruginosa QS in the pre- and post-quorum periods, respectively. Results showed that the qteE mutation does not affect P. aeruginosa lethality and ability to establish chronic infection in mice, despite causing a premature QS response and enhanced virulence factors production in test tube cultures compared to the wild type. Conversely, the post-quorum dysregulation caused by the rsaL mutation hampers the establishment of P. aeruginosa chronic lung infection in mice without affecting the mortality rate. On the whole, this study contributes to a better understanding of the impact of QS regulation on P. aeruginosa phenotypic plasticity during the infection process. Possible fallouts of these findings in the anti-virulence therapy field are also discussed.
Collapse
Affiliation(s)
- Roslen Bondí
- Dept. of Sciences, University Roma Tre, Rome, Italy
| | | | - Ida De Fino
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS - San Raffaele Scientific Institute, Milan, Italy
- Italian Cystic Fibrosis Research Foundation c/o Ospedale Maggiore, Verona, Italy
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS - San Raffaele Scientific Institute, Milan, Italy
| | | | - Livia Leoni
- Dept. of Sciences, University Roma Tre, Rome, Italy
- * E-mail:
| |
Collapse
|