1
|
Bogomiakova ME, Bogomazova AN, Lagarkova MA. Dysregulation of Immune Tolerance to Autologous iPSCs and Their Differentiated Derivatives. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:799-816. [PMID: 38880643 DOI: 10.1134/s0006297924050031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 06/18/2024]
Abstract
Induced pluripotent stem cells (iPSCs), capable of differentiating into any cell type, are a promising tool for solving the problem of donor organ shortage. In addition, reprogramming technology makes it possible to obtain a personalized, i.e., patient-specific, cell product transplantation of which should not cause problems related to histocompatibility of the transplanted tissues and organs. At the same time, inconsistent information about the main advantage of autologous iPSC-derivatives - lack of immunogenicity - still casts doubt on the possibility of using such cells beyond immunosuppressive therapy protocols. This review is devoted to immunogenic properties of the syngeneic and autologous iPSCs and their derivatives, as well as to the reasons for dysregulation of their immune tolerance.
Collapse
Affiliation(s)
- Margarita E Bogomiakova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexandra N Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Feng S, Zhang T, He Z, Zhang W, Chen Y, Yue C, Jing N. Continuous immunosuppression is required for suppressing immune responses to xenografts in non-human primate brains. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:8. [PMID: 38583099 PMCID: PMC10999398 DOI: 10.1186/s13619-024-00191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Continuous immunosuppression has been widely used in xenografts into non-human primate brains. However, how immune responses change after transplantation in host brains under continuous immunosuppressive administration and whether immunosuppression can be withdrawn to mitigate side effects remain unclear. Human induced neural stem/progenitor cells (iNPCs) have shown long-term survival and efficient neuronal differentiation in primate brains. Here, we evaluate the immune responses in primate brains triggered by human grafts. The results show that the immune responses, including the evident activation of microglia and the strong infiltration of lymphocytes (both T- and B-cells), are caused by xenografts at 4 months post transplantation (p.t.), but significantly reduced at 8 months p.t. under continuous administration of immunosuppressant Cyclosporin A. However, early immunosuppressant withdrawal at 5 months p.t. results in severe immune responses at 10 months p.t. These results suggest that continuous long-term immunosuppression is required for suppressing immune responses to xenografts in primate brains.
Collapse
Affiliation(s)
- Su Feng
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Ting Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Disease, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China
| | - Zhengxiao He
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | | | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Chunmei Yue
- Suzhou Yuanzhan Biotechs, Suzhou, 215000, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
3
|
Yoshinaga Y, Soma T, Azuma S, Maruyama K, Hashikawa Y, Katayama T, Sasamoto Y, Takayanagi H, Hosen N, Shiina T, Ogasawara K, Hayashi R, Nishida K. Long-term survival in non-human primates of stem cell-derived, MHC-unmatched corneal epithelial cell sheets. Stem Cell Reports 2022; 17:1714-1729. [PMID: 35750044 PMCID: PMC9287743 DOI: 10.1016/j.stemcr.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
When corneal epithelial stem cells residing in the corneal limbus become dysfunctional, called a limbal stem cell deficiency (LSCD), corneal transparency is decreased, causing severe vision loss. Transplantation of corneal epithelial cell sheets (CEPS) derived from stem cells, including induced pluripotent stem cells, is a promising treatment for LSCD. However, the potential effect of human leukocyte antigen (HLA) concordance on CEPS transplantation has not been addressed. Here, we show that there is no difference in the immune response to CEPS between HLA-matched and -unmatched peripheral blood mononuclear cells in mixed lymphocyte reactions. CEPS transplantation in cynomolgus monkeys revealed that the immune response to major histocompatibility-unmatched CEPS was not strong and could be controlled by local steroid administration. Furthermore, programmed death ligand 1 was identified as an immunosuppressive molecule in CEPS under inflammatory conditions in vitro. Our results indicate that corneal epithelium has low immunogenicity and allogeneic CEPS transplantation requires mild immunosuppression. There is no difference in the immune response to CEPS owing to HLA conformity in MLR The immune response to MHC-unmatched CEPS is not strong after transplantation Local steroid administration could control the immune response to MHC-unmatched CEPS PD-L1 was identified as an immunosuppressive molecule in CEPS
Collapse
Affiliation(s)
- Yu Yoshinaga
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Takeshi Soma
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Shohei Azuma
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Yoshiko Hashikawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai City, Miyagi 980-8575, Japan
| | - Tomohiko Katayama
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Yuzuru Sasamoto
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hiroshi Takayanagi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara City, Kanagawa 259-1193, Japan
| | - Kazumasa Ogasawara
- Department of Pathology, Shiga University of Medical Science, Ohtsu City, Shiga 520-2192, Japan
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita City, Osaka 565-0871, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita City, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Pluripotent Stem Cell-Derived Hepatocytes Inhibit T Cell Proliferation In Vitro through Tryptophan Starvation. Cells 2021; 11:cells11010024. [PMID: 35011586 PMCID: PMC8750013 DOI: 10.3390/cells11010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Regenerative medicine aims to replace damaged tissues by stimulating endogenous tissue repair or by transplanting autologous or allogeneic cells. Due to their capacity to produce unlimited numbers of cells of a given cell type, pluripotent stem cells, whether of embryonic origin or induced via the reprogramming of somatic cells, are of considerable therapeutic interest in the regenerative medicine field. However, regardless of the cell type, host immune responses present a barrier to success. The aim of this study was to investigate in vitro the immunological properties of human pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLCs). These cells expressed MHC class I molecules while they lacked MHC class II and co-stimulatory molecules, such as CD80 and CD86. Following stimulation with IFN-γ, HLCs upregulated CD40, PD-L1 and MHC class I molecules. When co-cultured with allogeneic T cells, HLCs did not induce T cell proliferation; furthermore, when T cells were stimulated via αCD3/CD28 beads, HLCs inhibited their proliferation via IDO1 and tryptophan deprivation. These results demonstrate that PSC-derived HLCs possess immunoregulatory functions, at least in vitro.
Collapse
|
5
|
Liu P, Chen S, Wang Y, Chen X, Guo Y, Liu C, Wang H, Zhao Y, Wu D, Shan Y, Zhang J, Wu C, Li D, Zhang Y, Zhou T, Chen Y, Liu X, Li C, Wang L, Jia B, Liu J, Feng B, Cai J, Pei D. Efficient induction of neural progenitor cells from human ESC/iPSCs on Type I Collagen. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2100-2113. [PMID: 33740188 DOI: 10.1007/s11427-020-1897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 10/21/2022]
Abstract
A stable, rapid and effective neural differentiation method is essential for the clinical applications of human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) in treating neurological disorders and diseases. Herein, we established a novel and robust monolayer differentiation method to produce functional neural progenitor cells (NPCs) from human ESC/iPSCs on Type I Collagen. The derived cells not only displayed the requisite markers, but also behaved similarly to classic NPCs both in vitro and in vivo. Upon transplantation into traumatic brain injury model, the derived NPCs facilitated recovery from injury. We also found that SMAD signaling stayed down throughout the differentiation process on Type I Collagen, and the pluripotent signals were rapidly downregulated along with raising up of neural early markers on the third day. Meanwhile, ATAC-seq data showed the related mediation of distinct transcriptome and global chromatin dynamics during NPC induction. Totally, our results thus provide a convenient way to generate NPCs from human ESC/iPSCs for neural diseases' treatment.
Collapse
Affiliation(s)
- Pengfei Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Ambulatory Surgical Center, The 2nd Clinical medical College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, 518020, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Shubin Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Yaofeng Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Xiaoming Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Yiping Guo
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chunhua Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Haitao Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yifan Zhao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Di Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jian Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chuman Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dongwei Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yanmei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yaoyu Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Xiaobo Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Chenxu Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Lihui Wang
- Department of Pathology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Bei Jia
- The Center for Prenatal and Hereditary Disease Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinglei Cai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Verhoeff K, Henschke SJ, Marfil-Garza BA, Dadheech N, Shapiro AMJ. Inducible Pluripotent Stem Cells as a Potential Cure for Diabetes. Cells 2021; 10:cells10020278. [PMID: 33573247 PMCID: PMC7911560 DOI: 10.3390/cells10020278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last century, diabetes has been treated with subcutaneous insulin, a discovery that enabled patients to forego death from hyperglycemia. Despite novel insulin formulations, patients with diabetes continue to suffer morbidity and mortality with unsustainable costs to the health care system. Continuous glucose monitoring, wearable insulin pumps, and closed-loop artificial pancreas systems represent an advance, but still fail to recreate physiologic euglycemia and are not universally available. Islet cell transplantation has evolved into a successful modality for treating a subset of patients with ‘brittle’ diabetes but is limited by organ donor supply and immunosuppression requirements. A novel approach involves generating autologous or immune-protected islet cells for transplant from inducible pluripotent stem cells to eliminate detrimental immune responses and organ supply limitations. In this review, we briefly discuss novel mechanisms for subcutaneous insulin delivery and define their shortfalls. We describe embryological development and physiology of islets to better understand their role in glycemic control and, finally, discuss cell-based therapies for diabetes and barriers to widespread use. In response to these barriers, we present the promise of stem cell therapy, and review the current gaps requiring solutions to enable widespread use of stem cells as a potential cure for diabetes.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Correspondence: ; Tel.: +1-780-984-1836
| | - Sarah J. Henschke
- Department of Emergency Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| | | | - Nidheesh Dadheech
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Andrew Mark James Shapiro
- FRCS (Eng) FRCSC MSM FCAHS, Clinical Islet Transplant Program, Alberta Diabetes Institute, Department of Surgery, Canadian National Transplant Research Program, Edmonton, AB T6G 2B7, Canada;
| |
Collapse
|
7
|
Cai M, Han F, Xiong N, Wang Y, Feng S, Wang J, Li X, Wei J, Sun C. Standards of induced pluripotent stem cells derived clinical-grade neural stem cells preparation and quality control (2021 China version). JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have become the leading research object in the clinical application of restorative medicine. They are easily generated from diverse cell sources and functionally indistinguishable from embryonic stem cells without the accompanying ethical issues. To date, the use of iPSC-derived neural stem cells and their progeny in the treatment of neurodegenerative and injurious diseases has achieved good results, with great potential in cell drug development. However, because of some unique biological properties and differences from traditional drug production processes, cell drug research and development has many problems that can hinder clinical applications. Given this situation, the Chinese Association of Neurorestoratology (Preparatory) and China Committee of the International Association of Neurorestoratology have organized relevant professional experts to formulate the standard presented here. Overall, the aim was to promote the clinical application of neural stem cells (NSCs) and their further derived neural cells from iPSC sources and promote cell drugs’ production and development. This standard refers to the latest research results, quality evaluation criteria for traditional medicines, and the regulatory framework for cellular treatments. The standard considers general biological properties of cells, including cell morphology, cell cycle, karyotype, and cell viability. The specific biological properties of NSCs, such as cell surface markers and differentiation ability, general drug standards, such as aseptic testing, endotoxins, human virus detection, and cell-related drug standards, such as telomerase activity and tumorigenicity, are also considered. This standard will serve as a reference for physicians and scientists who focus on clinical nervous cell applications and studies related to iPSCs.
Collapse
|
8
|
Evolution of Stem Cells in Cardio-Regenerative Therapy. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Trujillo-Rodríguez M, Viciana P, Rivas-Jeremías I, Álvarez-Ríos AI, Ruiz-García A, Espinosa-Ibáñez O, Arias-Santiago S, Martínez-Atienza J, Mata R, Fernández-López O, Ruiz-Mateos E, Gutiérrez-Valencia A, López-Cortés LF. Mesenchymal stromal cells in human immunodeficiency virus-infected patients with discordant immune response: Early results of a phase I/II clinical trial. Stem Cells Transl Med 2020; 10:534-541. [PMID: 33264515 PMCID: PMC7980217 DOI: 10.1002/sctm.20-0213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/16/2020] [Accepted: 10/10/2020] [Indexed: 01/09/2023] Open
Abstract
Between 15% and 30% of HIV‐infected subjects fail to increase their CD4+ T‐cell counts despite continuous viral suppression (immunological nonresponders [INRs]). These subjects have a higher morbidity and mortality rate, but there are no effective treatments to reverse this situation so far. This study used data from an interrupted phase I/II clinical trial to evaluate safety and immune recovery after INRs were given four infusions, at baseline and at weeks 4, 8, and 20, with human allogeneic mesenchymal stromal cells from adipose tissue (Ad‐MSCs). Based on the study design, the first 5 out of 15 INRs recruited received unblinded Ad‐MSC infusions. They had a median CD4+ nadir count of 16/μL (range, 2‐180) and CD4+ count of 253 cells per microliter (171‐412) at baseline after 109 (54‐237) months on antiretroviral treatment and 69 (52‐91) months of continuous undetectable plasma HIV‐RNA. After a year of follow‐up, an independent committee recommended the suspension of the study because no increase of CD4+ T‐cell counts or CD4+/CD8+ ratios was observed. There were also no significant changes in the phenotype of different immunological lymphocyte subsets, percentages of natural killer cells, regulatory T cells, and dendritic cells, the inflammatory parameters analyzed, and cellular associated HIV‐DNA in peripheral blood mononuclear cells. Furthermore, three subjects suffered venous thrombosis events directly related to the Ad‐MSC infusions in the arms where the infusions were performed. Although the current study is based on a small sample of participants, the findings suggest that allogeneic Ad‐MSC infusions are not effective to improve immune recovery in INR patients or to reduce immune activation or inflammation. ClinicalTrials.gov identifier: NCT0229004. EudraCT number: 2014‐000307‐26.
Collapse
Affiliation(s)
- María Trujillo-Rodríguez
- Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Avd. Manuel Siurto s/n, SEVILLA, España, Spain
| | - Pompeyo Viciana
- Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Avd. Manuel Siurto s/n, SEVILLA, España, Spain
| | - Inmaculada Rivas-Jeremías
- Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Avd. Manuel Siurto s/n, SEVILLA, España, Spain
| | - Ana I Álvarez-Ríos
- Departamento de Bioquímica Clínica, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Servicio Andaluz de Salud (SAS)/Universidad de Sevilla, Seville, Spain
| | - Antonio Ruiz-García
- Unidad de Producción Celular e Ingeniería Tisular, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Olga Espinosa-Ibáñez
- Unidad de Producción Celular e Ingeniería Tisular, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Salvador Arias-Santiago
- Unidad de Producción Celular e Ingeniería Tisular, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Juliana Martínez-Atienza
- Red Andaluza en Diseño y Traslación de Terapias Avanzadas, Fundación Pública Andaluza Progreso y Salud, Seville, Spain
| | - Rosario Mata
- Red Andaluza en Diseño y Traslación de Terapias Avanzadas, Fundación Pública Andaluza Progreso y Salud, Seville, Spain
| | - Olga Fernández-López
- Red Andaluza en Diseño y Traslación de Terapias Avanzadas, Fundación Pública Andaluza Progreso y Salud, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Avd. Manuel Siurto s/n, SEVILLA, España, Spain
| | - Alicia Gutiérrez-Valencia
- Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Avd. Manuel Siurto s/n, SEVILLA, España, Spain
| | - Luis F López-Cortés
- Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Avd. Manuel Siurto s/n, SEVILLA, España, Spain
| |
Collapse
|
10
|
de Rham C, Calderin Sollet Z, Burkhard P, Villard J. Natural Killer Cell Alloreactivity Against Human Induced Pluripotent Stem Cells and Their Neuronal Derivatives into Dopaminergic Neurons. Stem Cells Dev 2020; 29:853-862. [PMID: 32245345 DOI: 10.1089/scd.2019.0201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In recent years, great hope has arisen surrounding human stem cells, particularly human induced pluripotent stem (hiPS) cells, as nearly all human tissues can be derived from hiPS cells, using a specific protocol. Therefore, hiPS cells can be a source for replacing defective tissues and make up for the lack of organ donors. However, the alloreactivity of hiPS cells and their derivatives in the context of transplantation remain unclear. Although immunosuppressive drugs can inhibit the T cell compartment, these drugs inhibit partially or not at all natural killer (NK) cells activity. Therefore, the alloreactivity of NK cells against transplanted cells remains to be established. To partially answer this question, we choose, as a model, the potential of cellular therapy for Parkinson's disease (PD). First, we established the in vitro derivation of hiPS cells into mature dopaminergic (mDOPA) neurons, going through an intermediate step called neurosphere (NS) cells. These different cells population were cultured with or without interferon gamma (IFN-γ). They were characterized phenotypically regarding their morphology, and the expression of specific ligands for NK cell receptors expressed by these cells types was investigated. NK cells were isolated from the peripheral blood of healthy donors and cultured in the presence of interleukin 15, to be activated. To test NK cell alloreactivity, a cytotoxic assay was performed with hiPS cells, NS cells, and mDOPA neurons (IFN-γ treated or not) cocultured with allogenic NK cells. Our results show that allogenic NK cells kill hiPS cells (IFN-γ treated or not), but IFN-γ-treated NS cells were protected from killing by allogenic NK cells, compared with untreated NS cells. Finally, mDOPA neurons (IFN-γ treated or not) were partially protected against allogenic NK cell killing. These results indicate that derivatives of hiPS cells, especially NS cells, could be a good product for allogenic transplantation in cellular therapy for PD.
Collapse
Affiliation(s)
- Casimir de Rham
- Transplantation Immunology Unit, Departement of Medicine and Diagnostic, Geneva University Hospital, Faculty of Medicine, Geneva, Switzerland
| | - Zuleika Calderin Sollet
- Transplantation Immunology Unit, Departement of Medicine and Diagnostic, Geneva University Hospital, Faculty of Medicine, Geneva, Switzerland
| | - Pierre Burkhard
- Division of Neurology, Geneva University Hospital, Faculty of Medicine, Geneva, Switzerland
| | - Jean Villard
- Transplantation Immunology Unit, Departement of Medicine and Diagnostic, Geneva University Hospital, Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
11
|
Bogomiakova ME, Eremeev AV, Lagarkova MA. At Home among Strangers: Is It Possible to Create Hypoimmunogenic Pluripotent Stem Cell Lines? Mol Biol 2019. [DOI: 10.1134/s0026893319050042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
MicroRNA‑30a regulates cell proliferation, migration, invasion and apoptosis in human nasopharyngeal carcinoma via targeted regulation of ZEB2. Mol Med Rep 2019; 20:1672-1682. [PMID: 31257481 PMCID: PMC6625429 DOI: 10.3892/mmr.2019.10387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-30a (miR-30a) was previously reported to serve as a tumor suppressor able to inhibit the development and progression of certain types of cancer. A number of previous studies demonstrated that zinc finger E-box binding homeobox 2 (ZEB2) may be regulated by miR-30a in clear cell renal cell carcinoma and breast cancer. However, the function of miR-30a in human nasopharyngeal carcinoma (NPC) remains unclear. The present study aimed to investigate the association between miR-30a and ZEB2 in NPC. Therefore, the expression levels of miR-30a and ZEB2 were measured in human NPC cells and tissues from patients with NPC, and the present results suggested that the expression level of miR-30a was significantly decreased in NPC tissues compared with paracancerous tissues. The direct interaction between miR-30a and the untranslated region of ZEB2 was examined using the dual-luciferase reporter assay, and ZEB2 was identified as a direct target of miR-30a. Additionally, the effects of miR-30a and ZEB2 overexpression on cell proliferation, migration, invasion and apoptosis were additionally investigated. Functional experiments identified that overexpression of miR-30a increased apoptosis and suppressed cell proliferation, cell migration and cell invasion by directly targeting ZEB2. Collectively, the present study suggested that miR-30a may serve an important role in the progression of NPC and may represent a novel target for the treatment of patients with NPC.
Collapse
|
13
|
Requena J, Alvarez-Palomo AB, Codina-Pascual M, Delgado-Morales R, Moran S, Esteller M, Sal M, Juan M, Boronat Barado A, Consiglio A, Bogle OA, Wolvetang E, Ovchinnikov D, Alvarez I, Jaraquemada D, Mezquita-Pla J, Oliva R, Edel MJ. Global Proteomic and Methylome Analysis in Human Induced Pluripotent Stem Cells Reveals Overexpression of a Human TLR3 Affecting Proper Innate Immune Response Signaling. Stem Cells 2019; 37:476-488. [PMID: 30664289 PMCID: PMC6487958 DOI: 10.1002/stem.2966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/17/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
When considering the clinical applications of autologous cell replacement therapy of human induced pluripotent stem cells (iPSC)‐derived cells, there is a clear need to better understand what the immune response will be before we embark on extensive clinical trials to treat or model human disease. We performed a detailed assessment comparing human fibroblast cell lines (termed F1) reprogrammed into human iPSC and subsequently differentiated back to fibroblast cells (termed F2) or other human iPSC‐derived cells including neural stem cells (NSC) made from either retroviral, episomal, or synthetic mRNA cell reprogramming methods. Global proteomic analysis reveals the main differences in signal transduction and immune cell protein expression between F1 and F2 cells, implicating wild type (WT) toll like receptor protein 3 (TLR3). Furthermore, global methylome analysis identified an isoform of the human TLR3 gene that is not epigenetically reset correctly upon differentiation to F2 cells resulting in a hypomethylated transcription start site in the TLR3 isoform promoter and overexpression in most human iPSC‐derived cells not seen in normal human tissue. The human TLR3 isoform in human iPSC‐NSC functions to suppress NF‐KB p65 signaling pathway in response to virus (Poly IC), suggesting suppressed immunity of iPSC‐derived cells to viral infection. The sustained WT TLR3 and TLR3 isoform overexpression is central to understanding the altered immunogenicity of human iPSC‐derived cells calling for screening of human iPSC‐derived cells for TLR3 expression levels before applications. stem cells2019;37:476–488
Collapse
Affiliation(s)
- Jordi Requena
- Molecular Genetics and Control of Pluripotency Laboratory, Faculty of Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Ana Belen Alvarez-Palomo
- Molecular Genetics and Control of Pluripotency Laboratory, Faculty of Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Montserrat Codina-Pascual
- Genetics Unit, Department of Biomedicine, Faculty of Medicine, University of Barcelona, IDIBAPS and Hospital Clinic, Barcelona, Spain
| | - Raul Delgado-Morales
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Sebastian Moran
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Martí Sal
- Molecular Genetics and Control of Pluripotency Laboratory, Faculty of Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Service of Immunology, Hospital Clinic, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Boronat Barado
- Service of Immunology, Hospital Clinic, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat 08908, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain.,Department of Molecular and Translational Medicine, University of Brescia, Brescia 25121, Italy
| | - Orleigh Addeleccia Bogle
- Genetics Unit, Department of Biomedicine, Faculty of Medicine, University of Barcelona, IDIBAPS and Hospital Clinic, Barcelona, Spain
| | - Ernst Wolvetang
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Queensland, Brisbane, Australia
| | - Dmitry Ovchinnikov
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Queensland, Brisbane, Australia
| | - Inaki Alvarez
- Immunology Unit, Department of Cell Biology, Physiology and Immunology and Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Dolores Jaraquemada
- Immunology Unit, Department of Cell Biology, Physiology and Immunology and Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Jovita Mezquita-Pla
- Molecular Genetics and Control of Pluripotency Laboratory, Faculty of Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain.,Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Rafael Oliva
- Genetics Unit, Department of Biomedicine, Faculty of Medicine, University of Barcelona, IDIBAPS and Hospital Clinic, Barcelona, Spain.,Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Michael J Edel
- Molecular Genetics and Control of Pluripotency Laboratory, Faculty of Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain.,Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom
| |
Collapse
|
14
|
Kang M, Li Y, Zhu S, Zhang S, Guo S, Li P. MicroRNA-193b acts as a tumor suppressor gene in human esophageal squamous cell carcinoma via target regulation of KRAS. Oncol Lett 2019; 17:3965-3973. [PMID: 30881513 DOI: 10.3892/ol.2019.10039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/12/2018] [Indexed: 01/26/2023] Open
Abstract
In recent years, microRNA-193b (miR-193b) is regarded as a tumor suppressor in the development and progression of various cancers. Several studies have indicated that KRAS could be regulated by miR-193b in pancreatic cancer cells. However, the function of miR-193b in human esophageal squamous cell carcinoma has not been explored intensively thus far. Herein, the relationship between miR-193b and KRAS was mainly explored in esophageal squamous cell carcinoma cells. In the present study, the expression levels of miR-193b and KRAS were assessed in both human esophageal cancer cells and tissues. The direct regulatory relationship between miR-193b and KRAS was evaluated using dual-luciferase assay. The effect of miR-193b overexpression and inhibitor on cell proliferation, migration/invasion, and apoptosis was further detected herein. Our results indicated that the expression of miR-193b was significantly lower in human esophageal cancer tissues than paracancerous tissues. The expression level of miR-193b/KRAS was stage-dependent in human esophageal cancers. KRAS was indicated as the direct target of miR-193b, and upregulation of miR-193b increased the percentage of cell apoptosis, and suppressed cell proliferation as well as cell migration/invasion via direct regulation of KRAS. Therefore, our study indicated that miR-193b plays an important role in the development and progression of human esophageal squamous cell carcinoma, which may become a novel target in the treatment of human esophageal squamous cell carcinoma in the future.
Collapse
Affiliation(s)
- Min Kang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, P.R. China.,Department of Digestive Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yan Li
- Molecular Medicine Experimental Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, P.R. China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, P.R. China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, P.R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, P.R. China
| |
Collapse
|
15
|
FLI1 and PKC co-activation promote highly efficient differentiation of human embryonic stem cells into endothelial-like cells. Cell Death Dis 2018; 9:131. [PMID: 29374149 PMCID: PMC5833666 DOI: 10.1038/s41419-017-0162-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022]
Abstract
Rationale-endothelial cells (ECs) play important roles in various regeneration processes and can be used in a variety of therapeutic applications, such as cardiac regeneration, gene therapy, tissue-engineered vascular grafts and prevascularized tissue transplants. ECs can be acquired from pluripotent and adult stem cells. To acquire ECs from human embryonic stem cells (hESCs) in a fast, efficient and economic manner. We established a conditional overexpression system in hESCs based on 15 transcription factors reported to be responsible for hematopoiesis lineage. Among them, only overexpression of FLI1 could induce hESCs to a hematopoietic lineage. Moreover, simultaneous overexpression of FLI1 and activation of PKC rapidly and efficiently induced differentiation of hESCs into induced endothelial cells (iECs) within 3 days, while neither FLI1 overexpression nor PKC activation alone could derive iECs from hESCs. During induction, hESCs differentiated into spindle-like cells that were consistent in appearance with ECs. Flow cytometric analysis revealed that 92.2-98.9% and 87.2-92.6% of these cells were CD31+ and CD144+, respectively. Expression of vascular-specific genes dramatically increased, while the expression of pluripotency genes gradually decreased during induction. iECs incorporated acetylated low-density lipoproteins, strongly expressed vWF and bound UEA-1. iECs also formed capillary-like structures both in vitro and in vivo. RNA-seq analysis verified that these cells closely resembled their in vivo counterparts. Our results showed that co-activation of FLI1 and PKC could induce differentiation of hESCs into iECs in a fast, efficient and economic manner.
Collapse
|
16
|
Li R, Liang J, He Y, Qin J, He H, Lee S, Pang Z, Wang J. Sustained Release of Immunosuppressant by Nanoparticle-anchoring Hydrogel Scaffold Improved the Survival of Transplanted Stem Cells and Tissue Regeneration. Theranostics 2018; 8:878-893. [PMID: 29463988 PMCID: PMC5817099 DOI: 10.7150/thno.22072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/09/2017] [Indexed: 01/05/2023] Open
Abstract
The outcome of scaffold-based stem cell transplantation remains unsatisfied due to the poor survival of transplanted cells. One of the major hurdles associated with the stem cell survival is the immune rejection, which can be effectively reduced by the use of immunosuppressant. However, ideal localized and sustained release of immunosuppressant is difficult to be realized, because it is arduous to hold the drug delivery system within scaffold for a long period of time. In the present study, the sustained release of immunosuppressant for the purpose of improving the survival of stem cells was successfully realized by a nanoparticle-anchoring hydrogel scaffold we developed. Methods: Poly (lactic-co-glycolic acid) (PLGA) nanoparticles were modified with RADA16 (RNPs), a self-assembling peptide, and then anchored to a RADA16 hydrogel (RNPs + Gel). The immobilization of RNPs in hydrogel was measured in vitro and in vivo, including the Brownian motion and cumulative leakage of RNPs and the in vivo retention of injected RNPs with hydrogel. Tacrolimus, as a typical immunosuppressant, was encapsulated in RNPs (T-RNPs) that were anchored to the hydrogel and its release behavior were studied. Endothelial progenitor cells (EPCs), as model stem cells, were cultured in the T-RNPs-anchoring hydrogel to test the immune-suppressing effect. The cytotoxicity of the scaffold against EPCs was also measured compared with free tacrolimus-loaded hydrogel. The therapeutic efficacy of the scaffold laden with EPCs on the hind limb ischemia was further evaluated in mice. Results: The Brownian motion and cumulative leakage of RNPs were significantly decreased compared with the un-modified nanoparticles (NPs). The in vivo retention of injected RNPs with hydrogel was obviously longer than that of NPs with hydrogel. The release of tacrolimus from T-RNPs + Gel could be sustained for 28 days. Compared with free tacrolimus-loaded hydrogel, the immune responses were significantly reduced and the survival of EPCs was greatly improved both in vitro and in vivo. The results of histological evaluation, including accumulation of immune cells and deposition of anti-graft antibodies, further revealed significantly lessened immune rejection in T-RNPs-anchoring hydrogel group compared with other groups. In pharmacodynamics study, the scaffold laden with EPCs was applied to treat hind limb ischemia in mice and significantly promoted the blood perfusion (~91 % versus ~36 % in control group). Conclusion: The nanoparticle-anchoring hydrogel scaffold is promising for localized immunosuppressant release, thereby can enhance the survival of transplanted cells and finally lead to successful tissue regeneration.
Collapse
|
17
|
Low immunogenicity of mouse induced pluripotent stem cell-derived neural stem/progenitor cells. Sci Rep 2017; 7:12996. [PMID: 29021610 PMCID: PMC5636829 DOI: 10.1038/s41598-017-13522-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Resolving the immunogenicity of cells derived from induced pluripotent stem cells (iPSCs) remains an important challenge for cell transplant strategies that use banked allogeneic cells. Thus, we evaluated the immunogenicity of mouse fetal neural stem/progenitor cells (fetus-NSPCs) and iPSC-derived neural stem/progenitor cells (iPSC-NSPCs) both in vitro and in vivo. Flow cytometry revealed the low expression of immunological surface antigens, and these cells survived in all mice when transplanted syngeneically into subcutaneous tissue and the spinal cord. In contrast, an allogeneic transplantation into subcutaneous tissue was rejected in all mice, and allogeneic cells transplanted into intact and injured spinal cords survived for 3 months in approximately 20% of mice. In addition, cell survival was increased after co-treatment with an immunosuppressive agent. Thus, the immunogenicity and post-transplantation immunological dynamics of iPSC-NSPCs resemble those of fetus-NSPCs.
Collapse
|
18
|
Sackett SD, Rodriguez A, Odorico JS. The Nexus of Stem Cell-Derived Beta-Cells and Genome Engineering. Rev Diabet Stud 2017. [PMID: 28632820 DOI: 10.1900/rds.2017.14.39] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetes, type 1 and type 2 (T1D and T2D), are diseases of epidemic proportions, which are complicated and defined by genetics, epigenetics, environment, and lifestyle choices. Current therapies consist of whole pancreas or islet transplantation. However, these approaches require life-time immunosuppression, and are compounded by the paucity of available donors. Pluripotent stem cells have advanced research in the fields of stem cell biology, drug development, disease modeling, and regenerative medicine, and importantly allows for the interrogation of therapeutic interventions. Recent developments in beta-cell differentiation and genomic modifications are now propelling investigations into the mechanisms behind beta-cell failure and autoimmunity, and offer new strategies for reducing the propensity for immunogenicity. This review discusses the derivation of endocrine lineage cells from human pluripotent stem cells for the treatment of diabetes, and how the editing or manipulation of their genomes can transcend many of the remaining challenges of stem cell technologies, leading to superior transplantation and diabetes drug discovery platforms.
Collapse
Affiliation(s)
- Sara D Sackett
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| | - Aida Rodriguez
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| | - Jon S Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| |
Collapse
|
19
|
Qin J, Mai Y, Li Y, Jiang Z, Gao Y. Effect of mild hypothermia preconditioning against low temperature (4°C) induced rat liver cell injury in vitro. PLoS One 2017; 12:e0176652. [PMID: 28453529 PMCID: PMC5409157 DOI: 10.1371/journal.pone.0176652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Bioartificial liver holds special position in the field of regenerative medicine, and cold environment at 4℃ is widely used for the short storage of both organ and liver cell for later application. However, the disadvantages of such cold storage could influence cell viability and lead to cell apoptosis in different degrees. In this study, we mainly explore the pre-protective effect of mild hypothermia against low temperature (4℃)-induced rat liver cell injury in vitro. Our results indicated that the precondition with mild hypothermia could increase cell viability, such as cell proliferation, LDH regulation and glycogen synthesis ability of liver cell. The precondition also decreased the ROS production and relieved cell apoptosis in liver cells. Compared with the model group, the mitochondrial membrane potential was restored in the mild hypothermia group, as well as the mitochondrial membrane permeability transition pore opening, indicating that the therapeutic mechanism was related to mitochondrial protection. Further analysis showed that PI3K-Akt-GSK3β signal pathway might be associated with the pre-protective effect of mild hypothermia. Thus, our study suggested that the precondition with mild hypothermia hold the protective effect for liver cell in cold environment, and further developed a novel strategy for the storage of liver seed cells, even bioartificial liver.
Collapse
Affiliation(s)
- Jiasheng Qin
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yanxing Mai
- Department of Geriatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yang Li
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zesheng Jiang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yi Gao
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
- * E-mail:
| |
Collapse
|
20
|
Evaluation of the immunogenicity of human iPS cell-derived neural stem/progenitor cells in vitro. Stem Cell Res 2017; 19:128-138. [DOI: 10.1016/j.scr.2017.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/15/2016] [Accepted: 01/12/2017] [Indexed: 01/23/2023] Open
|
21
|
Zhao Z, Ma Y, Chen Z, Liu Q, Li Q, Kong D, Yuan K, Hu L, Wang T, Chen X, Peng Y, Jiang W, Yu Y, Liu X. Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells. Front Cell Neurosci 2016; 10:291. [PMID: 28066186 PMCID: PMC5168467 DOI: 10.3389/fncel.2016.00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/05/2016] [Indexed: 01/30/2023] Open
Abstract
Mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (HFFs) are used for the culture of human embryonic stem cells (hESCs). MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation, two hESCs lines were cultured on mixed feeder cells (MFCs, MEFs: HFFs = 1:1) and HFFs feeder, respectively, and then were differentiated into dopaminergic (DA) neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry, quantitative fluorescent real-time PCR, transmission and scanning electron microscopy, and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However, compared to hESCs line on MFCs feeder, hESCs line on HFFs feeder had a higher proportion of tyrosine hydroxylase (TH) positive cells and expressed higher levels of FOXA2, PITX3, NURR1, and TH genes. In addition, the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion, HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons, but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore, feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines, but also electrophysiological properties of hESCs-derived DA neurons.
Collapse
Affiliation(s)
- Zhenqiang Zhao
- Department of Neurology, Jinling Hospital, Southern Medical UniversityNanjing, China; Department of Neurology, First Affiliated Hospital, Hainan Medical UniversityHaikou, China
| | - Yanlin Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China; Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, First Affiliated Hospital, Hainan Medical UniversityHaikou, China
| | - Zhibin Chen
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Southern Medical University Nanjing, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Deyan Kong
- Department of Neurology, Jinling Hospital, Southern Medical UniversityNanjing, China; Department of Neurology, Affiliated Ruikang Hospital, Guangxi Traditional Chinese Medical UniversityNanning, China
| | - Kunxiong Yuan
- Department of Neurology, Jinling Hospital, Southern Medical UniversityNanjing, China; Department of Neurology, Central HospitalShenzhen, China
| | - Lan Hu
- Department of Laboratory Medicines, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Tan Wang
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Xiaowu Chen
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Yanan Peng
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Weimin Jiang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Southern Medical University Nanjing, China
| |
Collapse
|
22
|
Fairchild PJ, Horton C, Lahiri P, Shanmugarajah K, Davies TJ. Beneath the sword of Damocles: regenerative medicine and the shadow of immunogenicity. Regen Med 2016; 11:817-829. [DOI: 10.2217/rme-2016-0134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Few topics in regenerative medicine have inspired such impassioned debate as the immunogenicity of cell types and tissues differentiated from pluripotent stem cells. While early predictions suggested that tissues derived from allogeneic sources may evade immune surveillance altogether, the pendulum has since swung to the opposite extreme, with reports that the ectopic expression of a few developmental antigens may prompt rejection, even of tissues differentiated from autologous cell lines. Here we review the evidence on which these contradictory claims are based in order to reach an objective assessment of the likely magnitude of the immunological challenges ahead. Furthermore, we discuss how the inherent properties of pluripotent stem cells may inform strategies for reducing the impact of immunogenicity on the future ambitions of regenerative medicine.
Collapse
Affiliation(s)
- Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Christopher Horton
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Priyoshi Lahiri
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Kumaran Shanmugarajah
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
23
|
Miyagawa S, Fukushima S, Imanishi Y, Kawamura T, Mochizuki-Oda N, Masuda S, Sawa Y. Building A New Treatment For Heart Failure-Transplantation of Induced Pluripotent Stem Cell-derived Cells into the Heart. Curr Gene Ther 2016; 16:5-13. [PMID: 26785736 PMCID: PMC4997929 DOI: 10.2174/1566523216666160119094143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 02/08/2023]
Abstract
Advanced cardiac failure is a progressive intractable disease and is the main cause of mortality and morbidity worldwide. Since this pathology is represented by a definite decrease in cardiomyocyte number, supplementation of functional cardiomyocytes into the heart would hypothetically be an ideal therapeutic option. Recently, unlimited in vitro production of human functional cardiomyocytes was established by using induced pluripotent stem cell (iPSC) technology, which avoids the use of human embryos. A number of basic studies including ours have shown that transplantation of iPSC-derived cardiomyocytes (iPSC-CMs) into the damaged heart leads to recovery of cardiac function, thereby establishing “proof-of-concept” of this iPSC-transplantation therapy. However, considering clinical application of this therapy, its feasibility, safety, and therapeutic efficacy need to be further investigated in the pre-clinical stage. This review summarizes up-to-date important topics related to safety and efficacy of iPSC-CMs transplantation therapy for cardiac disease and discusses the prospects for this treatment in clinical studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
24
|
Ng J, Hynes K, White G, Sivanathan KN, Vandyke K, Bartold PM, Gronthos S. Immunomodulatory Properties of Induced Pluripotent Stem Cell-Derived Mesenchymal Cells. J Cell Biochem 2016; 117:2844-2853. [DOI: 10.1002/jcb.25596] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Jia Ng
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide South Australia Australia
| | - Kim Hynes
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide South Australia Australia
| | - Gregory White
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide South Australia Australia
- Mesenchymal Stem Cell Laboratory; School of Medicine; Faculty of Health Sciences; University of Adelaide; Adelaide South Australia Australia
| | - Kisha Nandini Sivanathan
- Mesenchymal Stem Cell Laboratory; School of Medicine; Faculty of Health Sciences; University of Adelaide; Adelaide South Australia Australia
- Centre for Clinical and Experimental Transplantation; Royal Adelaide Hospital; Adelaide South Australia Australia
| | - Kate Vandyke
- Myeloma Research Laboratory; School of Medicine; Faculty of Health Sciences; University of Adelaide; Adelaide South Australia Australia
- South Australian Health and Medical Research Institute; Adelaide South Australia Australia
- SA Pathology; Adelaide; South Australia Australia
| | - Peter Mark Bartold
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide South Australia Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory; School of Medicine; Faculty of Health Sciences; University of Adelaide; Adelaide South Australia Australia
- South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| |
Collapse
|
25
|
Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, Sun X, Fan Y. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet 2016; 33:581-588. [PMID: 27052831 DOI: 10.1007/s10815-016-0710-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 12/26/2022] Open
Abstract
PURPOSE As a powerful technology for genome engineering, the CRISPR/Cas system has been successfully applied to modify the genomes of various species. The purpose of this study was to evaluate the technology and establish principles for the introduction of precise genetic modifications in early human embryos. METHODS 3PN zygotes were injected with Cas9 messenger RNA (mRNA) (100 ng/μl) and guide RNA (gRNA) (50 ng/μl). For oligo-injections, donor oligo-1 (99 bp) or oligo-2 (99 bp) (100 ng/μl) or dsDonor (1 kb) was mixed with Cas9 mRNA (100 ng/μl) and gRNA (50 ng/μl) and injected into the embryos. RESULTS By co-injecting Cas9 mRNA, gRNAs, and donor DNA, we successfully introduced the naturally occurring CCR5Δ32 allele into early human 3PN embryos. In the embryos containing the engineered CCR5Δ32 allele, however, the other alleles at the same locus could not be fully controlled because they either remained wild type or contained indel mutations. CONCLUSIONS This work has implications for the development of therapeutic treatments of genetic disorders, and it demonstrates that significant technical issues remain to be addressed. We advocate preventing any application of genome editing on the human germline until after a rigorous and thorough evaluation and discussion are undertaken by the global research and ethics communities.
Collapse
Affiliation(s)
- Xiangjin Kang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Wenyin He
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuling Huang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Qian Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yaoyong Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xingcheng Gao
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
26
|
Liu P, Feng Y, Dong D, Liu X, Chen Y, Wang Y, Zhou Y. Enhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury. Sci Rep 2016; 6:20287. [PMID: 26830766 PMCID: PMC4735814 DOI: 10.1038/srep20287] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/30/2015] [Indexed: 02/07/2023] Open
Abstract
The therapeutic action of umbilical cord-derived mesenchymal stem cells (UC-MSCs) against acute kidney injury (AKI) has been demonstrated by several groups. However, how to further enhance the renoprotective effect of UC-MSCs and improve the therapy effect, are still unclear. In this study, we mainly investigated whether insulin-like growth factor-1 (IGF-1)-modified UC-MSCs hold an enhanced protective effect on gentamicin-induced AKI in vivo. Our results indicated that the IGF-1 overexpression could enhance the therapeutic action of human UC-MSCs, and the AKI rats treated with IGF-1-overexpressed UC-MSCs (UC-MSCs-IGF-1) showed better recovery of biochemical variables in serum or urine associated with renal function, histological injury and renal apoptosis, compared with AKI rats treated with normal UC-MSCs. RNA microarray analysis indicated that some key genes in the signal pathways associated with anti-oxidation, anti-inflammatory, and cell migratory capacity were up-regulated in UC-MSCs-IGF-1, and the results were further confirmed with qPCR. Furthermore, a series of detection in vitro and in vivo indicated that the UC-MSCs-IGF-1 hold better anti-oxidation, anti-inflammatory, and cell migratory capacity for IGF-1 overexpression. Thus, our study indicated that enhancement of UC-MSCs bioactivities with IGF-1 overexpression could increase the UC-MSCs therapeutic potential and further developed a new therapeutic strategy for the treatment of AKI.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Yetong Feng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Delu Dong
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
| | - Xiaobo Liu
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Yaoyu Chen
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
| | - Yulai Zhou
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
| |
Collapse
|
27
|
Abstract
The discovery of induced pluripotent stem cells (iPSCs) and concurrent development of protocols for their cell-type specific differentiation have revolutionized studies of diseases and raised the possibility that personalized medicine may be achievable. Realizing the full potential of iPSC will require addressing the challenges inherent in obtaining appropriate cells for millions of individuals while meeting the regulatory requirements of delivering therapy and keeping costs affordable. Critical to making PSC based cell therapy widely accessible is determining which mode of cell collection, storage and distribution, will work. In this manuscript we suggest that moderate sized bank where a diverse set of lines carrying different combinations of commonly present HLA alleles are banked and differentiated cells are made available to matched recipients as need dictates may be a solution. We discuss the issues related to developing such a bank and how it could be constructed and propose a bank of selected HLA phenotypes from carefully screened healthy individuals as a solution to delivering personalized medicine.
Collapse
Affiliation(s)
- Susan Solomon
- New York Stem Cell Foundation, 1995 S. Broadway, New York, NY, 10023, USA
| | | | | |
Collapse
|
28
|
Quiskamp N, Bruin JE, Kieffer TJ. Differentiation of human pluripotent stem cells into β-cells: Potential and challenges. Best Pract Res Clin Endocrinol Metab 2015; 29:833-47. [PMID: 26696513 DOI: 10.1016/j.beem.2015.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) hold great potential as the basis for cell-based therapies of degenerative diseases, including diabetes. Current insulin-based therapies for diabetes do not prevent hyperglycaemia or the associated long-term organ damage. While transplantation of pancreatic islets can achieve insulin independence and improved glycemic control, it is limited by donor tissue scarcity, challenges of purifying islets from the pancreas, and the need for immunosuppression to prevent rejection of transplants. Large-scale production of β-cells from stem cells is a promising alternative. Recent years have seen considerable progress in the optimization of in vitro differentiation protocols to direct hESCs/iPSCs into mature insulin-secreting β-cells and clinical trials are now under way to test the safety and efficiency of hESC-derived pancreatic progenitor cells in patients with type 1 diabetes. Here, we discuss key milestones leading up to these trials in addition to recent developments and challenges for hESC/iPSC-based diabetes therapies and disease modeling.
Collapse
Affiliation(s)
- Nina Quiskamp
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Jennifer E Bruin
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
29
|
Lu Q, Yu M, Shen C, Chen X, Feng T, Yao Y, Li J, Li H, Tu W. Negligible immunogenicity of induced pluripotent stem cells derived from human skin fibroblasts. PLoS One 2014; 9:e114949. [PMID: 25503995 PMCID: PMC4263724 DOI: 10.1371/journal.pone.0114949] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/16/2014] [Indexed: 12/29/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have potential applications in cell replacement therapy and regenerative medicine. However, limited information is available regarding the immunologic features of iPSCs. In this study, expression of MHC and T cell co-stimulatory molecules in hiPSCs, and the effects on activation, proliferation and cytokine production in allogeneic human peripheral blood mononuclear cells were examined. We found that no-integrate hiPSCs had no MHC-II and T cell co-stimulatory molecules expressions but had moderate level of MHC-I and HLA-G expressions. In contrast to human skin fibroblasts (HSFs) which significantly induced allogeneic T cell activation and proliferation, hiPSCs failed to induce allogeneic CD45+ lymphocyte and CD8+ T cell activation and proliferation but could induce a low level of allogeneic CD4+ T cell proliferation. Unlike HSFs which induced allogeneic lymphocytes to produce high levels of IFN-γ, TNF-α and IL-17, hiPSCs only induced allogeneic lymphocytes to produce IL-2 and IL-10, and promote IL-10-secreting regulatory T cell (Treg) generation. Our study suggests that the integration-free hiPSCs had low or negligible immunogenicity, which may result from their induction of IL-10-secreting Treg.
Collapse
Affiliation(s)
- Qiao Lu
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Pediatrics, University Hospital of Hubei University for Nationalities, Enshi, Hubei, 445000, China
| | - Meixing Yu
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chongyang Shen
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoping Chen
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ting Feng
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongchao Yao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinrong Li
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hong Li
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- * E-mail: (HL); (WT)
| | - Wenwei Tu
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- * E-mail: (HL); (WT)
| |
Collapse
|
30
|
|
31
|
Harrison RH, St-Pierre JP, Stevens MM. Tissue engineering and regenerative medicine: a year in review. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:1-16. [PMID: 24410501 DOI: 10.1089/ten.teb.2013.0668] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is an exciting time to be involved in tissue engineering and regenerative medicine (TERM) research. Despite its relative youth, the field is expanding fast and breaking new ground in both the laboratory and clinically. In this "Year in Review," we highlight some of the high-impact advances in the field. Building upon last year's article, we have identified the recent "hot topics" and the key publications pertaining to these themes as well as ideas that have high potential to direct the field. Based on a modified methodology grounded on last year's approach, we have identified and summarized some of the most impactful publications in five main themes: (1) pluripotent stem cells: efforts and hurdles to translation, (2) tissue engineering: complex scaffolds and advanced materials, (3) directing the cell phenotype: growth factor and biomolecule presentation, (4) characterization: imaging and beyond, and (5) translation: preclinical to clinical. We have complemented our review of the research directions highlighted within these trend-setting studies with a discussion of additional articles along the same themes that have recently been published and have yet to surface in citation analyses. We conclude with a discussion of some really interesting studies that provide a glimpse of the high potential for innovation of TERM research.
Collapse
Affiliation(s)
- Rachael H Harrison
- 1 Department of Materials, Imperial College London , London, United Kingdom
| | | | | |
Collapse
|
32
|
Lalit PA, Hei DJ, Raval AN, Kamp TJ. Induced pluripotent stem cells for post-myocardial infarction repair: remarkable opportunities and challenges. Circ Res 2014; 114:1328-45. [PMID: 24723658 DOI: 10.1161/circresaha.114.300556] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronary artery disease with associated myocardial infarction continues to be a major cause of death and morbidity around the world, despite significant advances in therapy. Patients who have large myocardial infarctions are at highest risk for progressive heart failure and death, and cell-based therapies offer new hope for these patients. A recently discovered cell source for cardiac repair has emerged as a result of a breakthrough reprogramming somatic cells to induced pluripotent stem cells (iPSCs). The iPSCs can proliferate indefinitely in culture and can differentiate into cardiac lineages, including cardiomyocytes, smooth muscle cells, endothelial cells, and cardiac progenitors. Thus, large quantities of desired cell products can be generated without being limited by cellular senescence. The iPSCs can be obtained from patients to allow autologous therapy or, alternatively, banks of human leukocyte antigen diverse iPSCs are possible for allogeneic therapy. Preclinical animal studies using a variety of cell preparations generated from iPSCs have shown evidence of cardiac repair. Methodology for the production of clinical grade products from human iPSCs is in place. Ongoing studies for the safety of various iPSC preparations with regard to the risk of tumor formation, immune rejection, induction of arrhythmias, and formation of stable cardiac grafts are needed as the field advances toward the first-in-man trials of iPSCs after myocardial infarction.
Collapse
Affiliation(s)
- Pratik A Lalit
- From the Department of Medicine (P.A.L., A.N.R., T.J.K.), Molecular and Cellular Pharmacology Program (P.A.L., T.J.K.), and Stem Cell and Regenerative Medicine Center (P.A.L., D.J.H., A.N.R., T.J.K.), Waisman Biomanufacturing at University of Wisconsin, Madison (D.J.H.)
| | | | | | | |
Collapse
|
33
|
Jiang G, Di Bernardo J, DeLong CJ, Monteiro da Rocha A, O'Shea KS, Kunisaki SM. Induced Pluripotent Stem Cells from Human Placental Chorion for Perinatal Tissue Engineering Applications. Tissue Eng Part C Methods 2014; 20:731-40. [DOI: 10.1089/ten.tec.2013.0480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Guihua Jiang
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Surgery, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - Julie Di Bernardo
- Department of Surgery, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - Cynthia J. DeLong
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - André Monteiro da Rocha
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - K. Sue O'Shea
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shaun M. Kunisaki
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Surgery, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
34
|
Wang X, Qin J, Zhao RC, Zenke M. Reduced immunogenicity of induced pluripotent stem cells derived from Sertoli cells. PLoS One 2014; 9:e106110. [PMID: 25166861 PMCID: PMC4148392 DOI: 10.1371/journal.pone.0106110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/02/2014] [Indexed: 12/12/2022] Open
Abstract
Sertoli cells constitute the structural framework in testis and provide an immune-privileged environment for germ cells. Induced pluripotent stem cells (iPS cells) resemble embryonic stem cells (ES cells) and are generated from somatic cells by expression of specific reprogramming transcription factors. Here, we used C57BL/6 (B6) Sertoli cells to generate iPS cells (Ser-iPS cells) and compared the immunogenicity of Ser-iPS cells with iPS cells derived from mouse embryonic fibroblast (MEF-iPS cells). Ser-iPS cells were injected into syngeneic mice to test for their in vivo immunogenicity in teratoma assay. Teratoma assay allows assessing in vivo immunogenicity of iPS cells and of their differentiated progeny simultaneously. We observed that early-passage Ser-iPS cells formed more teratomas with less immune cell infiltration and tissue damage and necrosis than MEF-iPS cells. Differentiating Ser-iPS cells in embryoid bodies (EBs) showed reduced T cell activation potential compared to MEF-iPS cells, which was similar to syngeneic ES cells. However, Ser-iPS cells lost their reduced immunogenicity in vivo after extended passaging in vitro and late-passage Ser-iPS cells exhibited an immunogenicity similar to MEF-iPS cells. These findings indicate that early-passage Ser-iPS cells retain some somatic memory of Sertoli cells that impacts on immunogenicity of iPS cells and iPS cell-derived cells in vivo and in vitro. Our data suggest that immune-privileged Sertoli cells might represent a preferred source for iPS cell generation, if it comes to the use of iPS cell-derived cells for transplantation.
Collapse
Affiliation(s)
- Xiaoying Wang
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jie Qin
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center of Excellence in Tissue Engineering, Peking Union Medical College Hospital, Beijing, China
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
35
|
Tan Y, Ooi S, Wang L. Immunogenicity and tumorigenicity of pluripotent stem cells and their derivatives: genetic and epigenetic perspectives. Curr Stem Cell Res Ther 2014; 9:63-72. [PMID: 24160683 PMCID: PMC3873036 DOI: 10.2174/1574888x113086660068] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/19/2013] [Accepted: 10/22/2013] [Indexed: 12/18/2022]
Abstract
One aim of stem cell-based therapy is to utilize pluripotent stem cells (PSCs) as a supplementary source of cells
to repair or replace tissues or organs that have ceased to function due to severe tissue damage. However, PSC-based therapy
requires extensive research to ascertain if PSC derivatives are functional without the risk of tumorigenicity, and also
do not engender severe immune rejection that threatens graft survival and function. Recently, the suitability of induced
pluripotent stem cells applied for patient-tailored cell therapy has been questioned since the discovery of several genetic
and epigenetic aberrations during the reprogramming process. Hence, it is crucial to understand the effect of these abnormalities
on the immunogenicity and survival of PSC grafts. As induced PSC-based therapy represents a hallmark for the
potential solution to prevent and arrest immune rejection, this review also summarizes several up-to-date key findings in
the field.
Collapse
Affiliation(s)
| | | | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa K1H8M5, Canada.
| |
Collapse
|
36
|
Sareen D, Gowing G, Sahabian A, Staggenborg K, Paradis R, Avalos P, Latter J, Ornelas L, Garcia L, Svendsen CN. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J Comp Neurol 2014; 522:2707-28. [PMID: 24610630 DOI: 10.1002/cne.23578] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/14/2022]
Abstract
Transplantation of human neural progenitor cells (NPCs) into the brain or spinal cord to replace lost cells, modulate the injury environment, or create a permissive milieu to protect and regenerate host neurons is a promising therapeutic strategy for neurological diseases. Deriving NPCs from human fetal tissue is feasible, although problematic issues include limited sources and ethical concerns. Here we describe a new and abundant source of NPCs derived from human induced pluripotent stem cells (iPSCs). A novel chopping technique was used to transform adherent iPSCs into free-floating spheres that were easy to maintain and were expandable (EZ spheres) (Ebert et al. [2013] Stem Cell Res 10:417-427). These EZ spheres could be differentiated towards NPC spheres with a spinal cord phenotype using a combination of all-trans retinoic acid (RA) and epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) mitogens. Suspension cultures of NPCs derived from human iPSCs or fetal tissue have similar characteristics, although they were not similar when grown as adherent cells. In addition, iPSC-derived NPCs (iNPCs) survived grafting into the spinal cord of athymic nude rats with no signs of overgrowth and with a very similar profile to human fetal-derived NPCs (fNPCs). These results suggest that human iNPCs behave like fNPCs and could thus be a valuable alternative for cellular regenerative therapies of neurological diseases.
Collapse
Affiliation(s)
- Dhruv Sareen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation. J Clin Med 2014; 3:373-87. [PMID: 26237380 PMCID: PMC4449681 DOI: 10.3390/jcm3020373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 12/26/2022] Open
Abstract
Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids), bone, optic vesicle-like structures (eye), cardiac muscle tissue (heart), primitive pancreas islet cells, a tooth-like structure (teeth), and functional liver buds (liver). Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1) such transplants will stimulate host immune responses; and (2) whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by iPSC-derived cells and tissues.
Collapse
|
38
|
Huang K, Liu P, Li X, Chen S, Wang L, Qin L, Su Z, Huang W, Liu J, Jia B, Liu J, Cai J, Pei D, Pan G. Neural progenitor cells from human induced pluripotent stem cells generated less autogenous immune response. SCIENCE CHINA-LIFE SCIENCES 2014; 57:162-70. [PMID: 24443177 DOI: 10.1007/s11427-013-4598-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 09/20/2013] [Indexed: 11/28/2022]
Abstract
The breakthrough development of induced pluripotent stem cells (iPSCs) raises the prospect of patient-specific treatment for many diseases through the replacement of affected cells. However, whether iPSC-derived functional cell lineages generate a deleterious immune response upon auto-transplantation remains unclear. In this study, we differentiated five human iPSC lines from skin fibroblasts and urine cells into neural progenitor cells (NPCs) and analyzed their immunogenicity. Through co-culture with autogenous peripheral blood mononuclear cells (PBMCs), we showed that both somatic cells and iPSC-derived NPCs do not stimulate significant autogenous PBMC proliferation. However, a significant immune reaction was detected when these cells were co-cultured with allogenous PBMCs. Furthermore, no significant expression of perforin or granzyme B was detected following stimulation of autogenous immune effector cells (CD3(+)CD8(-) T cells, CD3(+)CD8(+) T cells or CD3(-)CD56(+) NK cells) by NPCs in both PBMC and T cell co-culture systems. These results suggest that human iPSC-derived NPCs may not initiate an immune response in autogenous transplants, and thus set a base for further preclinical evaluation of human iPSCs.
Collapse
Affiliation(s)
- Ke Huang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nizzardo M, Simone C, Rizzo F, Ruggieri M, Salani S, Riboldi G, Faravelli I, Zanetta C, Bresolin N, Comi GP, Corti S. Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Hum Mol Genet 2013; 23:342-54. [PMID: 24006477 PMCID: PMC3869354 DOI: 10.1093/hmg/ddt425] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the degeneration of motor neurons. Currently, there is no effective therapy for ALS. Stem cell transplantation is a potential therapeutic strategy for ALS, and the reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) represents a novel cell source. In this study, we isolated a specific neural stem cell (NSC) population from human iPSCs based on high aldehyde dehydrogenase activity, low side scatter and integrin VLA4 positivity. We assessed the therapeutic effects of these NSCs on the phenotype of ALS mice after intrathecal or intravenous injections. Transplanted NSCs migrated and engrafted into the central nervous system via both routes of injection. Compared with control ALS, treated ALS mice exhibited improved neuromuscular function and motor unit pathology and significantly increased life span, in particular with the systemic administration of NSCs (15%). These positive effects are linked to multiple mechanisms, including production of neurotrophic factors and reduction of micro- and macrogliosis. NSCs induced a decrease in astrocyte number through the activation of the vanilloid receptor TRPV1. We conclude that minimally invasive injections of iPSC-derived NSCs can exert a therapeutic effect in ALS. This study contributes to advancements in iPSC-mediated approaches for treating ALS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|