1
|
Liu X, Yu Y, Yao W, Yin Z, Wang Y, Huang Z, Zhou J, Liu J, Lu X, Wang F, Zhang G, Chen G, Xiao Y, Deng H, Tang W. CRISPR/Cas9-mediated simultaneous mutation of three salicylic acid 5-hydroxylase (OsS5H) genes confers broad-spectrum disease resistance in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1873-1886. [PMID: 37323119 PMCID: PMC10440993 DOI: 10.1111/pbi.14099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Salicylic acid (SA) is an essential plant hormone that plays critical roles in basal defence and amplification of local immune responses and establishes resistance against various pathogens. However, the comprehensive knowledge of the salicylic acid 5-hydroxylase (S5H) in rice-pathogen interaction is still elusive. Here, we reported that three OsS5H homologues displayed salicylic acid 5-hydroxylase activity, converting SA into 2,5-dihydroxybenzoic acid (2,5-DHBA). OsS5H1, OsS5H2, and OsS5H3 were preferentially expressed in rice leaves at heading stage and responded quickly to exogenous SA treatment. We found that bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) strongly induced the expression of OsS5H1, OsS5H2, and OsS5H3. Rice plants overexpressing OsS5H1, OsS5H2, and OsS5H3 showed significantly decreased SA contents and increased 2,5-DHBA levels, and were more susceptible to bacterial blight and rice blast. A simple single guide RNA (sgRNA) was designed to create oss5h1oss5h2oss5h3 triple mutants through CRISPR/Cas9-mediated gene mutagenesis. The oss5h1oss5h2oss5h3 exhibited stronger resistance to Xoo than single oss5h mutants. And oss5h1oss5h2oss5h3 plants displayed enhanced rice blast resistance. The conferred pathogen resistance in oss5h1oss5h2oss5h3 was attributed to the significantly upregulation of OsWRKY45 and pathogenesis-related (PR) genes. Besides, flg22-induced reactive oxygen species (ROS) burst was enhanced in oss5h1oss5h2oss5h3. Collectively, our study provides a fast and effective approach to generate rice varieties with broad-spectrum disease resistance through OsS5H gene editing.
Collapse
Affiliation(s)
- Xiong Liu
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Yan Yu
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Wei Yao
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Zhongliang Yin
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Yubo Wang
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Zijian Huang
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Jie‐Qiang Zhou
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Jinling Liu
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Xuedan Lu
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Feng Wang
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Guilian Zhang
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Guihua Chen
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Yunhua Xiao
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Huabing Deng
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Wenbang Tang
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
- Hunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
- State Key Laboratory of Hybrid RiceChangshaChina
| |
Collapse
|
2
|
Liu X, Cai WJ, Yin X, Yang D, Dong T, Feng YQ, Wu Y. Two SLENDER AND CRINKLY LEAF dioxygenases play an essential role in rice shoot development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1387-1401. [PMID: 31701152 PMCID: PMC7031069 DOI: 10.1093/jxb/erz501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
It is clear that 2-oxoglutarate-dependent dioxygenases have critical functions in salicylic acid (SA) metabolism in plants, yet their role in SA biosynthesis is poorly understood. Here, we report that two dioxygenase-encoding genes, SLENDER AND CRINKLY LEAF1 (SLC1) and SLC2, play essential roles in shoot development and SA production in rice. Overexpression of SLC1 (SLC1-OE) or SLC2 (SLC2-OE) in rice produced infertile plants with slender and crinkly leaves. Disruption of SLC1 or SLC2 led to dwarf plants, while simultaneous down-regulation of SLC1 and SLC2 resulted in a severe defect in early leaf development. Enhanced SA levels in SLC1-OE plants and decreased SA levels in slc1 and slc2 mutants were observed. Accordingly, these lines all showed altered expression of a set of SA-related genes. We demonstrated that SLC1 interacts with homeobox1 (OSH1), and that either the knotted1-like homeobox (KNOX1) or glutamate, leucine, and lysine (ELK) domain of OSH1 is sufficient for accomplishing this interaction. Collectively, our data reveal the importance of SLC1 and SLC2 in rice shoot development.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Jing Cai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tian Dong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Leijten W, Koes R, Roobeek I, Frugis G. Translating Flowering Time From Arabidopsis thaliana to Brassicaceae and Asteraceae Crop Species. PLANTS 2018; 7:plants7040111. [PMID: 30558374 PMCID: PMC6313873 DOI: 10.3390/plants7040111] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Flowering and seed set are essential for plant species to survive, hence plants need to adapt to highly variable environments to flower in the most favorable conditions. Endogenous cues such as plant age and hormones coordinate with the environmental cues like temperature and day length to determine optimal time for the transition from vegetative to reproductive growth. In a breeding context, controlling flowering time would help to speed up the production of new hybrids and produce high yield throughout the year. The flowering time genetic network is extensively studied in the plant model species Arabidopsis thaliana, however this knowledge is still limited in most crops. This article reviews evidence of conservation and divergence of flowering time regulation in A. thaliana with its related crop species in the Brassicaceae and with more distant vegetable crops within the Asteraceae family. Despite the overall conservation of most flowering time pathways in these families, many genes controlling this trait remain elusive, and the function of most Arabidopsis homologs in these crops are yet to be determined. However, the knowledge gathered so far in both model and crop species can be already exploited in vegetable crop breeding for flowering time control.
Collapse
Affiliation(s)
- Willeke Leijten
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Ronald Koes
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Ilja Roobeek
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300 ⁻ 00015, Monterotondo Scalo, Roma, Italy.
| |
Collapse
|
4
|
Xiong W, Ye T, Yao X, Liu X, Ma S, Chen X, Chen ML, Feng YQ, Wu Y. The dioxygenase GIM2 functions in seed germination by altering gibberellin production in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:276-291. [PMID: 29205921 DOI: 10.1111/jipb.12619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 05/28/2023]
Abstract
The phytohormones gibberellic acid (GA) and abscisic acid (ABA) antagonistically control seed germination. High levels of GA favor seed germination, whereas high levels of ABA hinder this process. The direct relationship between GA biosynthesis and seed germination ability need further investigation. Here, we identified the ABA-insensitive gain-of-function mutant germination insensitive to ABA mutant 2 (gim2) by screening a population of XVE T-DNA-tagged mutant lines. Based on two loss-of-function gim2-ko mutant lines, the disruption of GIM2 function caused a delay in seed germination. By contrast, upregulation of GIM2 accelerated seed germination, as observed in transgenic lines overexpressing GIM2 (OE). We detected a reduction in endogenous bioactive GA levels and an increase in endogenous ABA levels in the gim2-ko mutants compared to wild type. Conversely, the OE lines had increased endogenous bioactive GA levels and decreased endogenous ABA levels. The expression levels of a set of GA- and/or ABA-related genes were altered in both the gim2-ko mutants and the OE lines. We confirmed that GIM2 has dioxygenase activity using an in vitro enzyme assay, observing that GIM2 can oxidize GA12 . Hence, our characterization of GIM2 demonstrates that it plays a role in seed germination by affecting the GA metabolic pathway in Arabidopsis.
Collapse
Affiliation(s)
- Wei Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tiantian Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xuan Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Sheng Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ming-Luan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Moravcová D, Rantamäki AH, Duša F, Wiedmer SK. Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry. Electrophoresis 2016; 37:880-912. [PMID: 26800083 DOI: 10.1002/elps.201500520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 12/29/2022]
Abstract
Here, we have reviewed separation studies utilizing monolithic capillary columns for separation of compounds preceding MS analysis. The review is divided in two parts according to the used separation method, namely CEC and capillary LC (cLC). Based on our overview, monolithic CEC-MS technique have been more focused on the syntheses of highly specialized and selective separation phase materials for fast and efficient separation of specific types of analytes. In contrast, monolithic cLC-MS is more widely used and is often employed, for instance, in the analysis of oligonucleotides, metabolites, and peptides and proteins in proteomic studies. While poly(styrene-divinylbenzene)-based and silica-based monolithic capillaries found their place in proteomic analyses, the other laboratory-synthesized monoliths still wait for their wider utilization in routine analyses. The development of new monolithic materials will most likely continue due to the demand of more efficient and rapid separation of increasingly complex samples.
Collapse
Affiliation(s)
- Dana Moravcová
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic
| | | | - Filip Duša
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic
| | | |
Collapse
|