1
|
Almaghrabi M, Musa A, Aljohani AKB, Ahmed HEA, Alsulaimany M, Miski SF, Mostafa EM, Hussein S, Parambi DGT, Ghoneim MM, Elgammal WE, Halawa AH, Hammad A, El-Agrody AM. Introducing of novel class of pyrano[2,3- c]pyrazole-5-carbonitrile analogs with potent antimicrobial activity, DNA gyrase inhibition, and prominent pharmacokinetic and CNS toxicity profiles supported by molecular dynamic simulation. J Biomol Struct Dyn 2024; 42:9529-9546. [PMID: 37661733 DOI: 10.1080/07391102.2023.2252088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
Microbiological DNA gyrase is recognized as an exceptional microbial target for the innovative development of low-resistant and more effective antimicrobial drugs. Hence, we introduced a one-pot facile synthesis of a novel pyranopyrazole scaffold bearing different functionalities; substituted aryl ring, nitrile, and hydroxyl groups. All new analogs were characterized with full spectroscopic data. The antimicrobial screening for all analogs was assessed against standard strains of Gm + ve and Gm-ve through in vitro considers. The screened compounds displayed very promising MIC/MBC values against some of the bacterial strains with broad or selective antibacterial effects. Of these, 4j biphenyl analog showed 0.5-2/2-8 µg/mL MIC/MBC for suppression and killing of Gm + ve and Gm-ve strains. Moreover, the antimicrobial screening was assessed for the most potent analogs against certain highly resistant microbial strains. Consequently, DNA gyrase supercoiling assay was done for all analogs using ciprofloxacin as reference positive control. Obviously, the results showed a different activity profile with potent analog 4j with IC50 value 6.29 µg/mL better than reference drug 10.2 µg/mL. Additionally, CNS toxicity testing was done using the HiB5 cell line for attenuation of GABA/NMDA expression to both 4j and ciprofloxacin compounds that revealed better neurotransmitter modulation by novel scaffold. Importantly, docking and dynamic simulations were performed for the most active 4j analog to investigate its interaction with DNA binding sites, which supported the in vitro observations and compound stability with binding pocket. Finally, a novel scaffold pyranopyrazole was introduced as a DNA gyrase inhibitor with prominent antibacterial efficacy and low CNS side effect toxicity better than quinolones.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Marwa Alsulaimany
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Samar F Miski
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Ehab M Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Walid E Elgammal
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Ahmed H Halawa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Ali Hammad
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
2
|
Sun J, Zhang CP, Chen CH, Guo XM, Liu CS, Zhou Y, Hu FL. Design, Synthesis and Molecular Docking of 1,3,4-Oxadiazole-2(3H)-thione Derivatives Containing 1,4-Benzodioxane Skeleton as Potential FabH Inhibitors. Chem Biodivers 2023; 20:e202201060. [PMID: 36579401 DOI: 10.1002/cbdv.202201060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Fatty acid biosynthesis is essential for bacterial survival. Of these promising targets, β-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) is the most attractive target. A series of novel 1,3,4-oxadiazole-2(3H)-thione derivatives containing 1,4-benzodioxane skeleton targeting FabH were designed and synthesized. These compounds were determined by 1 H-NMR, 13 C-NMR, MS and further confirmed by crystallographic diffraction study for compound 7m and 7n. Most of the compounds exhibited good inhibitory activity against bacteria by computer-assisted screening, antibacterial activity test and E. coli FabH inhibitory activity test, wherein compounds 7e and 7q exhibited the most significant inhibitory activities. Besides, compound 7q showed the best E. coli FabH inhibitory activity (IC50 =2.45 μΜ). Computational docking studies also showed that compound 7q interacts with FabH critical residues in the active site.
Collapse
Affiliation(s)
- Juan Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Cui-Ping Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Chong-Hao Chen
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Xiao-Meng Guo
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Cai-Shi Liu
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Yang Zhou
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
3
|
Design, Synthesis, in vitro and in silico Characterization of Plastoquinone Analogs Containing Piperidine Moiety as Antimicrobial Agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
New Quinazolin-4(3H)-one Derivatives Incorporating Hydrazone and Pyrazole Scaffolds as Antimicrobial Agents Targeting DNA Gyraze Enzyme. Sci Pharm 2022. [DOI: 10.3390/scipharm90030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work includes the synthesis of a new series of quinazolin-4(3H)-one compounds (4a–f, 5a–d) as antimicrobial agents. The starting compound, 2-hydrazinylquinazolin-4(3H)-one (2), was synthesized and treated with different carbonyl compounds to afford the hydrazone derivatives 4a–f. In addition, the hydrazone derivatives 4a–d were treated with a DMF/POCl3 mixture to give the formyl-pyrazole derivatives 5a–d. All the target compounds were evaluated as antimicrobial agents against four bacterial and four fungal strains. The majority of the tested compounds showed potent antimicrobial activity compared with the reference antibiotics. The most potent antimicrobial activity was shown by 5a with MIC values in the range (1–16) μg/mL. In addition, the most potent compounds against E. coli were evaluated for their inhibitory activity against E. coli DNA gyrase, whereas the target compounds 4a, 5a, 5c, and 5d showed the most potent inhibition to the target enzyme with IC50 values ranging from 3.19 to 4.17 µM. Furthermore, molecular docking studies were performed for the most active compounds against the target E. coli DNA gyrase to determine their binding affinity within the enzyme’s active site. Moreover, ADME evaluations of these compounds predicted their high oral bioavailability and good GI absorption.
Collapse
|
5
|
El-Zahabi HSA, Nossier ES, Mousa SM, Hassan H, Shalaby ASG, Arafa RK. Antibacterial and anticancer profiling of new benzocaine derivatives: Design, synthesis, and molecular mechanism of action. Arch Pharm (Weinheim) 2022; 355:e2100451. [PMID: 35102593 DOI: 10.1002/ardp.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/08/2022]
Abstract
The need for new chemotherapeutics to overcome development of resistance merits research to discover new agents. Benzocaine derivatives are essential compounds in medicinal chemistry due to their various biological activities including antibacterial and anticancer activities. Therefore, this study focuses on the synthesis of new benzocaine derivatives 3a-e, 6, 7a and 7b, 8, 10-14, and 16a-d and their in vitro evaluation as antibacterial agents against gram +ve and -ve strains and as anticancer agents against HepG-2, HCT-116, and MCF-7 human cancer cell lines. The obtained results demonstrated that thiazolidines 6 and 7b showed higher antibacterial and anticancer activity in comparison with the reference drugs. In addition, 6 and 7b showed high potency as inhibitors toward their biological targets, that is DNA gyrase and human topoisomerase IIα, as compared to the reference standard drugs novobiocin and etoposide, respectively. Molecular docking demonstrated that both compounds could identify the active site of their target enzymes and develop effective binding interactions. Absorption, distribution, metabolism and elimination (ADME) and drug-likeness predictions of both compounds showed that they both have good ADME profiles and no structural alerts that might cause toxicity. Based on this, 6 and 7b could serve as lead compounds for the design of more potent antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Heba S A El-Zahabi
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Safya M Mousa
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Heba Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt
| | - Al Shimaa G Shalaby
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Center, Cairo, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt.,Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
6
|
Yıldırım H, Yıldız M, Bayrak N, Mataracı-Kara E, Özbek-Çelik B, Otsuka M, Fujita M, Radwan MO, TuYuN AF. Natural-product-inspired design and synthesis of thiolated coenzyme Q analogs as promising agents against Gram-positive bacterial strains: insights into structure–activity relationship, activity profile, mode of action, and molecular docking. RSC Adv 2022; 12:20507-20518. [PMID: 35919160 PMCID: PMC9284347 DOI: 10.1039/d2ra02136f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
In an attempt to develop effective and potentially active antibacterial and/or antifungal agents, we designed, synthesized, and characterized thiolated CoQ analogs (CoQ1–8) with an extensive antimicrobial study. The antimicrobial profile of these analogs was determined using four Gram-negative bacteria, three Gram-positive bacteria, and three fungi. Because of the fact that the thiolated CoQ analogs were quite effective on all tested Gram-positive bacterial strains, including Staphylococcus aureus (ATCC® 29213) and Enterococcus faecalis (ATCC® 29212), the first two thiolated CoQ analogs emerged as potentially the most desirable ones in this series. Importantly, after the evaluation of the antibacterial and antifungal activity, we presented an initial structure–activity relationship for these CoQ analogs. In addition, the most promising thiolated CoQ analogs (CoQ1 and CoQ2) having the lowest MIC values on all tested Gram-positive bacterial strains, were further evaluated for their inhibition capacities of biofilm formation after evaluating their in vitro potential antimicrobial activity against each of 20 clinically obtained resistant strains of Gram-positive bacteria. CoQ1 and CoQ2 exhibited potential molecular interactions with S. aureus DNA gyrase in addition to excellent pharmacokinetics and lead-likeness profiles. Our findings offer important implications for a potential antimicrobial drug candidate, in particular for the treatment of infections caused by clinically resistant MRSA isolates. In an attempt to develop effective and potentially active antibacterial and/or antifungal agents, we designed, synthesized, and characterized thiolated CoQ analogs (CoQ1–8) with an extensive antimicrobial study.![]()
Collapse
Affiliation(s)
- Hatice Yıldırım
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Nilüfer Bayrak
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Pharmacy Faculty, Istanbul University, Beyazit, 34116, Istanbul, Turkey
| | - Berna Özbek-Çelik
- Department of Pharmaceutical Microbiology, Pharmacy Faculty, Istanbul University, Beyazit, 34116, Istanbul, Turkey
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto 862–0973, Japan
- Department of Drug Discovery, Science Farm Ltd, 1–7–30 Kuhonji, Chuo-ku, Kumamoto 862–0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto 862–0973, Japan
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto 862–0973, Japan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, Istanbul, Turkey
| |
Collapse
|
7
|
Srivastava V, Deblais L, Kathayat D, Rotondo F, Helmy YA, Miller SA, Rajashekara G. Novel Small Molecule Growth Inhibitors of Xanthomonas spp. Causing Bacterial Spot of Tomato. PHYTOPATHOLOGY 2021; 111:940-953. [PMID: 34311554 DOI: 10.1094/phyto-08-20-0341-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial spot (BS) of tomato, caused by Xanthomonas gardneri, X. perforans, X. vesicatoria, and X. euvesicatoria, is difficult to control because of the high prevalence of copper- and streptomycin-resistant strains and the lack of resistance cultivars and effective bactericides. The objective of this study was to identify novel growth inhibitors of BS-causing Xanthomonas (BS-X) species by using small molecules (SM; n = 4,182). Several SMs (X1, X2, X5, X9, X12, and X16) completely inhibited the growth of BS-X isolates (n = 68 X. gardneri, 55 X. perforans, 4 X. vesicatoria, and 32 X. euvesicatoria) at ≥12.5 µM by disrupting Xanthomonas cell integrity through weakening of the cell membrane and formation of pores. These SMs were also effective against biofilm-embedded, copper- and streptomycin-resistant Xanthomonas strains while having minimal impact on other plant pathogenic (n = 20) and beneficial bacteria (n = 12). Furthermore, these SMs displayed equivalent antimicrobial activity against BS-X in seeds and X. gardneri in seedlings compared with conventional control methods (copper sulfate and streptomycin) at similar concentrations while having no detectable toxicity to tomato tissues. SMs X2, X5, and X12 reduced X. gardneri, X. perforans, X. vesicatoria, and X. euvesicatoria populations in artificially infested seeds ≤3.4-log CFU/seed 1 day postinfection (dpi) compared with the infested untreated control (P ≤ 0.05). SMs X1, X2, X5, and X12 reduced disease severity ≤72% and engineered bioluminescent X. gardneri populations ≤3.0-log CFU/plant in infected seedlings at 7 dpi compared with the infected untreated control (P ≤ 0.05). Additional studies are needed to increase the applicability of these SMs for BS management in tomato production.
Collapse
Affiliation(s)
- Vishal Srivastava
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH
| | - Loic Deblais
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH
| | - Dipak Kathayat
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH
| | - Francesca Rotondo
- Department of Plant Pathology, The Ohio State University, Wooster, OH
| | - Yosra A Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH
| | - Sally A Miller
- Department of Plant Pathology, The Ohio State University, Wooster, OH
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH
| |
Collapse
|
8
|
Naha S, Govindaiah S, Sreenivasa S, Prakash JK, Velmathi S. In Vitro, Molecular Docking, and In Silico Binding Mode Analysis of Organic Compounds for Antimicrobial and Anticancer Activity against Jurkat, HCT116, and A549 Cell Lines. ChemistrySelect 2020. [DOI: 10.1002/slct.202003025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sanay Naha
- Department of Chemistry National Institute of Technology Trichy 620015 Tamil Nadu India
| | - Shivaraja Govindaiah
- Department of Studies and Research in Organic Chemistry Tumkur University Tumakuru 572103 Karnataka India
| | - Swamy Sreenivasa
- Department of Chemistry University College of Science Tumkur University Tumakuru 572103 Karnataka India
| | - Jeevan Kallur Prakash
- Department of Biotechnology Siddaganga Institute of Technology Tumakuru 572103 Karnataka India
| | - Sivan Velmathi
- Department of Chemistry National Institute of Technology Trichy 620015 Tamil Nadu India
| |
Collapse
|
9
|
Long S, Resende DISP, Palmeira A, Kijjoa A, Silva AMS, Tiritan ME, Pereira-Terra P, Freitas-Silva J, Barreiro S, Silva R, Remião F, Pinto E, Martins da Costa P, Sousa E, Pinto MMM. New marine-derived indolymethyl pyrazinoquinazoline alkaloids with promising antimicrobial profiles. RSC Adv 2020; 10:31187-31204. [PMID: 35520644 PMCID: PMC9056383 DOI: 10.1039/d0ra05319h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/11/2020] [Indexed: 01/03/2023] Open
Abstract
Due to the emergence of multidrug-resistant pathogenic microorganisms, the search for novel antimicrobials is urgent. Inspired by marine alkaloids, a series of indolomethyl pyrazino [1,2-b]quinazoline-3,6-diones was prepared using a one-pot microwave-assisted multicomponent polycondensation of amino acids. The compounds were evaluated for their antimicrobial activity against a panel of nine bacterial strains and five fungal strains. Compounds 26 and 27 were the most effective against Staphylococcus aureus ATCC 29213 reference strain with MIC values of 4 μg mL−1, and a methicillin-resistant Staphylococcus aureus (MRSA) isolate with MIC values of 8 μg mL−1. It was possible to infer that enantiomer (−)-26 was responsible for the antibacterial activity (MIC 4 μg mL−1) while (+)-26 had no activity. Furthermore, compound (−)-26 was able to impair S. aureus biofilm production and no significant cytotoxicity towards differentiated and non-differentiated SH-SY5Y cells was observed. Compounds 26, 28, and 29 showed a weak antifungal activity against Trichophyton rubrum clinical isolate with MIC 128 μg mL−1 and presented a synergistic effect with fluconazole. Indolomethyl pyrazino [1,2-b]quinazoline-3,6-diones were prepared using a one-pot multicomponent polycondensation of amino acids and were evaluated for their antimicrobial activity against a panel of nine bacterial strains and five fungal strains.![]()
Collapse
Affiliation(s)
- Solida Long
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Diana I S P Resende
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal
| | - Andreia Palmeira
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal
| | - Anake Kijjoa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Artur M S Silva
- QOPNA - Química Orgânica, Produtos Naturais e Agroalimentares, Departamento de Química, Universidade de Aveiro 3810-193 Aveiro Portugal
| | - Maria Elizabeth Tiritan
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS) Rua Central de Gandra, 1317 4585-116 Gandra PRD Portugal
| | - Patrícia Pereira-Terra
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Joana Freitas-Silva
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Sandra Barreiro
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Eugénia Pinto
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Paulo Martins da Costa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Emília Sousa
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal
| | - Madalena M M Pinto
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal
| |
Collapse
|
10
|
Rashid FNAA, Mohammat MF, Arshad S, Shaameri Z, Hamzah AS. Crystal structure of ethyl 3-(4-methoxyphenyl)-5-methylcarbamoyl-1H-pyrazole-4-carboxylate, C15H17N3O4. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2019-0203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractC15H17N3O4, triclinic, P1̄ (no. 2), a = 10.5986(5) Å, b = 11.5298(5) Å, c = 13.5386(6) Å, α = 102.694(1)°, β = 102.999(1)°, γ = 108.918(1)°, V = 1446.03(11) Å3, Z = 4, Rgt(F) = 0.0525, wRref(F2) = 0.1526, T = 100(1) K.
Collapse
Affiliation(s)
- Fatin Nur Ain Abdul Rashid
- Department of Chemistry, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Research Laboratory, Institute of Science (I.O.S), Universiti Teknologi MARA, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - Suhana Arshad
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Bandar Puncak Alam, Penang 11800, Malaysia
| | - Zurina Shaameri
- Organic Synthesis Research Laboratory, Institute of Science (I.O.S), Universiti Teknologi MARA, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - Ahmad Sazali Hamzah
- Organic Synthesis Research Laboratory, Institute of Science (I.O.S), Universiti Teknologi MARA, Bandar Puncak Alam, Selangor 42300, Malaysia
| |
Collapse
|
11
|
Alagumuthu M, Muralidharan VP, Andrew M, Ahmed MH, Iyer SK, Arumugam S. Computational Approaches to Develop Isoquinoline Based Antibiotics through DNA Gyrase Inhibition Mechanisms Unveiled through Antibacterial Evaluation and Molecular Docking. Mol Inform 2018; 37:e1800048. [DOI: 10.1002/minf.201800048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Manikandan Alagumuthu
- Dept. of Biotechnology, School of Bio-Sciences and Technology; Vellore Institute of Technology; Vellore- 632014 India
| | - Vivek Panyam Muralidharan
- Dept. of Chemistry, School of Advanced Sciences; Vellore Institute of Technology; Vellore- 632014 India
| | - Monic Andrew
- Dept. of Biotechnology, School of Bio-Sciences and Technology; Vellore Institute of Technology; Vellore- 632014 India
| | - Mohammed Habeeb Ahmed
- Dept. of Biotechnology, School of Bio-Sciences and Technology; Vellore Institute of Technology; Vellore- 632014 India
| | | | - Sivakumar Arumugam
- Dept. of Biotechnology, School of Bio-Sciences and Technology; Vellore Institute of Technology; Vellore- 632014 India
| |
Collapse
|
12
|
Santosh R, Selvam MK, Kanekar SU, Nagaraja GK, Kumar M. Design, Synthesis, DNA Binding, and Docking Studies of Thiazoles and Thiazole-Containing Triazoles as Antibacterials. ChemistrySelect 2018. [DOI: 10.1002/slct.201800222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rangappa Santosh
- Department of Studies in Chemistry; Mangalore University; Mangaluru, Karnataka India
| | - Mukunthan K. Selvam
- Department of Biotechnology; Manipal Institute of Technology; Manipal, Karnataka India
| | - Saptami U. Kanekar
- Yenepoya Research Centre; Yenepoya University; Mangaluru, Karnataka India
| | | | - Madan Kumar
- PUSRE Lab; Mangalore University; Mangaluru, Karnataka India
| |
Collapse
|
13
|
Cotman AE, Trampuž M, Brvar M, Kikelj D, Ilaš J, Peterlin-Mašič L, Montalvão S, Tammela P, Frlan R. Design, Synthesis, and Evaluation of Novel Tyrosine-Based DNA Gyrase B Inhibitors. Arch Pharm (Weinheim) 2017. [PMID: 28621824 DOI: 10.1002/ardp.201700087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The discovery and synthesis of new tyrosine-based inhibitors of DNA gyrase B (GyrB), which target its ATPase subunit, is reported. Twenty-four compounds were synthesized and evaluated for activity against DNA gyrase and DNA topoisomerase IV. The antibacterial properties of selected GyrB inhibitors were demonstrated by their activity against Staphylococcus aureus and Enterococcus faecalis in the low micromolar range. The most promising compounds, 8a and 13e, inhibited Escherichia coli and S. aureus GyrB with IC50 values of 40 and 30 µM. The same compound also inhibited the growth of S. aureus and E. faecalis with minimal inhibitory concentrations (MIC90 ) of 14 and 28 µg/mL, respectively.
Collapse
Affiliation(s)
- Andrej E Cotman
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,National Institute of Chemistry, Ljubljana, Slovenia
| | - Marko Trampuž
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,National Institute of Chemistry, Ljubljana, Slovenia
| | - Matjaž Brvar
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Danijel Kikelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Sofia Montalvão
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Päivi Tammela
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Rok Frlan
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Palkar MB, Patil A, Hampannavar GA, Shaikh MS, Patel HM, Kanhed AM, Yadav MR, Karpoormath RV. Design, synthesis and QSAR studies of 2-amino benzo[d]thiazolyl substituted pyrazol-5-ones: novel class of promising antibacterial agents. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1898-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Molecular docking, discovery, synthesis, and pharmacological properties of new 6-substituted-2-(3-phenoxyphenyl)-4-phenyl quinoline derivatives; an approach to developing potent DNA gyrase inhibitors/antibacterial agents. Bioorg Med Chem 2017; 25:1448-1455. [DOI: 10.1016/j.bmc.2017.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/23/2022]
|
16
|
Structural, physicochemical characterization and antimicrobial activities of a new Tetraaqua bismaleato Iron(II) complex. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Wang SF, Yin Y, Qiao F, Wu X, Sha S, Zhang L, Zhu HL. Synthesis, molecular docking and biological evaluation of metronidazole derivatives containing piperazine skeleton as potential antibacterial agents. Bioorg Med Chem 2014; 22:2409-15. [DOI: 10.1016/j.bmc.2014.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
|
18
|
Liu JJ, Sun J, Fang YB, Yang YA, Jiao RH, Zhu HL. Synthesis, and antibacterial activity of novel 4,5-dihydro-1H-pyrazole derivatives as DNA gyrase inhibitors. Org Biomol Chem 2014; 12:998-1008. [DOI: 10.1039/c3ob41953c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Mayer C, Janin YL. Non-quinolone inhibitors of bacterial type IIA topoisomerases: a feat of bioisosterism. Chem Rev 2013; 114:2313-42. [PMID: 24313284 DOI: 10.1021/cr4003984] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudine Mayer
- Unité de Microbiologie Structurale, Département de Biologie Structurale et Chimie, Institut Pasteur , 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|