1
|
Sun Y, Zhai L, Ma L, Zhang W. Preclinical research progress in HER2-targeted small-molecule probes for breast cancer. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:47-53. [PMID: 39039211 PMCID: PMC11602795 DOI: 10.1007/s00117-024-01338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 07/24/2024]
Abstract
Breast cancer is a malignant tumor that has the highest morbidity and mortality in women worldwide. Human epidermal growth factor receptor 2 (HER2) is a key driver of breast cancer development. Therefore, accurate assessment of HER2 expression in cancer patients and timely initiation or termination of anti-HER2 treatment are crucial for the prognosis of breast cancer patients. The emergence of radiolabeled molecular probes targeting HER2 makes this assessment possible. This article describes different types of small-molecule probes that target HER2 and are used in current preclinical applications and summarizes their advantages and disadvantages.
Collapse
Affiliation(s)
- Yefan Sun
- Department of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, China
| | - Luoping Zhai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Le Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Wanchun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, 030032, Taiyuan, China.
| |
Collapse
|
2
|
Dahlsson Leitao C, Ståhl S, Löfblom J. Surface-engineered bacteria in drug development. Microb Biotechnol 2024; 17:e70033. [PMID: 39403960 PMCID: PMC11474283 DOI: 10.1111/1751-7915.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Bacterial surface display in combination with fluorescence-activated cell sorting is a versatile and robust system and an interesting alternative approach to phage display for the generation of therapeutic affinity proteins. The system enables real-time monitoring and sorting of cell populations, which presents unique possibilities for drug development. It has been used to develop several affibody molecules currently being evaluated preclinically for the treatment and diagnosis of, for example, cancer and neurodegenerative diseases. Additionally, it can be implemented in other areas of drug design, such as for mapping epitopes and evolving enzyme specificities.
Collapse
Affiliation(s)
| | - Stefan Ståhl
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - John Löfblom
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| |
Collapse
|
3
|
Mitra JB, Mukherjee A, Kumar A, Chandak A, Rakshit S, Yadav HD, Pandey BN, Sarma HD. Imaging of bacterial infection: Harnessing positron emission tomography and Cherenkov luminescence imaging with UBI-derived octapeptide. Drug Dev Res 2023; 84:1513-1521. [PMID: 37571805 DOI: 10.1002/ddr.22103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Noninvasive imaging techniques for the early detection of infections are in high demand. In this study, we present the development of an infection imaging agent consisting of the antimicrobial peptide fragment UBI (31-38) conjugated to the chelator 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), which allows for labeling with the positron emitter Ga-68. The preclinical evaluation of [68 Ga]Ga-NODAGA-UBI (31-38) was conducted to investigate its potential for imaging bacterial infections caused by Staphylococcus aureus. The octapeptide derived from ubiquicidin, UBI (31-38), was synthesized and conjugated with the chelator NODAGA. The conjugate was then radiolabeled with Ga-68. The radiolabeling process and the stability of the radio formulation were confirmed through chromatography. The study included both in vitro evaluations using S. aureus and in vivo evaluations in an animal model of infection and inflammation. Positron emission tomography (PET) and Cherenkov luminescence imaging (CLI) were performed to visualize the targeted localization of the radio formulation at the site of infection. Ex vivo biodistribution studies were carried out to quantify the uptake of the radio formulation in different organs and tissues. Additionally, the uptake of [18 F]Fluorodeoxyglucose ([18 F] FDG) in the animal model was also studied for comparison. The [68 Ga]Ga-NODAGA-UBI (31-38) complex consistently exhibited high radiochemical purity (>90%) after formulation. The complex demonstrated stability in saline, phosphate-buffered saline, and human serum for up to 3 h. Notably, the complex displayed significantly higher uptake in S. aureus, which was inhibited in the presence of unconjugated UBI (29-41) peptide, confirming the specificity of the formulation for bacterial membranes. Bacterial imaging capability was also observed in PET and CLI images. Biodistribution results indicated a substantial target-to-nontarget ratio of approximately 4 at 1 h postinjection of the radio formulation. Conversely, the uptake of [18 F]FDG in the animal model did not allow for the discrimination of infected and inflamed sites. Our studies have demonstrated that [68 Ga]Ga-NODAGA-UBI (31-38) holds promise as a radiotracer for imaging bacterial infections caused by S. aureus.
Collapse
Affiliation(s)
- Jyotsna Bhatt Mitra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Anuj Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Ashok Chandak
- Board of Radiation & Isotope Technology, Navi Mumbai, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Hansa D Yadav
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Badri Narain Pandey
- Homi Bhabha National Institute, Mumbai, India
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| |
Collapse
|
4
|
Hu X, Li D, Fu Y, Zheng J, Feng Z, Cai J, Wang P. Advances in the Application of Radionuclide-Labeled HER2 Affibody for the Diagnosis and Treatment of Ovarian Cancer. Front Oncol 2022; 12:917439. [PMID: 35785201 PMCID: PMC9240272 DOI: 10.3389/fonc.2022.917439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a highly expressed tumor marker in epithelial ovarian cancer, and its overexpression is considered to be a potential factor of poor prognosis. Therefore, monitoring the expression of HER2 receptor in tumor tissue provides favorable conditions for accurate localization, diagnosis, targeted therapy, and prognosis evaluation of cancer foci. Affibody has the advantages of high affinity, small molecular weight, and stable biochemical properties. The molecular probes of radionuclide-labeled HER2 affibody have recently shown broad application prospects in the diagnosis and treatment of ovarian cancer; the aim is to introduce radionuclides into the cancer foci, display systemic lesions, and kill tumor cells through the radioactivity of the radionuclides. This process seamlessly integrates the diagnosis and treatment of ovarian cancer. Current research and development of new molecular probes of radionuclide-labeled HER2 affibody should focus on overcoming the deficiencies of non-specific uptake in the kidney, bone marrow, liver, and gastrointestinal tract, and on reducing the background of the image to improve image quality. By modifying the amino acid sequence; changing the hydrophilicity, surface charge, and lipid solubility of the affibody molecule; and using different radionuclides, chelating agents, and labeling conditions to optimize the labeling method of molecular probes, the specific uptake of molecular probes at tumor sites will be improved, while reducing radioactive retention in non-target organs and obtaining the best target/non-target value. These measures will enable the clinical use of radionuclide-labeled HER2 affibody molecular probes as soon as possible, providing a new clinical path for tumor-specific diagnosis, targeted therapy, and efficacy evaluation. The purpose of this review is to describe the application of radionuclide-labeled HER2 affibody in the imaging and treatment of ovarian cancer, including its potential clinical value and dilemmas.
Collapse
Affiliation(s)
- Xianwen Hu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dandan Li
- Department of Obstetrics, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
| | - Yujie Fu
- Research and Development Department, Jiangsu Yuanben Biotechnology Co., Ltd., Zunyi, China
| | - Jiashen Zheng
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zelong Feng
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiong Cai
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang,
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang,
| |
Collapse
|
5
|
Okarvi SM, Al-Jammaz I. Synthesis, Radiolabeling, and Preclinical Evaluation of 68Ga/ 177Lu-Labeled Leuprolide Peptide Analog for the Detection of Breast Cancer. Cancer Biother Radiopharm 2022; 37:372-383. [PMID: 35325547 DOI: 10.1089/cbr.2021.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Objectives: The expansion of novel and potent tumor receptor binding peptides is a promising approach for the precise targeting of various cancer. Leuprolide is a 9-residue peptide analog of gonadotropin-releasing hormone and is extensively used in the treatment of sex hormone-dependent tumors, including prostate, breast, and ovarian cancer. This preclinical study was undertaken to prepare a new radiolabeled leuprolide peptide for the detection of breast carcinoma. Methods: A 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-coupled 9-amino acid leuprolide peptide was synthesized after typical 9-fluorenylmethyl-oxycarbonyl-based solid-phase peptide synthesis and radiolabeled with both 68Ga and 177Lu radionuclides for theranostic use. The systemic pharmacokinetics was done in healthy balb/c mice. The in vitro tumor cell binding affinity was determined on MCF7, T47D, and MDA-MB-231 breast cancer cell lines. In vivo tumor targeting and micro positron-emission tomography imaging was performed on nude mice with MCF7 breast tumor xenografts. Results: The leuprolide peptide was conveniently synthesized by solid-phase synthesis strategy and its identity and purity were validated by mass spectrometry and high-performance liquid chromatography. The peptide radiolabeled efficiently (˃94%) with both diagnostic (68Ga) and therapeutic (177Lu) radionuclides and displayed nanomolar binding potency to all three tested MCF7, T47D, and MDA-MB-231 cell lines. Fast and favorable pharmacokinetics was observed for 68Ga/177Lu-leuprolide in healthy Balb/c mice. In nude mice, 68Ga-leuprolide peptide exhibited rapid clearance from the blood circulation with low to moderate (up to 5% ID/g) uptake/retention by the major body organs. The accumulation in the estrogen receptor-positive MCF7 tumor was 2.24% ± 0.62% ID/g at 45 min p.i, with good tumor to blood and muscle uptake ratios. The radiolabeled peptide was excreted primarily through the renal pathway. Conclusion: The encouraging results of this initial study demonstrate that additional testing of this leuprolide peptide seems to be indicated because of its convincing potential to be a new agent for the management of breast carcinoma.
Collapse
Affiliation(s)
- Subhani M Okarvi
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ibrahim Al-Jammaz
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Miller C, Rousseau J, Ramogida CF, Celler A, Rahmim A, Uribe CF. Implications of physics, chemistry and biology for dosimetry calculations using theranostic pairs. Theranostics 2022; 12:232-259. [PMID: 34987643 PMCID: PMC8690938 DOI: 10.7150/thno.62851] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Theranostics is an emerging paradigm that combines imaging and therapy in order to personalize patient treatment. In nuclear medicine, this is achieved by using radiopharmaceuticals that target identical molecular targets for both imaging (using emitted gamma rays) and radiopharmaceutical therapy (using emitted beta, alpha or Auger-electron particles) for the treatment of various diseases, such as cancer. If the therapeutic radiopharmaceutical cannot be imaged quantitatively, a “theranostic pair” imaging surrogate can be used to predict the absorbed radiation doses from the therapeutic radiopharmaceutical. However, theranostic dosimetry assumes that the pharmacokinetics and biodistributions of both radiopharmaceuticals in the pair are identical or very similar, an assumption that still requires further validation for many theranostic pairs. In this review, we consider both same-element and different-element theranostic pairs and attempt to determine if factors exist which may cause inaccurate dose extrapolations in theranostic dosimetry, either intrinsic (e.g. chemical differences) or extrinsic (e.g. injecting different amounts of each radiopharmaceutical) to the radiopharmaceuticals. We discuss the basis behind theranostic dosimetry and present common theranostic pairs and their therapeutic applications in oncology. We investigate general factors that could create alterations in the behavior of the radiopharmaceuticals or the quantitative accuracy of imaging them. Finally, we attempt to determine if there is evidence showing some specific pairs as suitable for theranostic dosimetry. We show that there are a variety of intrinsic and extrinsic factors which can significantly alter the behavior among pairs of radiopharmaceuticals, even if they belong to the same chemical element. More research is needed to determine the impact of these factors on theranostic dosimetry estimates and on patient outcomes, and how to correctly account for them.
Collapse
|
7
|
Radiometals—Chemistry and radiolabeling. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Israel I, Elflein K, Schirbel A, Chen K, Samnick S. A comparison of the monomeric [ 68Ga]NODAGA-NGR and dimeric [ 68Ga]NOTA-(NGR) 2 as aminopeptidase N ligand for positron emission tomography imaging in tumor-bearing mice. Eur J Pharm Sci 2021; 166:105964. [PMID: 34375678 DOI: 10.1016/j.ejps.2021.105964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 11/30/2022]
Abstract
The aminopeptidase N (APN/CD13) is a key protein specifically expressed on activated endothelial cells and by various tumors, representing a promising target for molecular imaging and therapy of malignant diseases. It is known that the tripeptide NGR is a specific ligand for CD13, therefore radiolabeled NGR peptides are auspicious radiotracers for non-invasive imaging of CD13-positive tumors. From previous studies, it is known that the target affinity could be improved by molecules with multiple ligand sequences. Therefore, the aim of this study was to compare two NGR radioligands [68Ga]NODAGA-NGR (NGR monomer) and [68Ga]NOTA-(NGR)2 (NGR dimer), the latter with two NGR ligand motifs, in vitro and in vivo. CD13 expression was determined by FACS in the human tumor cells A549, SKHep-1, and MDA-MB-231, followed by the investigation of the cell uptake of [68Ga]NODAGA-NGR and [68Ga]NOTA-(NGR)2. For in vivo evaluation of [68Ga]NODAGA-NGR and [68Ga]NOTA-(NGR)2, microPET and biodistribution were carried out in A549- and SKHep-1-bearing mice. After the final examination, tumors were cryo-conserved, cut, and stained against CD13 and CD31. A549 and SKHep-1 cells were identified as CD13 positive, whereas no CD13 expression was detected in MDA-MB-231 cells. The cell uptake study showed relatively low accumulation of both the NGR monomer and dimer in all tumor cell lines examined, with consistently higher cell uptake observed for the dimer than for the monomer. In vivo, [68Ga]NODAGA-NGR and [68Ga]NOTA-(NGR)2 accumulated in the tumors, with slightly higher tumor-to-muscle ratio for the NGR dimer in A549 and SKHep-1. The tumor-to-liver ratio of the NGR dimer was diminished in comparison to the NGR monomer. This finding was confirmed by biodistribution, which revealed higher accumulation in liver and spleen for the NGR dimer. Immunohistochemical staining confirmed the CD13 expression in the tumors and tumor-associated vessels. In conclusion, both the [68Ga]NODAGA-NGR and the [68Ga]NOTA-(NGR)2 were found to be suitable for PET imaging of CD13-positive tumors. Despite slight differences in tumor-to-background ratio and organ accumulation, both radiotracers can be considered comparable.
Collapse
Affiliation(s)
- Ina Israel
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Konstantin Elflein
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
9
|
Vilhelmsson Timmermand O, Örbom A, Altai M, Zedan W, Holmqvist B, Safi M, Tran TA, Strand SE, Strand J. A Conjugation Strategy to Modulate Antigen Binding and FcRn Interaction Leads to Improved Tumor Targeting and Radioimmunotherapy Efficacy with an Antibody Targeting Prostate-Specific Antigen. Cancers (Basel) 2021; 13:cancers13143469. [PMID: 34298682 PMCID: PMC8307315 DOI: 10.3390/cancers13143469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The humanized monoclonal antibody (mAb) hu5A10 specifically targets and internalizes prostate cancer cells by binding to prostate specific antigen (PSA). Preclinical evaluations have shown that hu5A10 is an excellent vehicle for prostate cancer (PCa) radiotheranostics. We studied the impact of different chelates and conjugation ratios on hu5A10's target affinity, neonatal fc-receptor interaction on in vivo targeting efficacy, and possible enhanced therapeutic efficacy. METHODS In our experiment, humanized 5A10 (hu5A10) was conjugated with DOTA or DTPA at a molar ratio of 3:1, 6:1, and 12:1. Surface plasmon resonance (SPR) was used to study antigen and FcRn binding to the antibody conjugates. [111In]hu5A10 radio-immunoconjugates were administered intravenously into BALB/c mice carrying subcutaneous LNCaP xenografts. Serial Single-photon emission computed tomography (SPECT) images were obtained during the first week. Tumors were harvested and radionuclide distribution was analyzed by autoradiography along with microanatomy and immunohistochemistry. RESULTS As seen by SPR, the binding to PSA was clearly affected by the chelate-to-antibody ratio. Similarly, FcRn (neonatal fc-receptor) interacted less with antibodies conjugated at high ratios of chelator, which was more pronounced for DOTA conjugates. The autoradiography data indicated a higher distribution of radioactivity to the rim of the tumor for lower ratios and a more homogenous distribution at higher ratios. Mice injected with ratio 3:1 111In-DOTA-hu5A10 showed no significant difference in tumor volume when compared to mice given vehicle over a time period of 3 weeks. Mice given a similar injection of ratio 6:1 111In-DOTA-hu5A10 or 6:1 111In-DTPA-hu5A10 or 12:1 111In-DTPA-hu5A10 showed significant tumor growth retardation. Conclusions: The present study demonstrated that the radiolabeling strategy could positively modify the hu5A10's capacity to bind PSA and complex with the FcRn-receptor, which resulted in more homogenous activity distribution in tumors and enhanced therapy efficacy.
Collapse
Affiliation(s)
- Oskar Vilhelmsson Timmermand
- Department of Clinical Sciences Lund, Oncology, Lund University, 22243 Lund, Sweden; (O.V.T.); (A.Ö.); (M.A.); (W.Z.); (M.S.); (S.-E.S.)
| | - Anders Örbom
- Department of Clinical Sciences Lund, Oncology, Lund University, 22243 Lund, Sweden; (O.V.T.); (A.Ö.); (M.A.); (W.Z.); (M.S.); (S.-E.S.)
| | - Mohamed Altai
- Department of Clinical Sciences Lund, Oncology, Lund University, 22243 Lund, Sweden; (O.V.T.); (A.Ö.); (M.A.); (W.Z.); (M.S.); (S.-E.S.)
| | - Wahed Zedan
- Department of Clinical Sciences Lund, Oncology, Lund University, 22243 Lund, Sweden; (O.V.T.); (A.Ö.); (M.A.); (W.Z.); (M.S.); (S.-E.S.)
| | - Bo Holmqvist
- ImaGene-iT AB, Medicon Village, 22363 Lund, Sweden;
| | - Marcella Safi
- Department of Clinical Sciences Lund, Oncology, Lund University, 22243 Lund, Sweden; (O.V.T.); (A.Ö.); (M.A.); (W.Z.); (M.S.); (S.-E.S.)
| | - Thuy A. Tran
- Department of Radiopharmacy, Karolinska University Hospital, 17177 Stockholm, Sweden;
| | - Sven-Erik Strand
- Department of Clinical Sciences Lund, Oncology, Lund University, 22243 Lund, Sweden; (O.V.T.); (A.Ö.); (M.A.); (W.Z.); (M.S.); (S.-E.S.)
- Department of Clinical Sciences Lund, Medical Radiation Physics, Lund University, 22243 Lund, Sweden
| | - Joanna Strand
- Department of Clinical Sciences Lund, Oncology, Lund University, 22243 Lund, Sweden; (O.V.T.); (A.Ö.); (M.A.); (W.Z.); (M.S.); (S.-E.S.)
- Department of Clinical Oncology, Skane University Hospital, 22243 Lund, Sweden
- Correspondence: ; Tel.: +46-736839033
| |
Collapse
|
10
|
Abstract
PURPOSE Evaluation of [68Ga]NODAGA-duramycin as a positron emission tomography (PET) tracer of cell death for whole-body detection of chemotherapy-induced organ toxicity. PROCEDURES Tracer specificity of Ga-68 labeled NODAGA-duramycin was determined in vitro using competitive binding experiments. Organ uptake was analyzed in untreated and doxorubicin, busulfan, and cisplatin-treated mice 2 h after intravenous injection of [68Ga]NODAGA-duramycin. In vivo data were validated by immunohistology and blood parameters. RESULTS In vitro experiments confirmed specific binding of [68Ga]NODAGA-duramycin. Organ toxicities were detected successfully using [68Ga]NODAGA-duramycin PET/X-ray computed tomography (CT) and confirmed by immunohistochemistry and blood parameter analysis. Organ toxicities in livers and kidneys showed similar trends in PET/CT and immunohistology. Busulfan and cisplatin-related organ toxicities in heart, liver, and lungs were detected earlier by PET/CT than by blood parameters and immunohistology. CONCLUSION [68Ga]NODAGA-duramycin PET/CT was successfully applied to non-invasively detect chemotherapy-induced organ toxicity with high sensitivity in mice. It, therefore, represents a promising alternative to standard toxicological analyses with a high translational potential.
Collapse
|
11
|
Nakashima K, Iikuni S, Okada Y, Watanabe H, Shimizu Y, Nakamoto Y, Ono M. Synthesis and evaluation of 68Ga-labeled imidazothiadiazole sulfonamide derivatives for PET imaging of carbonic anhydrase-IX. Nucl Med Biol 2021; 93:46-53. [PMID: 33316738 DOI: 10.1016/j.nucmedbio.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/22/2020] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Carbonic anhydrase-IX (CA-IX) is markedly overexpressed in many types of solid tumors promoting tumorigenicity and tumor growth. We synthesized novel 68Ga-labeled imidazothiadiazole sulfonamide (IS) derivatives ([68Ga]Ga-DO3A-IS1 and [68Ga]Ga-DO2A-IS2), and evaluated their utility as positron emission tomography (PET) probes targeting CA-IX. METHODS [67/68Ga]Ga-DO3A-IS1 and [67/68Ga]Ga-DO2A-IS2 were synthesized from corresponding precursors by ligand substitution reaction in acetate buffer. Cell binding assays were performed using HT-29 cells, which highly express CA-IX, and MDA-MB-231 cells, which show lower-level expression of CA-IX, and a biodistribution assay with model mice bearing the HT-29 or MDA-MB-231 tumor was performed. [68Ga]Ga-DO3A-IS1 was further evaluated by PET/CT. RESULTS To evaluate their fundamental properties, [67Ga]Ga-DO3A-IS1 and [67Ga]Ga-DO2A-IS2 were synthesized by conjugation with 67Ga, which has a much longer decay half-life and can be utilized more easily than 68Ga. [67/68Ga]Ga-DO3A-IS1 and [67/68Ga]Ga-DO2A-IS2 were prepared from corresponding precursors with preferable yield and purity. [67Ga]Ga-DO3A-IS1 and [67Ga]Ga-DO2A-IS2 showed significantly greater binding to HT-29 cells than MDA-MB-231 cells in vitro and the binding of [67Ga]Ga-DO2A-IS2 to HT-29 cells was much greater than that of [67Ga]Ga-DO3A-IS1, suggesting multivalent interactions. [67Ga]Ga-DO3A-IS1 and [67Ga]Ga-DO2A-IS2 showed significant selectivity for the HT-29 tumor in vivo, while tumor uptake of [67Ga]Ga-DO3A-IS1 was greater than that of [67Ga]Ga-DO2A-IS2. PET/CT of [68Ga]Ga-DO3A-IS1 showed selectivity for the HT-29 tumor, although [68Ga]Ga-DO3A-IS1 could not be used to visualize the HT-29 tumor clearly because of its strong background signals. CONCLUSION These results indicate that 68Ga-labeled IS derivatives may be useful 68Ga-PET probes targeting CA-IX with further structural modifications.
Collapse
Affiliation(s)
- Kazuma Nakashima
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuya Okada
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoichi Shimizu
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
12
|
Tolmachev V, Orlova A, Sörensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Semin Cancer Biol 2021; 72:185-197. [PMID: 33465471 DOI: 10.1016/j.semcancer.2020.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Targeting of human epidermal growth factor type 2 (HER2) using monoclonal antibodies, antibody-drug conjugates and tyrosine kinase inhibitors extends survival of patients with HER2-expressing metastatic breast cancer. High expression of HER2 is a predictive biomarker for such specific treatment. Accurate determination of HER2 expression level is necessary for stratification of patients to targeted therapy. Non-invasive in vivo radionuclide molecular imaging of HER2 has a potential of repetitive measurements, addressing issues of heterogeneous expression and conversion of HER2 status during disease progression or in response to therapy. Imaging probes based of several classes of targeting proteins are currently in preclinical and early clinical development. Both preclinical and clinical data suggest that the most promising are imaging agents based on small proteins, such as single domain antibodies or engineered scaffold proteins. These agents permit a very specific high-contrast imaging at the day of injection.
Collapse
Affiliation(s)
- Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia.
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Division of Radiology and Nuclear Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Effendi N, Mishiro K, Shiba K, Kinuya S, Ogawa K. Development of Radiogallium-Labeled Peptides for Platelet-Derived Growth Factor Receptor β (PDGFR β) Imaging: Influence of Different Linkers. Molecules 2020; 26:molecules26010041. [PMID: 33374773 PMCID: PMC7795354 DOI: 10.3390/molecules26010041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study is to develop peptide-based platelet-derived growth factor receptor β (PDGFRβ) imaging probes and examine the effects of several linkers, namely un-natural amino acids (D-alanine and β-alanine) and ethylene-glycol (EG), on the properties of Ga-DOTA-(linker)-IPLPPPRRPFFK peptides. Seven radiotracers, 67Ga-DOTA-(linker)-IPLPPPRRPFFK peptides, were designed, synthesized, and evaluated. The stability and cell uptake in PDGFRβ positive peptide cells were evaluated in vitro. The biodistribution of [67Ga]Ga-DOTA-EG2-IPLPPPRRPFFK ([67Ga]27) and [67Ga]Ga-DOTA-EG4-IPLPPPRRPFFK ([67Ga]28), which were selected based on in vitro stability in murine plasma and cell uptake rates, were determined in BxPC3-luc-bearing nu/nu mice. Seven 67Ga-labeled peptides were successfully synthesized with high radiochemical yields (>85%) and purities (>99%). All evaluated radiotracers were stable in PBS (pH 7.4) at 37 °C. However, only [67Ga]27 and [67Ga]28 remained more than 75% after incubation in murine plasma at 37 °C for 1 h. [67Ga]27 exhibited the highest BxPC3-luc cell uptake among the prepared radiolabeled peptides. As regards the results of the biodistribution experiments, the tumor-to-blood ratios of [67Ga]27 and [67Ga]28 at 1 h post-injection were 2.61 ± 0.75 and 2.05 ± 0.77, respectively. Co-injection of [67Ga]27 and an excess amount of IPLPPPRRPFFK peptide as a blocking agent can significantly decrease this ratio. However, tumor accumulation was not considered sufficient. Therefore, further probe modification is required to assess tumor accumulation for in vivo imaging.
Collapse
Affiliation(s)
- Nurmaya Effendi
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; (N.E.); (K.M.)
- Faculty of Pharmacy, Universitas Muslim Indonesia, Urip Sumiharjo KM. 10, Makassar 90-231, Indonesia
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; (N.E.); (K.M.)
| | - Kazuhiro Shiba
- Advanced Science Research Center, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8640, Japan;
| | - Seigo Kinuya
- Department of Nuclear Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8641, Japan;
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; (N.E.); (K.M.)
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Correspondence: ; Tel./Fax: +81-76-234-4460
| |
Collapse
|
14
|
Preclinical Evaluation of the Copper-64 Labeled GRPR-Antagonist RM26 in Comparison with the Cobalt-55 Labeled Counterpart for PET-Imaging of Prostate Cancer. Molecules 2020; 25:molecules25245993. [PMID: 33352838 PMCID: PMC7766840 DOI: 10.3390/molecules25245993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023] Open
Abstract
Gastrin-releasing peptide receptor (GRPR) is overexpressed in the majority of prostate cancers. This study aimed to investigate the potential of 64Cu (radionuclide for late time-point PET-imaging) for imaging of GRPR expression using NOTA-PEG2-RM26 and NODAGA-PEG2-RM26. Methods: NOTA/NODAGA-PEG2-RM26 were labeled with 64Cu and evaluated in GRPR-expressing PC-3 cells. Biodistribution of [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was studied in PC-3 xenografted mice and compared to the biodistribution of [57Co]Co-NOTA/NODAGA-PEG2-RM26 at 3 and 24 h p.i. Preclinical PET/CT imaging was performed in tumor-bearing mice. NOTA/NODAGA-PEG2-RM26 were stably labeled with 64Cu with quantitative yields. In vitro, binding of [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was rapid and GRPR-specific with slow internalization. In vivo, [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 bound specifically to GRPR-expressing tumors with fast clearance from blood and normal organs and displayed generally comparable biodistribution profiles to [57Co]Co-NOTA/NODAGA-PEG2-RM26; tumor uptake exceeded normal tissue uptake 3 h p.i.. Tumor-to-organ ratios did not increase significantly with time. [64Cu]Cu-NOTA-PEG2-RM26 had a significantly higher liver and pancreas uptake compared to other agents. 57Co-labeled radioconjugates showed overall higher tumor-to-non-tumor ratios, compared to the 64Cu-labeled counterparts. [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was able to visualize GRPR-expression in a murine PC model using PET. However, [55/57Co]Co-NOTA/NODAGA-PEG2-RM26 provided better in vivo stability and overall higher tumor-to-non-tumor ratios compared with the 64Cu-labeled conjugates.
Collapse
|
15
|
Li X, Yin G, Ji W, Liu J, Zhang Y, Wang J, Zhu X, Zhu L, Dai D, Ma W, Xu W. 18F-FHBG PET-CT Reporter Gene Imaging of Adoptive CIK Cell Transfer Immunotherapy for Breast Cancer in a Mouse Model. Onco Targets Ther 2020; 13:11659-11668. [PMID: 33223839 PMCID: PMC7671474 DOI: 10.2147/ott.s271657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background To further improve the efficiency of adoptively transferred cytokine-induced killer (CIK) cell immunotherapy in breast cancer (BC), a reliable imaging method is required to visualize and monitor these transferred cells in vivo. Methods Herpes simplex virus 1-thymidine kinase (HSV1-TK) and 9-(4-[18F]fluoro-3-(hydroxymethyl)butyl)guanine (18F-FHBG) were used as a pair of reporter gene/reporter probe for positron emission tomography (PET) imaging in this study. Following the establishment of subcutaneous BC xenograft-bearing nude mice models, induced human CIK cells expressing reporter gene HSV1-TK through lentiviral transduction were intravenously injected to nude mice. γ-radioimmunoassay was used to determine the specific uptake of 18F-FHBG by these genetically engineered CIK cells expressing HSV1-TK in vitro, and 18F-FHBG micro positron emission tomography-computed tomography (PET-CT) imaging was performed to visualize these adoptively transferred CIK cells in tumor-bearing nude mice. Results Specific uptake of 18F-FHBG by CIK cells expressing HSV1-TK was clearly observed in vitro. Consistently, the localization of adoptively transferred CIK cells in tumor target could be effectively visualized by 18F-FHBG micro PET-CT reporter gene imaging. Conclusion PET-CT reporter gene imaging using 18F-FHBG as a reporter probe enables the visualization and monitoring of adoptively transferred CIK cells in vivo.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Guotao Yin
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Wei Ji
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Yufan Zhang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Jian Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Xiang Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Wenchao Ma
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| |
Collapse
|
16
|
Biabani Ardakani J, Akhlaghi M, Nikkholgh B, Hosseinimehr SJ. Targeting and imaging of HER2 overexpression tumor with a new peptide-based 68Ga-PET radiotracer. Bioorg Chem 2020; 106:104474. [PMID: 33246602 DOI: 10.1016/j.bioorg.2020.104474] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression, as a predictive biomarker, is associated with more tumor aggressiveness and worse clinical outcomes in cancer, whereas it's accurate identification has led to the choice of effective treatments in many patients. In this study, a peptide-based PET probe (68Ga-DOTA-(Ser)3-LTVSPWY) was developed for imaging HER2 expression in tumors. The DOTA-(Ser)3-LTVSPWY was labeled with 68Ga and then was evaluated in vitro with HER2-positive SKOV-3 cell line; moreover, the in vivo biodistribution and PET/CT imaging were performed in xenografted tumor-bearing nude mice. The 68Ga-DOTA-(Ser)3-LTVSPWY displayed the high radiochemical purity greater than 95% and good stability in normal saline and human serum. The cellular binding experiments showed that the cell uptake in HER2-positive ovarian cancer cells could be effectively blocked by non-labeled peptide. The Kd and Bmax values for radiolabeled peptide were obtained at 2.5 ± 0.6 nM and (3.4 ± 0.2) × 105 sites per cell, respectively. Biodistribution study demonstrated that tumor-to-blood and tumor-to-muscle ratios were about 1.73 ± 0.36 and 3.78 ± 0.17 at 120 min after the injection of the radiolabeled peptide, respectively. Tumor imaging by PET/CT exhibited high contrast tumor image at 60 min after injection in animal models. Consequently, the results were indicative of the specific accumulation of 68Ga-DOTA-(Ser)3-LTVSPWY peptide in HER2-positive tumors and the suitability of its application as a PET probe for the diagnosis of HER2-overexpression tumor.
Collapse
Affiliation(s)
- Javad Biabani Ardakani
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Nikkholgh
- Khatam PET/CT Center, Specialty and Subspecialty Hospital of Khatam ol-Anbia, Tehran, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
17
|
Ding L, Lyu Z, Louis B, Tintaru A, Laurini E, Marson D, Zhang M, Shao W, Jiang Y, Bouhlel A, Balasse L, Garrigue P, Mas E, Giorgio S, Iovanna J, Huang Y, Pricl S, Guillet B, Peng L. Surface Charge of Supramolecular Nanosystems for In Vivo Biodistribution: A MicroSPECT/CT Imaging Study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003290. [PMID: 32794645 DOI: 10.1002/smll.202003290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Bioimaging has revolutionized medicine by providing accurate information for disease diagnosis and treatment. Nanotechnology-based bioimaging is expected to further improve imaging sensitivity and specificity. In this context, supramolecular nanosystems based on self-assembly of amphiphilic dendrimers for single photon emission computed tomography (SPECT) bioimaging are developed. These dendrimers bear multiple In3+ radionuclides at their terminals as SPECT reporters. By replacing the macrocyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid cage with the smaller 1,4,7-triazacyclononane-1,4,7-triacetic acid scaffold as the In3+ chelator, the corresponding dendrimer exhibits neutral In3+ -complex terminals in place of negatively charged In3+ -complex terminals. This negative-to-neutral surface charge alteration completely reverses the zeta-potential of the nanosystems from negative to positive. As a consequence, the resulting SPECT nanoprobe generates a highly sought-after biodistribution profile accompanied by a drastically reduced uptake in liver, leading to significantly improved tumor imaging. This finding contrasts with current literature reporting that positively charged nanoparticles have preferential accumulation in the liver. As such, this study provides new perspectives for improving the biodistribution of positively charged nanosystems for biomedical applications.
Collapse
Affiliation(s)
- Ling Ding
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Zhenbin Lyu
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, 13013, France
| | - Beatrice Louis
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Aura Tintaru
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, 13013, France
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, 34127, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, 34127, Italy
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Wanxuan Shao
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Yifan Jiang
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Ahlem Bouhlel
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Laure Balasse
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Philippe Garrigue
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Eric Mas
- Aix-Marseille Université, INSERM, CNRS, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, 13288, France
| | - Suzanne Giorgio
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Juan Iovanna
- Aix-Marseille Université, INSERM, CNRS, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, 13288, France
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, 34127, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
| | - Benjamin Guillet
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| |
Collapse
|
18
|
Qi S, Hoppmann S, Xu Y, Cheng Z. PET Imaging of HER2-Positive Tumors with Cu-64-Labeled Affibody Molecules. Mol Imaging Biol 2020; 21:907-916. [PMID: 30617730 DOI: 10.1007/s11307-018-01310-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Previous studies has demonstrated the utility of human epidermal growth factor receptor type 2 (HER2) as an attractive target for cancer molecular imaging and therapy. An affibody protein with strong binding affinity for HER2, ZHER2:342, has been reported. Various methods of chelator conjugation for radiolabeling HER2 affibody molecules have been described in the literature including N-terminal conjugation, C-terminal conjugation, and other methods. Cu-64 has recently been extensively evaluated due to its half-life, decay properties, and availability. Our goal was to optimize the radiolabeling method of this affibody molecule with Cu-64, and translate a positron emission tomography (PET) probe with the best in vivo performance to clinical PET imaging of HER2-positive cancers. PROCEDURES In our study, three anti-HER2 affibody proteins-based PET probes were prepared, and their in vivo performance was evaluated in mice bearing HER2-positive subcutaneous SKOV3 tumors. The affibody analogues, Ac-Cys-ZHER2:342, Ac-ZHER2:342(Cys39), and Ac-ZHER2:342-Cys, were synthesized using the solid phase peptide synthesis method. The purified small proteins were site-specifically conjugated with the maleimide-functionalized chelator, 1,4,7,10-tetraazacyclododecane-1,4,7-tris- aceticacid-10-maleimidethylacetamide (maleimido-mono-amide-DOTA). The resulting DOTA-affibody conjugates were then radiolabeled with Cu-64. Cell uptake assay of the resulting PET probes, [64Cu]DOTA-Cys-ZHER2:342, [64Cu]DOTA-ZHER2:342(Cys39), and [64Cu]DOTA-ZHER2:342-Cys, was performed in HER2-positive human ovarian SKOV3 carcinoma cells at 4 and 37 °C. The binding affinities of the radiolabeled peptides were tested by cell saturation assay using SKOV3 cells. PET imaging, biodistribution, and metabolic stability studies were performed in mice bearing SKOV3 tumors. RESULTS Cell uptake assays showed high and specific uptake by incubation of Cu-64-labeled affibodies with SKOV3 cells. The affinities (KD) of the PET radio probes as tested by cell saturation analysis were in the low nanomolar range with the ranking of [64Cu]DOTA-Cys-ZHER2:342 (25.2 ± 9.2 nM) ≈ [64Cu]DOTA-ZHER2:342-Cys (32.6 ± 14.7 nM) > [64Cu]DOTA-ZHER2:342(Cys39) (77.6 ± 22.2 nM). In vitro stability and in vivo metabolite analysis study revealed that all three probes were stable enough for in vivo imaging applications, while [64Cu]DOTA-Cys-ZHER2:342 showed the highest stability. In vivo small-animal PET further demonstrated fast tumor targeting, good tumor accumulation, and good tumor to normal tissue contrast of all three probes. For [64Cu]DOTA-Cys-ZHER2:342, [64Cu]DOTA-ZHER2:342(Cys39), and [64Cu]DOTA-ZHER2:342-Cys, tumor uptake at 24 h are 4.0 ± 1.0 % ID/g, 4.0 ± 0.8 %ID/g, and 4.3 ± 0.7 %ID/g, respectively (mean ± SD, n = 4). Co-injection of the probes with non-labeled anti-HER2 affibody proteins confirmed in vivo specificities of the compounds by tumor uptake reduction. CONCLUSIONS The three Cu-64-labeled ZHER2:342 analogues all display excellent HER2 targeting ability and tumor PET imaging quality. Although varied in the position of the radiometal labeling of these three Cu-64-labeled ZHER2:342 analogues, there is no significant difference in tumor and normal tissue uptakes among the three probes. [64Cu]DOTA-Cys-ZHER2:342 stands out as the most superior PET probe because of its highest affinities and in vivo stability.
Collapse
Affiliation(s)
- Shibo Qi
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Susan Hoppmann
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Yingding Xu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA.
| |
Collapse
|
19
|
Affibody Molecules as Targeting Vectors for PET Imaging. Cancers (Basel) 2020; 12:cancers12030651. [PMID: 32168760 PMCID: PMC7139392 DOI: 10.3390/cancers12030651] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Affibody molecules are small (58 amino acids) engineered scaffold proteins that can be selected to bind to a large variety of proteins with a high affinity. Their small size and high affinity make them attractive as targeting vectors for molecular imaging. High-affinity affibody binders have been selected for several cancer-associated molecular targets. Preclinical studies have shown that radiolabeled affibody molecules can provide highly specific and sensitive imaging on the day of injection; however, for a few targets, imaging on the next day further increased the imaging sensitivity. A phase I/II clinical trial showed that 68Ga-labeled affibody molecules permit an accurate and specific measurement of HER2 expression in breast cancer metastases. This paper provides an overview of the factors influencing the biodistribution and targeting properties of affibody molecules and the chemistry of their labeling using positron emitters.
Collapse
|
20
|
Increase in negative charge of 68Ga/chelator complex reduces unspecific hepatic uptake but does not improve imaging properties of HER3-targeting affibody molecules. Sci Rep 2019; 9:17710. [PMID: 31776413 PMCID: PMC6881397 DOI: 10.1038/s41598-019-54149-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Upregulation of the human epidermal growth factor receptor type 3 (HER3) is a common mechanism to bypass HER-targeted cancer therapy. Affibody-based molecular imaging has the potential for detecting and monitoring HER3 expression during treatment. In this study, we compared the imaging properties of newly generated 68Ga-labeled anti-HER3 affibody molecules (HE)3-ZHER3-DOTA and (HE)3-ZHER3-DOTAGA with previously reported [68Ga]Ga-(HE)3-ZHER3-NODAGA. We hypothesized that increasing the negative charge of the gallium-68/chelator complex would reduce hepatic uptake, which could lead to improved contrast of anti-HER3 affibody-based PET-imaging of HER3 expression. (HE)3-ZHER3-X (X = DOTA, DOTAGA) were produced and labeled with gallium-68. Binding of the new conjugates was specific in HER3 expressing BxPC-3 and DU145 human cancer cells. Biodistribution and in vivo specificity was studied in BxPC-3 xenograft bearing Balb/c nu/nu mice 3 h pi. DOTA- and DOTAGA-containing conjugates had significantly higher concentration in blood than [68Ga]Ga-(HE)3-ZHER3-NODAGA. Presence of the negatively charged 68Ga-DOTAGA complex reduced the unspecific hepatic uptake, but did not improve overall biodistribution of the conjugate. [68Ga]Ga-(HE)3-ZHER3-DOTAGA and [68Ga]Ga-(HE)3-ZHER3-NODAGA had similar tumor-to-liver ratios, but [68Ga]Ga-(HE)3-ZHER3-NODAGA had the highest tumor uptake and tumor-to-blood ratio among the tested conjugates. In conclusion, [68Ga]Ga-(HE)3-ZHER3-NODAGA remains the favorable variant for PET imaging of HER3 expression.
Collapse
|
21
|
Carpanese D, Zorz A, Evangelista L, Salvarese N. Targeting prostate cancer with the anti-PSMA scFvD2B: a theranostic promise for nuclear medicine. Clin Transl Imaging 2019. [DOI: 10.1007/s40336-019-00337-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
von Witting E, Garousi J, Lindbo S, Vorobyeva A, Altai M, Oroujeni M, Mitran B, Orlova A, Hober S, Tolmachev V. Selection of the optimal macrocyclic chelators for labeling with 111In and 68Ga improves contrast of HER2 imaging using engineered scaffold protein ADAPT6. Eur J Pharm Biopharm 2019; 140:109-120. [PMID: 31082509 DOI: 10.1016/j.ejpb.2019.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
Radionuclide molecular imaging is a promising tool that becomes increasingly important as targeted cancer therapies are developed. To ensure an effective treatment, a molecular stratification of the cancer is a necessity. To accomplish this, visualization of cancer associated molecular abnormalities in vivo by molecular imaging is the method of choice. ADAPTs, a novel type of small protein scaffold, have been utilized to select and develop high affinity binders to different proteinaceous targets. One of these binders, ADAPT6 selectively interacts with human epidermal growth factor 2 (HER2) with low nanomolar affinity and can therefore be used for its in vivo visualization. Molecular design and optimization of labeled anti-HER2 ADAPT has been explored in several earlier studies, showing that small changes in the scaffold affect the biodistribution of the domain. In this study, we evaluate how the biodistribution properties of ADAPT6 is affected by the commonly used maleimido derivatives of the macrocyclic chelators NOTA, NODAGA, DOTA and DOTAGA with the aim to select the best variants for SPECT and PET imaging. The different conjugates were labeled with 111In for SPECT and 68Ga for PET. The acquired data show that the combination of a radionuclide and a chelator for its conjugation has a strong influence on the uptake of ADAPT6 in normal tissues and thereby gives a significant variation in tumor-to-organ ratios. Hence, it was concluded that the best variant for SPECT imaging is 111In-(HE)3DANS-ADAPT6-GSSC-DOTA while the best variant for PET imaging is 68Ga-(HE)3DANS-ADAPT6-GSSC-NODAGA.
Collapse
Affiliation(s)
- Emma von Witting
- Department of Protein Science, KTH - Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Sarah Lindbo
- Department of Protein Science, KTH - Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Mohamed Altai
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH - Royal Institute of Technology, SE-10691 Stockholm, Sweden.
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| |
Collapse
|
23
|
Preclinical Evaluation of [ 68Ga]Ga-DFO-ZEGFR:2377: A Promising Affibody-Based Probe for Noninvasive PET Imaging of EGFR Expression in Tumors. Cells 2018; 7:cells7090141. [PMID: 30231504 PMCID: PMC6162391 DOI: 10.3390/cells7090141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/10/2023] Open
Abstract
Radionuclide imaging of epidermal growth factor receptor (EGFR) expression in tumors may stratify patients for EGFR-targeting therapies and predict response or resistance to certain treatments. Affibody molecules, which are nonimmunoglobulin scaffold proteins, have a high potential as probes for molecular imaging. In this study, maleimido derivative of desferrioxamine B (DFO) chelator was site-specifically coupled to the C-terminal cysteine of the anti-EGFR affibody molecule ZEGFR:2377, and the DFO-ZEGFR:2377 conjugate was labeled with the generator-produced positron-emitting radionuclide 68Ga. Stability, specificity of binding to EGFR-expressing cells, and processing of [68Ga]Ga-DFO-ZEGFR:2377 by cancer cells after binding were evaluated in vitro. In vivo studies were performed in nude mice bearing human EGFR-expressing A431 epidermoid cancer xenografts. The biodistribution of [68Ga]Ga-DFO-ZEGFR:2377 was directly compared with the biodistribution of [89Zr]Zr-DFO-ZEGFR:2377. DFO-ZEGFR:2377 was efficiently (isolated yield of 73 ± 3%) and stably labeled with 68Ga. Binding of [68Ga]Ga-DFO-ZEGFR:2377 to EGFR-expressing cells in vitro was receptor-specific and proportional to the EGFR expression level. In vivo saturation experiment demonstrated EGFR-specific accumulation of [68Ga]Ga-DFO-ZEGFR:2377 in A431 xenografts. Compared to [89Zr]Zr-DFO-ZEGFR:2377, [68Ga]Ga-DFO-ZEGFR:2377 demonstrated significantly (p < 0.05) higher uptake in tumors and lower uptake in spleen and bones. This resulted in significantly higher tumor-to-organ ratios for [68Ga]Ga-DFO-ZEGFR:2377. In conclusion, [68Ga]Ga-DFO-ZEGFR:2377 is a promising probe for imaging of EGFR expression.
Collapse
|
24
|
Mitran B, Güler R, Roche FP, Lindström E, Selvaraju RK, Fleetwood F, Rinne SS, Claesson-Welsh L, Tolmachev V, Ståhl S, Orlova A, Löfblom J. Radionuclide imaging of VEGFR2 in glioma vasculature using biparatopic affibody conjugate: proof-of-principle in a murine model. Theranostics 2018; 8:4462-4476. [PMID: 30214632 PMCID: PMC6134937 DOI: 10.7150/thno.24395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/21/2018] [Indexed: 01/09/2023] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR2) is a key mediator of angiogenesis and therefore a promising therapeutic target in malignancies including glioblastoma multiforme (GBM). Molecular imaging of VEGFR2 expression may enable patient stratification for antiangiogenic therapy. The goal of the current study was to evaluate the capacity of the novel anti-VEGFR2 biparatopic affibody conjugate (ZVEGFR2-Bp2) for in vivo visualization of VEGFR2 expression in GBM. Methods: ZVEGFR2-Bp2 coupled to a NODAGA chelator was generated and radiolabeled with indium-111. The VEGFR2-expressing murine endothelial cell line MS1 was used to evaluate in vitro binding specificity and affinity, cellular processing and targeting specificity in mice. Further tumor targeting was studied in vivo in GL261 glioblastoma orthotopic tumors. Experimental imaging was performed. Results: [111In]In-NODAGA-ZVEGFR2-Bp2 bound specifically to VEGFR2 (KD=33±18 pM). VEGFR2-mediated accumulation was observed in liver, spleen and lungs. The tumor-to-organ ratios 2 h post injection for mice bearing MS1 tumors were approximately 11 for blood, 15 for muscles and 78 for brain. Intracranial GL261 glioblastoma was visualized using SPECT/CT. The activity uptake in tumors was significantly higher than in normal brain tissue. The tumor-to-cerebellum ratios after injection of 4 µg [111In]In-NODAGA-ZVEGFR2-Bp2 were significantly higher than the ratios observed for the 40 µg injected dose and for the non-VEGFR2 binding size-matched conjugate, demonstrating target specificity. Microautoradiography of cryosectioned CNS tissue was in good agreement with the SPECT/CT images. Conclusion: The anti-VEGFR2 affibody conjugate [111In]In-NODAGA-ZVEGFR2-Bp2 specifically targeted VEGFR2 in vivo and visualized its expression in a murine GBM orthotopic model. Tumor-to-blood ratios for [111In]In-NODAGA-ZVEGFR2-Bp2 were higher compared to other VEGFR2 imaging probes. [111In]In-NODAGA-ZVEGFR2-Bp2 appears to be a promising probe for in vivo noninvasive visualization of tumor angiogenesis in glioblastoma.
Collapse
|
25
|
Lindbo S, Garousi J, Mitran B, Vorobyeva A, Oroujeni M, Orlova A, Hober S, Tolmachev V. Optimized Molecular Design of ADAPT-Based HER2-Imaging Probes Labeled with 111In and 68Ga. Mol Pharm 2018; 15:2674-2683. [PMID: 29865791 DOI: 10.1021/acs.molpharmaceut.8b00204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Radionuclide molecular imaging is a promising tool for visualization of cancer associated molecular abnormalities in vivo and stratification of patients for specific therapies. ADAPT is a new type of small engineered proteins based on the scaffold of an albumin binding domain of protein G. ADAPTs have been utilized to select and develop high affinity binders to different proteinaceous targets. ADAPT6 binds to human epidermal growth factor 2 (HER2) with low nanomolar affinity and can be used for its in vivo visualization. Molecular design of 111In-labeled anti-HER2 ADAPT has been optimized in several earlier studies. In this study, we made a direct comparison of two of the most promising variants, having either a DEAVDANS or a (HE)3DANS sequence at the N-terminus, conjugated with a maleimido derivative of DOTA to a GSSC amino acids sequence at the C-terminus. The variants (designated DOTA-C59-DEAVDANS-ADAPT6-GSSC and DOTA-C61-(HE)3DANS-ADAPT6-GSSC) were stably labeled with 111In for SPECT and 68Ga for PET. Biodistribution of labeled ADAPT variants was evaluated in nude mice bearing human tumor xenografts with different levels of HER2 expression. Both variants enabled clear discrimination between tumors with high and low levels of HER2 expression. 111In-labeled ADAPT6 derivatives provided higher tumor-to-organ ratios compared to 68Ga-labeled counterparts. The best performing variant was DOTA-C61-(HE)3DANS-ADAPT6-GSSC, which provided tumor-to-blood ratios of 208 ± 36 and 109 ± 17 at 3 h for 111In and 68Ga labels, respectively.
Collapse
Affiliation(s)
- Sarah Lindbo
- School of Engineering in Chemistry, Biotechnology and Health (CBH) , Division of Protein Science, KTH Royal Institute of Technology , SE-10691 Stockholm , Sweden
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology , Uppsala University , 751 85 Uppsala , Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry , Uppsala University , 751 23 Uppsala , Sweden
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology , Uppsala University , 751 85 Uppsala , Sweden
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology , Uppsala University , 751 85 Uppsala , Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry , Uppsala University , 751 23 Uppsala , Sweden
| | - Sophia Hober
- School of Engineering in Chemistry, Biotechnology and Health (CBH) , Division of Protein Science, KTH Royal Institute of Technology , SE-10691 Stockholm , Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology , Uppsala University , 751 85 Uppsala , Sweden
| |
Collapse
|
26
|
Morris O, Fairclough M, Grigg J, Prenant C, McMahon A. A review of approaches to 18
F radiolabelling affinity peptides and proteins. J Labelled Comp Radiopharm 2018; 62:4-23. [DOI: 10.1002/jlcr.3634] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022]
Affiliation(s)
- O. Morris
- Wolfson Molecular Imaging Centre; The University of Manchester; UK
- CRUK/EPSRC Imaging Centre in Cambridge & Manchester; The University of Manchester; UK
| | - M. Fairclough
- Wolfson Molecular Imaging Centre; The University of Manchester; UK
- CRUK/EPSRC Imaging Centre in Cambridge & Manchester; The University of Manchester; UK
| | | | - C. Prenant
- Wolfson Molecular Imaging Centre; The University of Manchester; UK
- CRUK/EPSRC Imaging Centre in Cambridge & Manchester; The University of Manchester; UK
| | - A. McMahon
- Wolfson Molecular Imaging Centre; The University of Manchester; UK
- CRUK/EPSRC Imaging Centre in Cambridge & Manchester; The University of Manchester; UK
| |
Collapse
|
27
|
Warnders FJ, Lub-de Hooge MN, de Vries EGE, Kosterink JGW. Influence of protein properties and protein modification on biodistribution and tumor uptake of anticancer antibodies, antibody derivatives, and non-Ig scaffolds. Med Res Rev 2018; 38:1837-1873. [PMID: 29635825 DOI: 10.1002/med.21498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/30/2018] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
Newly developed protein drugs that target tumor-associated antigens are often modified in order to increase their therapeutic effect, tumor exposure, and safety profile. During the development of protein drugs, molecular imaging is increasingly used to provide additional information on their in vivo behavior. As a result, there are increasing numbers of studies that demonstrate the effect of protein modification on whole body distribution and tumor uptake of protein drugs. However, much still remains unclear about how to interpret obtained biodistribution data correctly. Consequently, there is a need for more insight in the correct way of interpreting preclinical and clinical imaging data. Summarizing the knowledge gained to date may facilitate this interpretation. This review therefore provides an overview of specific protein properties and modifications that can affect biodistribution and tumor uptake of anticancer antibodies, antibody fragments, and nonimmunoglobulin scaffolds. Protein properties that are discussed in this review are molecular size, target interaction, FcRn binding, and charge. Protein modifications that are discussed are radiolabeling, fluorescent labeling drug conjugation, glycosylation, humanization, albumin binding, and polyethylene glycolation.
Collapse
Affiliation(s)
- Frank-Jan Warnders
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,PharmacoTherapy, Epidemiology & Economy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Adeowo FY, Honarparvar B, Skelton AA. Density Functional Theory Study on the Complexation of NOTA as a Bifunctional Chelator with Radiometal Ions. J Phys Chem A 2017; 121:6054-6062. [PMID: 28737914 DOI: 10.1021/acs.jpca.7b01017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,4,7-Triazacyclononane-1,4,7-triacetic acid (NOTA) is a key bifunctional chelator utilized for the complexation of metal ions in radiopharmaceutical applications; the ability of these chelators depends on the strength of their binding with ions. The focus of the present work is to evaluate the complexation of Cu2+, Ga3+, Sc3+, and In3+ radiometal ions with NOTA using density functional theory (B3LYP functional) and 6-311+G(2d,2p)/DGDZVP basis sets. The significant role of ion-water interactions in the chelation interaction energies in solution reflects the competition between ion-water and NOTA-ion interaction in the chelation process. There is reasonable agreement between experimental and theoretical binding constants, geometries, and 1H NMR chemical shifts. Chelation interaction energies, Gibbs free energies, and entropies in solution show that the NOTA-Ga3+ and NOTA-Cu2+ are the most and least stable complexes, respectively. The natural atomic charges and second order perturbation analysis reveal charge transfer between NOTA and radiometal ions. The theoretical 1H NMR chemical shifts of NOTA are in good agreement with experiment; these values are influenced by the presence of the ions, which have a deshielding effect on the protons of NOTA. Global scalar properties such as EHOMO/ELUMO, ΔELUMO-HOMO, and chemical hardness/softness confirm that the NOTA-Cu2+ complex, which has a singly occupied molecular orbital, has the lowest ΔELUMO-HOMO value, the least chemical hardness, and the highest chemical softness. The significant variation of the hardness and ΔELUMO-HOMO values of the complexes can be attributed to the different positions of the metal ions on the periodic table. This study affirms that, among the radiometal ions, Ga3+ can be used to effectively radiolabel NOTA chelator for radiopharmaceutical usage as it binds most stably with NOTA.
Collapse
Affiliation(s)
- F Y Adeowo
- School of Health Sciences, Discipline of Pharmacy, University of KwaZulu-Natal , Durban 4001, South Africa
| | - B Honarparvar
- School of Health Sciences, Discipline of Pharmacy, University of KwaZulu-Natal , Durban 4001, South Africa
| | - A A Skelton
- School of Health Sciences, Discipline of Pharmacy, University of KwaZulu-Natal , Durban 4001, South Africa
| |
Collapse
|
29
|
González Trotter DE, Meng X, McQuade P, Rubins D, Klimas M, Zeng Z, Connolly BM, Miller PJ, O'Malley SS, Lin SA, Getty KL, Fayadat-Dilman L, Liang L, Wahlberg E, Widmark O, Ekblad C, Frejd FY, Hostetler ED, Evelhoch JL. In Vivo Imaging of the Programmed Death Ligand 1 by 18F PET. J Nucl Med 2017; 58:1852-1857. [PMID: 28588151 DOI: 10.2967/jnumed.117.191718] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/26/2017] [Indexed: 01/04/2023] Open
Abstract
Programmed death ligand 1 (PD-L1) is an immune regulatory ligand that binds to the T-cell immune check point programmed death 1. Tumor expression of PD-L1 is correlated with immune suppression and poor prognosis. It is also correlated with therapeutic efficacy of programmed death 1 and PD-L1 inhibitors. In vivo imaging may enable real-time follow-up of changing PD-L1 expression and heterogeneity evaluation of PD-L1 expression across tumors in the same subject. We have radiolabeled the PD-L1-binding Affibody molecule NOTA-ZPD-L1_1 with 18F and evaluated its in vitro and in vivo binding affinity, targeting, and specificity. Methods: The affinity of the PD-L1-binding Affibody ligand ZPD-L1_1 was evaluated by surface plasmon resonance. Labeling was accomplished by maleimide coupling of NOTA to a unique cysteine residue and chelation of 18F-AlF. In vivo studies were performed in PD-L1-positive, PD-L1-negative, and mixed tumor-bearing severe combined immunodeficiency mice. Tracer was injected via the tail vein, and dynamic PET scans were acquired for 90 min, followed by γ-counting biodistribution. Immunohistochemical staining with an antibody specific for anti-PD-L1 (22C3) was used to evaluate the tumor distribution of PD-L1. Immunohistochemistry results were then compared with ex vivo autoradiographic images obtained from adjacent tissue sections. Results: NOTA-ZPD-L1_1 was labeled, with a radiochemical yield of 15.1% ± 5.6%, radiochemical purity of 96.7% ± 2.0%, and specific activity of 14.6 ± 6.5 GBq/μmol. Surface plasmon resonance showed a NOTA-conjugated ligand binding affinity of 1 nM. PET imaging demonstrated rapid uptake of tracer in the PD-L1-positive tumor, whereas the PD-L1-negative control tumor showed little tracer retention. Tracer clearance from most organs and blood was quick, with biodistribution showing prominent kidney retention, low liver uptake, and a significant difference between PD-L1-positive (percentage injected dose per gram [%ID/g] = 2.56 ± 0.33) and -negative (%ID/g = 0.32 ± 0.05) tumors (P = 0.0006). Ex vivo autoradiography showed excellent spatial correlation with immunohistochemistry in mixed tumors. Conclusion: Our results show that Affibody ligands can be effective at targeting tumor PD-L1 in vivo, with good specificity and rapid clearance. Future studies will explore methods to reduce kidney activity retention and further increase tumor uptake.
Collapse
Affiliation(s)
| | - Xiangjun Meng
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Paul McQuade
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Daniel Rubins
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Michael Klimas
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Zhizhen Zeng
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Brett M Connolly
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Patricia J Miller
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Stacey S O'Malley
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Shu-An Lin
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Krista L Getty
- Screening and Protein Sciences Department, Merck & Co., Inc., West Point, Pennsylvania
| | | | - Linda Liang
- Biologics Discovery, Merck & Co., Inc., Palo Alto, California
| | | | | | | | - Fredrik Y Frejd
- Affibody AB, Solna, Sweden; and.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Eric D Hostetler
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Jeffrey L Evelhoch
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| |
Collapse
|
30
|
Comparative Evaluation of Anti-HER2 Affibody Molecules Labeled with 64Cu Using NOTA and NODAGA. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:8565802. [PMID: 29097939 PMCID: PMC5612711 DOI: 10.1155/2017/8565802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/08/2017] [Indexed: 01/04/2023]
Abstract
Imaging using affibody molecules enables discrimination between breast cancer metastases with high and low expression of HER2, making appropriate therapy selection possible. This study aimed to evaluate if the longer half-life of 64Cu (T1/2 = 12.7 h) would make 64Cu a superior nuclide compared to 68Ga for PET imaging of HER2 expression using affibody molecules. The synthetic ZHER2:S1 affibody molecule was conjugated with the chelators NOTA or NODAGA and labeled with 64Cu. The tumor-targeting properties of 64Cu-NOTA-ZHER2:S1 and 64Cu-NODAGA-ZHER2:S1 were evaluated and compared with the targeting properties of 68Ga-NODAGA-ZHER2:S1 in mice. Both 64Cu-NOTA-ZHER2:S1 and 64Cu-NODAGA-ZHER2:S1 demonstrated specific targeting of HER2-expressing xenografts. At 2 h after injection of 64Cu-NOTA-ZHER2:S1, 64Cu-NODAGA-ZHER2:S1, and 68Ga-NODAGA-ZHER2:S1, tumor uptakes did not differ significantly. Renal uptake of 64Cu-labeled conjugates was dramatically reduced at 6 and 24 h after injection. Notably, radioactivity uptake concomitantly increased in blood, lung, liver, spleen, and intestines, which resulted in decreased tumor-to-organ ratios compared to 2 h postinjection. Organ uptake was lower for 64Cu-NODAGA-ZHER2:S1. The most probable explanation for this biodistribution pattern was the release and redistribution of renal radiometabolites. In conclusion, monoamide derivatives of NOTA and NODAGA may be suboptimal chelators for radiocopper labeling of anti-HER2 affibody molecules and, possibly, other scaffold proteins with high renal uptake.
Collapse
|
31
|
Whittenberg JJ, Li H, Zhou H, Koziol J, Desai AV, Reichert DE, Kenis PJA. “Click Chip” Conjugation of Bifunctional Chelators to Biomolecules. Bioconjug Chem 2017; 28:986-994. [DOI: 10.1021/acs.bioconjchem.6b00703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Joseph J. Whittenberg
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hairong Li
- Radiological
Sciences Division, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, Campus Box 8225, St. Louis, Missouri 63110, United States
| | - Haiying Zhou
- Radiological
Sciences Division, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, Campus Box 8225, St. Louis, Missouri 63110, United States
| | - Jan Koziol
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Amit V. Desai
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - David E. Reichert
- Radiological
Sciences Division, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, Campus Box 8225, St. Louis, Missouri 63110, United States
| | - Paul J. A. Kenis
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Honarvar H, Müller C, Cohrs S, Haller S, Westerlund K, Karlström AE, van der Meulen NP, Schibli R, Tolmachev V. Evaluation of the first 44Sc-labeled Affibody molecule for imaging of HER2-expressing tumors. Nucl Med Biol 2016; 45:15-21. [PMID: 27837664 DOI: 10.1016/j.nucmedbio.2016.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/15/2016] [Accepted: 10/16/2016] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Affibody molecules are small (58 amino acids) high-affinity proteins based on a tri-helix non-immunoglobulin scaffold. A clinical study has demonstrated that PET imaging using Affibody molecules labeled with 68Ga (T½=68min) can visualize metastases of breast cancer expressing human epidermal growth factor receptor type 2 (HER2) and provide discrimination between tumors with high and low expression level. This may help to identify breast cancer patients benefiting from HER2-targeting therapies. The best discrimination was at 4h post injection. Due to longer half-life, a positron-emitting radionuclide 44Sc (T½=4.04h) might be a preferable label for Affibody molecules for imaging at several hours after injection. METHODS A synthetic second-generation anti-HER2 Affibody molecule ZHER2:2891 was labeled with 44Sc via a DOTA-chelator conjugated to the N-terminal amino group. Binding specificity, affinity and cellular processing 44Sc-DOTA-ZHER2:2891 and 68Ga-DOTA-ZHER2:2891 were compared in vitro using HER2-expressing cells. Biodistribution and imaging properties of 44Sc-DOTA-ZHER2:2891 and 68Ga-DOTA-ZHER2:2891 were evaluated in Balb/c nude mice bearing HER2-expression xenografts. RESULTS The labeling yield of 98±2% and specific activity of 7.8GBq/μmol were obtained. The conjugate demonstrated specific binding to HER2-expressing SKOV3.ip cells in vitro and to SKOV3.ip xenografts in nude mice. The distribution of radioactivity at 3h post injection was similar for 44Sc-DOTA-ZHER2:2891 and 68Ga-DOTA-ZHER2:2891, but the blood clearance of the 44Sc-labeled variant was slower and the tumor-to-blood ratio was reduced (15±2 for 44Sc-DOTA-ZHER2:2891 vs 46±9 for 68Ga-DOTA-ZHER2:2891). At 6h after injection of 44Sc-DOTA-ZHER2:2891 the tumor uptake was 8±2% IA/g and the tumor-to-blood ratio was 51±8. Imaging using small-animal PET/CT demonstrated that 44Sc-DOTA-ZHER2:2891 provides specific and high-contrast imaging of HER2-expressing xenografts. CONCLUSION The 44Sc- DOTA-ZHER2:2891 Affibody molecule is a promising probe for imaging of HER2-expression in malignant tumors.
Collapse
Affiliation(s)
- Hadis Honarvar
- Institute for Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI, Switzerland.
| | - Susan Cohrs
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI, Switzerland
| | - Stephanie Haller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI, Switzerland
| | - Kristina Westerlund
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Amelie Eriksson Karlström
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI, Switzerland; Laboratory of Radiochemistry, Paul Scherrer Institut, Villigen-PSI, Switzerland; Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI, Switzerland; Laboratory of Radiochemistry, Paul Scherrer Institut, Villigen-PSI, Switzerland; Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Vladimir Tolmachev
- Institute for Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Poschenrieder A, Schottelius M, Schwaiger M, Wester HJ. Preclinical evaluation of [(68)Ga]NOTA-pentixafor for PET imaging of CXCR4 expression in vivo - a comparison to [(68)Ga]pentixafor. EJNMMI Res 2016; 6:70. [PMID: 27655427 PMCID: PMC5031577 DOI: 10.1186/s13550-016-0227-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/17/2016] [Indexed: 01/20/2023] Open
Abstract
Background Due to its overexpression in a variety of tumor types, the chemokine receptor 4 (CXCR4) represents a highly relevant diagnostic and therapeutic target in nuclear oncology. Recently, [68Ga]pentixafor has emerged as an excellent imaging agent for positron emission tomography (PET) of CXCR4 expression in vivo. In this study, the corresponding [68Ga]-1,4,7-triazacyclononane-triacetic acid (NOTA) analog was preclinically evaluated and compared to the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) parent compound [68Ga]pentixafor. Methods NOTA-pentixafor was synthesized by combining solid and solution-phase peptide synthesis. The CXCR4 receptor affinities of [68Ga]pentixafor and [68Ga]NOTA-pentixafor were determined in competitive binding assays using the leukemic CXCR4-expressing Jurkat T-cell line and [125I]FC131 as the radioligand. Internalization and cell efflux assays were performed using CXCR4-transfected Chem-1 cells. Small-animal PET and biodistribution studies were carried out using Daudi-tumor bearing SCID mice. Results [68Ga]NOTA-pentixafor showed a 1.4-fold improved affinity towards CXCR4 (IC50). However, internalization efficiency into CXCR4+-Chem-1 cells was substantially decreased compared to [68Ga]pentixafor. Accordingly, small-animal PET imaging and biodistribution studies revealed a 9.5-fold decreased uptake of [68Ga]NOTA-pentixafor in Daudi lymphoma xenografts (1.7 ± 0.4 % vs 16.2 ± 3.8 % ID/g at 90 min p.i.) and higher levels of non-specific accumulation, primarily in the excretory organs such as the liver, intestines, and kidneys (2.3 ± 0.9 % vs 2.0 ± 0.3 % ID/g, 1.9 ± 0.8 % vs 0.7 ± 0.2 % ID/g, and 2.7 ± 1.1 % vs 1.7 ± 0.9 % ID/g, respectively). Conclusions Despite enhanced CXCR4-affinity in vitro, the [68Ga]NOTA-analog of pentixafor showed reduced CXCR4 targeting efficiency in vivo. In combination with enhanced background accumulation, this resulted in significantly inferior PET imaging contrast, and thus, [68Ga]NOTA-pentixafor offers no advantages over [68Ga]pentixafor.
Collapse
Affiliation(s)
- Andreas Poschenrieder
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748, Garching, Germany.
| | - Margret Schottelius
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748, Garching, Germany
| | - Markus Schwaiger
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, München, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748, Garching, Germany
| |
Collapse
|
34
|
Spang P, Herrmann C, Roesch F. Bifunctional Gallium-68 Chelators: Past, Present, and Future. Semin Nucl Med 2016; 46:373-94. [DOI: 10.1053/j.semnuclmed.2016.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Bhatt J, Mukherjee A, Korde A, Kumar M, Sarma HD, Dash A. Radiolabeling and Preliminary Evaluation of Ga-68 Labeled NODAGA-Ubiquicidin Fragments for Prospective Infection Imaging. Mol Imaging Biol 2016; 19:59-67. [DOI: 10.1007/s11307-016-0983-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Cho EH, Lim JC, Lee SY, Jung SH. An assessment tumor targeting ability of (177)Lu labeled cyclic CCK analogue peptide by binding with cholecystokinin receptor. J Pharmacol Sci 2016; 131:209-14. [PMID: 27430985 DOI: 10.1016/j.jphs.2016.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/14/2023] Open
Abstract
The cholecystokinin (CCK) receptor is known as a receptor that is overexpressed in many human tumors. The present study was designed to investigate the targeting ability of cyclic CCK analogue in AR42J pancreatic cells. The CCK analogues, DOTA-K(glucose)-Gly-Trp-Nle-Asp-Phe (DOTA-glucose-CCK) and DOTA-Nle-cyclo(Glu-Trp-Nle-Asp-Phe-Lys-NH2) (DOTA-[Nle]-cCCK), were synthesized and radiolabeled with (177)Lu, and competitive binding was evaluated. The binding appearance of synthesized peptide with AR42J cells was evaluated by confocal microscopy. And bio-distribution was performed in AR42J xenografted mice. Synthesized peptides were prepared by a solid phase synthesis method, and their purity was over 98%. DOTA is the chelating agent for (177)Lu-labeling, in which the peptides were radiolabeled with (177)Lu by a high radiolabeling yield. A competitive displacement of (125)I-CCK8 on the AR42J cells revealed that the 50% inhibitory concentration value (IC50) was 12.3 nM of DOTA-glucose-CCK and 1.7 nM of DOTA-[Nle]-cCCK. Radio-labeled peptides were accumulated in AR42J tumor in vivo, and %ID/g of the tumor was 0.4 and 0.9 at 2 h p.i. It was concluded that (177)Lu-DOTA-[Nle]-cCCK has higher binding affinity than (177)Lu-DOTA-glucose-CCK and can be a potential candidate as a targeting modality for a CCK receptor over-expressing tumors.
Collapse
Affiliation(s)
- Eun-Ha Cho
- RI Research Division, Research Reactor Utilization Department, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353, Republic of Korea.
| | - Jae Cheong Lim
- RI Research Division, Research Reactor Utilization Department, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353, Republic of Korea
| | - So-Young Lee
- RI Research Division, Research Reactor Utilization Department, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353, Republic of Korea
| | - Sung-Hee Jung
- RI Research Division, Research Reactor Utilization Department, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353, Republic of Korea
| |
Collapse
|
37
|
Westerlund K, Honarvar H, Norrström E, Strand J, Mitran B, Orlova A, Eriksson Karlström A, Tolmachev V. Increasing the Net Negative Charge by Replacement of DOTA Chelator with DOTAGA Improves the Biodistribution of Radiolabeled Second-Generation Synthetic Affibody Molecules. Mol Pharm 2016; 13:1668-78. [PMID: 27010700 DOI: 10.1021/acs.molpharmaceut.6b00089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A promising strategy to enable patient stratification for targeted therapies is to monitor the target expression in a tumor by radionuclide molecular imaging. Affibody molecules (7 kDa) are nonimmunoglobulin scaffold proteins with a 25-fold smaller size than intact antibodies. They have shown an apparent potential as molecular imaging probes both in preclinical and clinical studies. Earlier, we found that hepatic uptake can be reduced by the incorporation of negatively charged purification tags at the N-terminus of Affibody molecules. We hypothesized that liver uptake might similarly be reduced by positioning the chelator at the N-terminus, where the chelator-radionuclide complex will provide negative charges. To test this hypothesis, a second generation synthetic anti-HER2 ZHER2:2891 Affibody molecule was synthesized and labeled with (111)In and (68)Ga using DOTAGA and DOTA chelators. The chelators were manually coupled to the N-terminus of ZHER2:2891 forming an amide bond. Labeling DOTAGA-ZHER2:2891 and DOTA-ZHER2:2891 with (68)Ga and (111)In resulted in stable radioconjugates. The tumor-targeting and biodistribution properties of the (111)In- and (68)Ga-labeled conjugates were compared in SKOV-3 tumor-bearing nude mice at 2 h postinjection. The HER2-specific binding of the radioconjugates was verified both in vitro and in vivo. Using the DOTAGA chelator gave significantly lower radioactivity in liver and blood for both radionuclides. The (111)In-labeled conjugates showed more rapid blood clearance than the (68)Ga-labeled conjugates. The most pronounced influence of the chelators was found when they were labeled with (68)Ga. The DOTAGA chelator gave significantly higher tumor-to-blood (61 ± 6 vs 23 ± 5, p < 0.05) and tumor-to-liver (10.4 ± 0.6 vs 4.5 ± 0.5, p < 0.05) ratios than the DOTA chelator. This study demonstrated that chelators may be used to alter the uptake of Affibody molecules, and most likely other scaffold-based imaging probes, for improvement of imaging contrast.
Collapse
Affiliation(s)
- Kristina Westerlund
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm, Sweden
| | - Hadis Honarvar
- Institute for Immunology, Genetics and Pathology, Uppsala University , 751 05 Uppsala, Sweden
| | - Emily Norrström
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm, Sweden
| | - Joanna Strand
- Institute for Immunology, Genetics and Pathology, Uppsala University , 751 05 Uppsala, Sweden
| | - Bogdan Mitran
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University , 751 05 Uppsala, Sweden
| | - Anna Orlova
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University , 751 05 Uppsala, Sweden
| | - Amelie Eriksson Karlström
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm, Sweden
| | - Vladimir Tolmachev
- Institute for Immunology, Genetics and Pathology, Uppsala University , 751 05 Uppsala, Sweden
| |
Collapse
|
38
|
Abstract
Positron emission tomography (PET) is a powerful noninvasive imaging technique able to measure distinct biological processes in vivo by administration of a radiolabeled probe. Whole-body measurements track the probe accumulation providing a means to measure biological changes such as metabolism, cell location, or tumor burden. PET can also be applied to both preclinical and clinical studies providing three-dimensional information. For immunotherapies (in particular understanding T cell responses), PET can be utilized for spatial and longitudinal tracking of T lymphocytes. Although PET has been utilized clinically for over 30 years, the recent development of additional PET radiotracers have dramatically expanded the use of PET to detect endogenous or adoptively transferred T cells in vivo. Novel probes have identified changes in T cell quantity, location, and function. This has enabled investigators to track T cells outside of the circulation and in hematopoietic organs such as spleen, lymph nodes, and bone marrow, or within tumors. In this review, we cover advances in PET detection of the antitumor T cell response and areas of focus for future studies.
Collapse
|
39
|
Krasikova RN, Aliev RA, Kalmykov SN. The next generation of positron emission tomography radiopharmaceuticals labeled with non-conventional radionuclides. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
40
|
Kumar P, Tripathi SK, Chen CP, Mehta N, Paudyal B, Wickstrom E, Thakur ML. Evaluation of a PACAP Peptide Analogue Labeled with (68)Ga Using Two Different Chelating Agents. Cancer Biother Radiopharm 2016; 31:29-36. [PMID: 26844850 DOI: 10.1089/cbr.2015.1947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE The authors have conjugated chelating agents (DOTA and NODAGA) with a peptide (pituitary adenylate cyclase-activating peptide [PACAP] analogue) that has a high affinity for VPAC1 receptors expressed on cancer cells. To determine a suitable chelating agent for labeling with (68)Ga, they have compared the labeling kinetics and stability of these peptide conjugates. METHODS For labeling, (68)GaCl3 was eluted in 0.1 M HCl from a [(68)Ge-(68)Ga] generator. The influences of peptide concentration, pH, and temperature on the radiolabeling efficiency were studied. The stability was evaluated in saline, human serum, DTPA, transferrin, and metallic ions (FeCl3, CaCl2, and ZnCl2). Cell binding assay was performed using human breast cancer cells (T47D). Tissue biodistribution was studied in normal athymic nude mice. RESULTS Optimal radiolabeling (>95.0%) of the DOTA-peptide conjugates required a higher (50°C-90°C) temperature and 10 minutes of incubation at pH 2-5. The NODAGA-peptide conjugate needed incubation only at 25°C for 10 minutes. Both radiocomplexes were stable in saline, serum, as well as against transchelation and transmetallation. Cell binding at 37°C for 15 minutes of incubation with (68)Ga-NODAGA-peptide was 34.0% compared to 24.5% for (68)Ga-DOTA-peptide. Tissue biodistribution at 1 hour postinjection of both (68)Ga-labeled peptide conjugates showed clearance through the kidneys. CONCLUSIONS NODAGA-peptide showed more convenient radiolabeling features than that of DOTA-peptide.
Collapse
Affiliation(s)
- Pardeep Kumar
- 1 Department of Radiology, Thomas Jefferson University , Philadelphia, Pennsylvania
| | | | - Chang-Po Chen
- 2 School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Neil Mehta
- 1 Department of Radiology, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Bishnuhari Paudyal
- 1 Department of Radiology, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Eric Wickstrom
- 3 Department of Biochemistry and Molecular Biology, Thomas Jefferson University , Philadelphia, Pennsylvania.,4 Sidney Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Mathew L Thakur
- 1 Department of Radiology, Thomas Jefferson University , Philadelphia, Pennsylvania.,4 Sidney Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, Pennsylvania.,5 Department of Radiation Oncology, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Rosestedt M, Andersson KG, Mitran B, Tolmachev V, Löfblom J, Orlova A, Ståhl S. Affibody-mediated PET imaging of HER3 expression in malignant tumours. Sci Rep 2015; 5:15226. [PMID: 26477646 PMCID: PMC4609989 DOI: 10.1038/srep15226] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/17/2015] [Indexed: 01/02/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is involved in the progression of various cancers and in resistance to therapies targeting the HER family. In vivo imaging of HER3 expression would enable patient stratification for anti-HER3 immunotherapy. Key challenges with HER3-targeting are the relatively low expression in HER3-positive tumours and HER3 expression in normal tissues. The use of positron-emission tomography (PET) provides advantages of high resolution, sensitivity and quantification accuracy compared to SPECT. Affibody molecules, imaging probes based on a non-immunoglobulin scaffold, provide high imaging contrast shortly after injection. The aim of this study was to evaluate feasibility of PET imaging of HER3 expression using (68)Ga-labeled affibody molecules. The anti-HER3 affibody molecule HEHEHE-Z08698-NOTA was successfully labelled with (68)Ga with high yield, purity and stability. The agent bound specifically to HER3-expressing cancer cells in vitro and in vivo. At 3 h pi, uptake of (68)Ga-HEHEHE-Z08698-NOTA was significantly higher in xenografts with high HER3 expression (BT474, BxPC-3) than in xenografts with low HER3 expression (A431). In xenografts with high expression, tumour-to-blood ratios were >20, tumour-to-muscle >15, and tumour-to-bone >7. HER3-positive xenografts were visualised using microPET 3 h pi. In conclusion, PET imaging of HER3 expression is feasible using (68)Ga-HEHEHE-Z08698-NOTA shortly after administration.
Collapse
Affiliation(s)
- Maria Rosestedt
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Ken G Andersson
- Division of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bogdan Mitran
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Orlova
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
42
|
Jia Y, Shi W, Zhou Z, Wagh NK, Fan W, Brusnahan SK, Garrison JC. Evaluation of DOTA-chelated neurotensin analogs with spacer-enhanced biological performance for neurotensin-receptor-1-positive tumor targeting. Nucl Med Biol 2015; 42:816-23. [PMID: 26302836 DOI: 10.1016/j.nucmedbio.2015.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/25/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Neurotensin receptor 1 (NTR1) is overexpressed in many cancer types. Neurotensin (NT), a 13 amino acid peptide, is the native ligand for NTR1 and exhibits high (nM) affinity to the receptor. Many laboratories have been investigating the development of diagnostic and therapeutic radiopharmaceuticals for NTR1-positive cancers based on the NT peptide. To improve the biological performance for targeting NTR1, we proposed NT analogs with a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelation system and different lengths of spacers. METHODS We synthesized four NTR1-targeted conjugates with spacer lengths from 0 to 9 atoms (null (N0), β-Ala-OH (N1), 5-Ava-OH (N2), and 8-Aoc-OH (N3)) between the DOTA and the pharmacophore. In vitro competitive binding, internalization and efflux studies were performed on all four NT analogs. Based on these findings, metabolism studies were carried out on our best performing conjugate, (177)Lu-N1. Lastly, in vivo biodistribution and SPECT/CT imaging studies were performed using (177)Lu-N1 in an HT-29 xenograft mouse model. RESULTS As shown in the competitive binding assays, the NT analogs with different spacers (N1, N2 and N3) exhibited lower IC50 values than the NT analog without a spacer (N0). Furthermore, N1 revealed higher retention in HT-29 cells with more rapid internalization and slower efflux than the other NT analogs. In vivo biodistribution and SPECT/CT imaging studies of (177)Lu-N1 demonstrated excellent accumulation (3.1 ± 0.4%ID/g) in the NTR1-positive tumors at 4h post-administration. CONCLUSIONS The DOTA chelation system demonstrated some modest steric inhibition of the pharmacophore. However, the insertion of a 4-atom hydrocarbon spacer group restored optimal binding affinity of the analog. The in vivo assays indicated that (177)Lu-N1 could be used for imaging and radiotherapy of NTR1-positive tumors.
Collapse
Affiliation(s)
- Yinnong Jia
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Wen Shi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Zhengyuan Zhou
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Nilesh K Wagh
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Wei Fan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Susan K Brusnahan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Jered C Garrison
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830.
| |
Collapse
|
43
|
Velikyan I. Continued rapid growth in68Ga applications: update 2013 to June 2014. J Labelled Comp Radiopharm 2015; 58:99-121. [PMID: 25689590 DOI: 10.1002/jlcr.3250] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Irina Velikyan
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; SE-75183 Uppsala Sweden
- Department of Radiology, Oncology and Radiation Science; Uppsala University; SE-75285 Uppsala Sweden
- PET-Centre, Centre for Medical Imaging; Uppsala University Hospital; SE-75185 Uppsala Sweden
| |
Collapse
|
44
|
Honarvar H, Strand J, Perols A, Orlova A, Selvaraju RK, Karlström AE, Tolmachev V. Position for Site-Specific Attachment of a DOTA Chelator to Synthetic Affibody Molecules Has a Different Influence on the Targeting Properties of
68
Ga-Compared to
111
In-Labeled Conjugates. Mol Imaging 2014; 13. [DOI: 10.2310/7290.2014.00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Hadis Honarvar
- From Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden; and Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Joanna Strand
- From Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden; and Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Perols
- From Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden; and Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- From Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden; and Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Ram Kumar Selvaraju
- From Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden; and Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Amelie Eriksson Karlström
- From Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden; and Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- From Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden; and Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Bondza S, Stenberg J, Nestor M, Andersson K, Björkelund H. Conjugation Effects on Antibody–Drug Conjugates: Evaluation of Interaction Kinetics in Real Time on Living Cells. Mol Pharm 2014; 11:4154-63. [DOI: 10.1021/mp500379d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sina Bondza
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
| | - Jonas Stenberg
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Ridgeview Instruments AB, Vänge, Sweden
| | - Marika Nestor
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Section
of Otolaryngology and Head and Neck Surgery, Department of Surgical
Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Karl Andersson
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Ridgeview Instruments AB, Vänge, Sweden
| | - Hanna Björkelund
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Ridgeview Instruments AB, Vänge, Sweden
| |
Collapse
|
46
|
Tavaré R, Wu WH, Zettlitz KA, Salazar FB, McCabe KE, Marks JD, Wu AM. Enhanced immunoPET of ALCAM-positive colorectal carcinoma using site-specific ⁶⁴Cu-DOTA conjugation. Protein Eng Des Sel 2014; 27:317-24. [PMID: 25095796 DOI: 10.1093/protein/gzu030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) is an immunoglobulin superfamily cell adhesion molecule that is aberrantly expressed in a wide variety of human tumors, including melanoma, prostate cancer, breast cancer, colorectal carcinoma, bladder cancer and pancreatic adenocarcinoma. This wide spectrum of human malignancies makes ALCAM a prospective pan-cancer immunoPET target to aid in detection and diagnosis in multiple malignancies. In this study, we assess site-specific versus non-site-specific conjugation strategies for (64)Cu-DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) immunoPET imaging of a fully human ALCAM cys-diabody (cDb) with a reduced linker length that retains its bivalent binding ability. ALCAM constructs with linker lengths of eight, five and three amino acids were produced to make true non-covalent site-specifically modified cDbs. Characterization by gel electrophoresis, size exclusion chromatography, flow cytometry and mass spectrometry of the various constructs was performed. To demonstrate the increased utility of targeting multiple malignancies expressing ALCAM, we compare the targeting of the site-specific versus non-site-specific conjugated cDbs to the human colorectal cancer xenograft LS174T. Interestingly, the conjugation strategy not only affects tumor targeting but also hepatic and renal uptake/clearance.
Collapse
Affiliation(s)
- Richard Tavaré
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Wei H Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kirstin A Zettlitz
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Felix B Salazar
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Katelyn E McCabe
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - James D Marks
- Department of Anesthesia, UCSF, San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
47
|
Strand J, Varasteh Z, Eriksson O, Abrahmsen L, Orlova A, Tolmachev V. Gallium-68-labeled affibody molecule for PET imaging of PDGFRβ expression in vivo. Mol Pharm 2014; 11:3957-64. [PMID: 24972112 DOI: 10.1021/mp500284t] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Platelet-derived growth factor receptor β (PDGFRβ) is a transmembrane tyrosine kinase receptor involved, for example, in angiogenesis. Overexpression and excessive signaling of PDGFRβ has been observed in multiple malignant tumors and fibrotic diseases, making this receptor a pharmaceutical target for monoclonal antibodies and tyrosine kinase inhibitors. Successful targeted therapy requires identification of responding patients. Radionuclide molecular imaging would enable determination of the PDGFRβ status in all lesions using a single noninvasive repeatable procedure. Recently, we have demonstrated that the affibody molecule Z09591 labeled with (111)In can specifically target PDGFRβ-expressing tumors in vivo. The use of positron emission tomography (PET) as an imaging technique would provide superior resolution, sensitivity, and quantitation accuracy. In this study, a DOTA-conjugated Z09591 was labeled with the generator-produced positron emitting radionuclide (68)Ga (T1/2 = 67.6 min, Eβ + max = 1899 keV, 89% β(+)). (68)Ga-DOTA-Z09591 retained the capacity to specifically bind to PDGFRβ-expressing U-87 MG glioma cells. The half-maximum inhibition concentration (IC50) of (68)Ga-DOTA-Z09591 (6.6 ± 1.4 nM) was somewhat higher than that of (111)In-DOTA-Z09591 (1.4 ± 1.2 nM). (68)Ga-DOTA-Z09591 demonstrated specific (saturable) targeting of U-87 MG xenografts in immunodeficient mice. The tumor uptake at 2 h after injection was 3.7 ± 1.7% IA/g, which provided a tumor-to-blood ratio of 8.0 ± 3.1. The only organ with higher accumulation of radioactivity was the kidney. MicroPET imaging provided high-contrast imaging of U-87 MG xenografts. In conclusion, the (68)Ga-labeled affibody molecule Z09591 is a promising candidate for further development as a probe for imaging PDGFRβ expression in vivo using PET.
Collapse
Affiliation(s)
- Joanna Strand
- Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University , Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Sihver W, Pietzsch J, Krause M, Baumann M, Steinbach J, Pietzsch HJ. Radiolabeled Cetuximab Conjugates for EGFR Targeted Cancer Diagnostics and Therapy. Pharmaceuticals (Basel) 2014; 7:311-38. [PMID: 24603603 PMCID: PMC3978494 DOI: 10.3390/ph7030311] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/11/2014] [Accepted: 02/21/2014] [Indexed: 01/09/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) has evolved over years into a main molecular target for the treatment of different cancer entities. In this regard, the anti-EGFR antibody cetuximab has been approved alone or in combination with: (a) chemotherapy for treatment of colorectal and head and neck squamous cell carcinoma and (b) with external radiotherapy for treatment of head and neck squamous cell carcinoma. The conjugation of radionuclides to cetuximab in combination with the specific targeting properties of this antibody might increase its therapeutic efficiency. This review article gives an overview of the preclinical studies that have been performed with radiolabeled cetuximab for imaging and/or treatment of different tumor models. A particularly promising approach seems to be the treatment with therapeutic radionuclide-labeled cetuximab in combination with external radiotherapy. Present data support an important impact of the tumor micromilieu on treatment response that needs to be further validated in patients. Another important challenge is the reduction of nonspecific uptake of the radioactive substance in metabolic organs like liver and radiosensitive organs like bone marrow and kidneys. Overall, the integration of diagnosis, treatment and monitoring as a theranostic approach appears to be a promising strategy for improvement of individualized cancer treatment.
Collapse
Affiliation(s)
- Wiebke Sihver
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany.
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany.
| | - Mechthild Krause
- Department of Radiation Oncology and OncoRay, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany.
| | - Michael Baumann
- Department of Radiation Oncology and OncoRay, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany.
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany.
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany.
| |
Collapse
|
49
|
Rosik D, Thibblin A, Antoni G, Honarvar H, Strand J, Selvaraju RK, Altai M, Orlova A, Eriksson Karlström A, Tolmachev V. Incorporation of a Triglutamyl Spacer Improves the Biodistribution of Synthetic Affibody Molecules Radiofluorinated at the N-Terminus via Oxime Formation with 18F-4-Fluorobenzaldehyde. Bioconjug Chem 2013; 25:82-92. [DOI: 10.1021/bc400343r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel Rosik
- Division
of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Alf Thibblin
- PET
Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Gunnar Antoni
- PET
Centre, Uppsala University Hospital, Uppsala, Sweden
- Preclinical
PET Platform, Uppsala University, Uppsala, Sweden
| | - Hadis Honarvar
- Unit
of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Joanna Strand
- Unit
of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Mohamed Altai
- Unit
of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Preclinical
PET Platform, Uppsala University, Uppsala, Sweden
| | - Amelie Eriksson Karlström
- Division
of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vladimir Tolmachev
- Unit
of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
Abstract
Radiometals comprise many useful radioactive isotopes of various metallic elements. When properly harnessed, these have valuable emission properties that can be used for diagnostic imaging techniques, such as single photon emission computed tomography (SPECT, e.g.(67)Ga, (99m)Tc, (111)In, (177)Lu) and positron emission tomography (PET, e.g.(68)Ga, (64)Cu, (44)Sc, (86)Y, (89)Zr), as well as therapeutic applications (e.g.(47)Sc, (114m)In, (177)Lu, (90)Y, (212/213)Bi, (212)Pb, (225)Ac, (186/188)Re). A fundamental critical component of a radiometal-based radiopharmaceutical is the chelator, the ligand system that binds the radiometal ion in a tight stable coordination complex so that it can be properly directed to a desirable molecular target in vivo. This article is a guide for selecting the optimal match between chelator and radiometal for use in these systems. The article briefly introduces a selection of relevant and high impact radiometals, and their potential utility to the fields of radiochemistry, nuclear medicine, and molecular imaging. A description of radiometal-based radiopharmaceuticals is provided, and several key design considerations are discussed. The experimental methods by which chelators are assessed for their suitability with a variety of radiometal ions is explained, and a large selection of the most common and most promising chelators are evaluated and discussed for their potential use with a variety of radiometals. Comprehensive tables have been assembled to provide a convenient and accessible overview of the field of radiometal chelating agents.
Collapse
Affiliation(s)
- Eric W Price
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, CanadaV6T 1Z1.
| | | |
Collapse
|