1
|
Premont A, Saadeh K, Edling C, Lewis R, Marr CM, Jeevaratnam K. Cardiac ion channel expression in the equine model - In-silico prediction utilising RNA sequencing data from mixed tissue samples. Physiol Rep 2022; 10:e15273. [PMID: 35880716 PMCID: PMC9316921 DOI: 10.14814/phy2.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/19/2022] [Accepted: 04/03/2022] [Indexed: 06/15/2023] Open
Abstract
Understanding cardiomyocyte ion channel expression is crucial to understanding normal cardiac electrophysiology and underlying mechanisms of cardiac pathologies particularly arrhythmias. Hitherto, equine cardiac ion channel expression has rarely been investigated. Therefore, we aim to predict equine cardiac ion channel gene expression. Raw RNAseq data from normal horses from 9 datasets was retrieved from ArrayExpress and European Nucleotide Archive and reanalysed. The normalised (FPKM) read counts for a gene in a mix of tissue were hypothesised to be the average of the expected expression in each tissue weighted by the proportion of the tissue in the mix. The cardiac-specific expression was predicted by estimating the mean expression in each other tissues. To evaluate the performance of the model, predicted gene expression values were compared to the human cardiac gene expression. Cardiac-specific expression could be predicted for 91 ion channels including most expressed Na+ channels, K+ channels and Ca2+ -handling proteins. These revealed interesting differences from what would be expected based on human studies. These differences included predominance of NaV 1.4 rather than NaV 1.5 channel, and RYR1, SERCA1 and CASQ1 rather than RYR2, SERCA2, CASQ2 Ca2+ -handling proteins. Differences in channel expression not only implicate potentially different regulatory mechanisms but also pathological mechanisms of arrhythmogenesis.
Collapse
Affiliation(s)
- Antoine Premont
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Khalil Saadeh
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Charlotte Edling
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Rebecca Lewis
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Celia M. Marr
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
- Rossdales Equine Hospital and Diagnostic CentreExningSuffolkUK
| | | |
Collapse
|
2
|
Finno CJ. Science-in-brief: Genomic and transcriptomic approaches to the investigation of equine diseases. Equine Vet J 2022; 54:444-448. [PMID: 35133024 PMCID: PMC9095347 DOI: 10.1111/evj.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/17/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| |
Collapse
|
3
|
Nalamalapu RR, Yue M, Stone AR, Murphy S, Saha MS. The tweety Gene Family: From Embryo to Disease. Front Mol Neurosci 2021; 14:672511. [PMID: 34262434 PMCID: PMC8273234 DOI: 10.3389/fnmol.2021.672511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
The tweety genes encode gated chloride channels that are found in animals, plants, and even simple eukaryotes, signifying their deep evolutionary origin. In vertebrates, the tweety gene family is highly conserved and consists of three members—ttyh1, ttyh2, and ttyh3—that are important for the regulation of cell volume. While research has elucidated potential physiological functions of ttyh1 in neural stem cell maintenance, proliferation, and filopodia formation during neural development, the roles of ttyh2 and ttyh3 are less characterized, though their expression patterns during embryonic and fetal development suggest potential roles in the development of a wide range of tissues including a role in the immune system in response to pathogen-associated molecules. Additionally, members of the tweety gene family have been implicated in various pathologies including cancers, particularly pediatric brain tumors, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Here, we review the current state of research using information from published articles and open-source databases on the tweety gene family with regard to its structure, evolution, expression during development and adulthood, biochemical and cellular functions, and role in human disease. We also identify promising areas for further research to advance our understanding of this important, yet still understudied, family of genes.
Collapse
Affiliation(s)
- Rithvik R Nalamalapu
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Michelle Yue
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Aaron R Stone
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Samantha Murphy
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Margaret S Saha
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
4
|
Fang J, Zhang D, Cao JW, Zhang L, Liu CX, Xing YP, Wang F, Xu HY, Wang SC, Ling Y, Wang W, Zhang YR, Zhou HM. Pathways involved in pony body size development. BMC Genomics 2021; 22:58. [PMID: 33461495 PMCID: PMC7814589 DOI: 10.1186/s12864-020-07323-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The mechanism of body growth in mammals is poorly understood. Here, we investigated the regulatory networks involved in body growth through transcriptomic analysis of pituitary and epiphyseal tissues of smaller sized Debao ponies and Mongolian horses at the juvenile and adult stages. RESULTS We found that growth hormone receptor (GHR) was expressed at low levels in long bones, although growth hormone (GH) was highly expressed in Debao ponies compared with Mongolian horses. Moreover, significant downregulated of the GHR pathway components m-RAS and ATF3 was found in juvenile ponies, which slowed the proliferation of bone osteocytes. However, WNT2 and PLCβ2 were obviously upregulated in juvenile Debao ponies, which led to premature mineralization of the bone extracellular matrix. Furthermore, we found that the WNT/Ca2+ pathway may be responsible for regulating body growth. GHR was demonstrated by q-PCR and Western blot analyses to be expressed at low levels in long bones of Debao ponies. Treatment with WNT antagonistI decreased the expression of WNT pathway components (P < 0.05) in vitro. Transduction of ATDC5 cells with a GHR-RNAi lentiviral vector decreased the expression of the GHR pathway components (P < 0.05). Additionally, the expression of the IGF-1 gene in the liver was lower in Debao ponies than in Mongolian horses at the juvenile and adult stages. Detection of plasma hormone concentrations showed that Debao ponies expressed higher levels of IGF-1 as juveniles and higher levels of GH as adults than Mongolian horses, indicating that the hormone regulation in Debao ponies differs from that in Mongolian horses. CONCLUSION Our work provides insights into the genetic regulation of short stature growth in mammals and can provide useful information for the development of therapeutic strategies for small size.
Collapse
Affiliation(s)
- Jun Fang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Dong Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Jun Wei Cao
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Li Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Chun Xia Liu
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Yan Ping Xing
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Feng Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Hong Yang Xu
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Shi Chao Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Yu Ling
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Wei Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Yan Ru Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China.
| | - Huan Min Zhou
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China.
| |
Collapse
|
5
|
Karagianni AE, Lisowski ZM, Hume DA, Scott Pirie R. The equine mononuclear phagocyte system: The relevance of the horse as a model for understanding human innate immunity. Equine Vet J 2020; 53:231-249. [PMID: 32881079 DOI: 10.1111/evj.13341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/07/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
The mononuclear phagocyte system (MPS) is a family of cells of related function that includes bone marrow progenitors, blood monocytes and resident tissue macrophages. Macrophages are effector cells in both innate and acquired immunity. They are a major resident cell population in every organ and their numbers increase in response to proinflammatory stimuli. Their function is highly regulated by a wide range of agonists, including lymphokines, cytokines and products of microorganisms. Macrophage biology has been studied most extensively in mice, yet direct comparisons of rodent and human macrophages have revealed many functional differences. In this review, we provide an overview of the equine MPS, describing the variation in the function and phenotype of macrophages depending on their location and the similarities and differences between the rodent, human and equine immune response. We discuss the use of the horse as a large animal model in which to study macrophage biology and pathological processes shared with humans. Finally, following the recent update to the horse genome, facilitating further comparative analysis of regulated gene expression between the species, we highlight the importance of future transcriptomic macrophage studies in the horse, the findings of which may also be applicable to human as well as veterinary research.
Collapse
Affiliation(s)
- Anna E Karagianni
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Zofia M Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - David A Hume
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, QLD, Australia
| | - R Scott Pirie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
6
|
Camacho Benítez A, Vasconcellos R, Lombide P, Viotti H, Pérez W, Cazales N, Cavestany D, Martin GB, Pedrana G. Heat shock protein HSP90 immunoexpression in equine endometrium during oestrus, dioestrus and anoestrus. Anat Histol Embryol 2020; 50:50-57. [PMID: 32776605 DOI: 10.1111/ahe.12598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 11/30/2022]
Abstract
Heat shock proteins play a crucial role in cellular development, proliferation, differentiation and apoptosis. Heat shock protein 90 (HSP90) has been localised in the human endometrium, where its immunoexpression changes during the menstrual cycle. Similar studies have not been done for the equid species, so the present study aimed to describe endometrial HSP90 immunoexpression in mare endometrium. Endometrial biopsies were formalin-fixed and paraffin-embedded, and sections were stained with haematoxylin-eosin in preparation for HSP90 immunohistochemistry. Immunostaining and morphometric analyses were performed on the epithelial lining, endometrial glands and connective stroma during oestrus, dioestrus phase and anoestrus period (n = 7 per phase or period). Immunoexpression was localised in the basal region of the epithelial cells lining the lumen. Immunoexpression was greater during oestrus than during either dioestrus or anoestrus. During anoestrus, there was little immunostaining in the endometrium, suggesting that HSP90 is involved in the functional modulation of sex steroid receptors in cyclic mares. Indeed, the function of HSP90 as a chaperone in the folding of proteins, such as steroid receptors, might explain the greater intensity of immunostaining during the oestrus and dioestrus phases, compared the anoestrus period. We conclude that, in the mare, HSP90 plays a role in endometrial function and that further studies are needed to test whether it is important in pathological conditions as endometritis.
Collapse
Affiliation(s)
- Ana Camacho Benítez
- Histología y Embriología, Biociencias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Rossana Vasconcellos
- Histología y Embriología, Biociencias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Paula Lombide
- Histología y Embriología, Biociencias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Helen Viotti
- Histología y Embriología, Biociencias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - William Pérez
- Anatomía, Biociencias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Cazales
- Centro de Posgrados, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Daniel Cavestany
- Centro de Posgrados, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Graeme B Martin
- School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia.,Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Graciela Pedrana
- Histología y Embriología, Biociencias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Abstract
The sequencing and assembly of a reference genome for the horse has been revolutionary for investigation of horse health and performance. Next-generation sequencing (NGS) methods represent a second revolution in equine genomics. Researchers can align and compare DNA and RNA sequencing data to the reference genome to explore variation that may contribute or be attributed to disease. NGS has also facilitated the translation of research discovery to clinically relevant applications. This article discusses the history and development of NGS, details some of the available sequencing platforms, and describes currently available applications in the context of both discovery and clinical settings.
Collapse
|
8
|
Raudsepp T, Finno CJ, Bellone RR, Petersen JL. Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era. Anim Genet 2019; 50:569-597. [PMID: 31568563 PMCID: PMC6825885 DOI: 10.1111/age.12857] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite‐free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high‐quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Research, Texas A&M University, College Station, TX, 77843, USA
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - R R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,School of Veterinary Medicine, Veterinary Genetics Laboratory, University of California-Davis, Davis, CA, 95616, USA
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA
| |
Collapse
|
9
|
RNA sequencing as a powerful tool in searching for genes influencing health and performance traits of horses. J Appl Genet 2015; 57:199-206. [PMID: 26446669 DOI: 10.1007/s13353-015-0320-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/19/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022]
Abstract
RNA sequencing (RNA-seq) by next-generation technology is a powerful tool which creates new possibilities in whole-transcriptome analysis. In recent years, with the use of the RNA-seq method, several studies expanded transcriptional gene profiles to understand interactions between genotype and phenotype, supremely contributing to the field of equine biology. To date, in horses, massive parallel sequencing of cDNA has been successfully used to identify and quantify mRNA levels in several normal tissues, as well as to annotate genes. Moreover, the RNA-seq method has been applied to identify the genetic basis of several diseases or to investigate organism adaptation processes to the training conditions. The use of the RNA-seq approach has also confirmed that horses can be useful as a large animal model for human disease, especially in the field of immune response. The presented review summarizes the achievements of profiling gene expression in horses (Equus caballus).
Collapse
|
10
|
Holl HM, Gao S, Fei Z, Andrews C, Brooks SA. Generation of a de novo transcriptome from equine lamellar tissue. BMC Genomics 2015; 16:739. [PMID: 26432030 PMCID: PMC4592545 DOI: 10.1186/s12864-015-1948-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Laminitis, the structural failure of interdigitated tissue that suspends the distal skeleton within the hoof capsule, is a devastating disease that is the second leading cause of both lameness and euthanasia in the horse. Current transcriptomic research focuses on the expression of known genes. However, as this tissue is quite unique and equine gene annotation is largely derived from computational predictions, there are likely yet uncharacterized transcripts that may be involved in the etiology of laminitis. In order to create a novel annotation resource, we performed whole transcriptome sequencing of sagittal lamellar sections from one control and two laminitis affected horses. RESULTS Whole transcriptome sequencing of the three samples resulted in 113 million reads. Overall, 88 % of the reads mapped to the equCab2 reference genome, allowing for the identification of 119,430 SNPs. The de novo assembly generated around 75,000 transcripts, of which 36,000 corresponded to known annotations. Annotated transcript models are hosted in a public data repository and thus can be easily accessed or loaded into genome browsers. RT-PCR of 12 selected assemblies confirmed structure and expression in lamellar tissue. CONCLUSIONS Transcriptome sequencing represents a powerful tool to expand on equine annotation and identify novel targets for further laminitis research.
Collapse
Affiliation(s)
- Heather M Holl
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Shan Gao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - Caroline Andrews
- Laboratory of Molecular Immunoregulation, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Samantha A Brooks
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
11
|
Comparison of the Equine Reference Sequence with Its Sanger Source Data and New Illumina Reads. PLoS One 2015; 10:e0126852. [PMID: 26107638 PMCID: PMC4479572 DOI: 10.1371/journal.pone.0126852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/08/2015] [Indexed: 02/05/2023] Open
Abstract
The reference assembly for the domestic horse, EquCab2, published in 2009, was built using approximately 30 million Sanger reads from a Thoroughbred mare named Twilight. Contiguity in the assembly was facilitated using nearly 315 thousand BAC end sequences from Twilight's half brother Bravo. Since then, it has served as the foundation for many genome-wide analyses that include not only the modern horse, but ancient horses and other equid species as well. As data mapped to this reference has accumulated, consistent variation between mapped datasets and the reference, in terms of regions with no read coverage, single nucleotide variants, and small insertions/deletions have become apparent. In many cases, it is not clear whether these differences are the result of true sequence variation between the research subjects' and Twilight's genome or due to errors in the reference. EquCab2 is regarded as "The Twilight Assembly." The objective of this study was to identify inconsistencies between the EquCab2 assembly and the source Twilight Sanger data used to build it. To that end, the original Sanger and BAC end reads have been mapped back to this equine reference and assessed with the addition of approximately 40X coverage of new Illumina Paired-End sequence data. The resulting mapped datasets identify those regions with low Sanger read coverage, as well as variation in genomic content that is not consistent with either the original Twilight Sanger data or the new genomic sequence data generated from Twilight on the Illumina platform. As the haploid EquCab2 reference assembly was created using Sanger reads derived largely from a single individual, the vast majority of variation detected in a mapped dataset comprised of those same Sanger reads should be heterozygous. In contrast, homozygous variations would represent either errors in the reference or contributions from Bravo's BAC end sequences. Our analysis identifies 720,843 homozygous discrepancies between new, high throughput genomic sequence data generated for Twilight and the EquCab2 reference assembly. Most of these represent errors in the assembly, while approximately 10,000 are demonstrated to be contributions from another horse. Other results are presented that include the binary alignment map file of the mapped Sanger reads, a list of variants identified as discrepancies between the source data and resulting reference, and a BED annotation file that lists the regions of the genome whose consensus was likely derived from low coverage alignments.
Collapse
|
12
|
|
13
|
Pacholewska A, Drögemüller M, Klukowska-Rötzler J, Lanz S, Hamza E, Dermitzakis ET, Marti E, Gerber V, Leeb T, Jagannathan V. The transcriptome of equine peripheral blood mononuclear cells. PLoS One 2015; 10:e0122011. [PMID: 25790166 PMCID: PMC4366165 DOI: 10.1371/journal.pone.0122011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/06/2015] [Indexed: 11/26/2022] Open
Abstract
Complete transcriptomic data at high resolution are available only for a few model organisms with medical importance. The gene structures of non-model organisms are mostly computationally predicted based on comparative genomics with other species. As a result, more than half of the horse gene models are known only by projection. Experimental data supporting these gene models are scarce. Moreover, most of the annotated equine genes are single-transcript genes. Utilizing RNA sequencing (RNA-seq) the experimental validation of predicted transcriptomes has become accessible at reasonable costs. To improve the horse genome annotation we performed RNA-seq on 561 samples of peripheral blood mononuclear cells (PBMCs) derived from 85 Warmblood horses. The mapped sequencing reads were used to build a new transcriptome assembly. The new assembly revealed many alternative isoforms associated to known genes or to those predicted by the Ensembl and/or Gnomon pipelines. We also identified 7,531 transcripts not associated with any horse gene annotated in public databases. Of these, 3,280 transcripts did not have a homologous match to any sequence deposited in the NCBI EST database suggesting horse specificity. The unknown transcripts were categorized as coding and noncoding based on predicted coding potential scores. Among them 230 transcripts had high coding potential score, at least 2 exons, and an open reading frame of at least 300 nt. We experimentally validated 9 new equine coding transcripts using RT-PCR and Sanger sequencing. Our results provide valuable detailed information on many transcripts yet to be annotated in the horse genome.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Jolanta Klukowska-Rötzler
- Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Bern University Hospital, Bern, Switzerland
| | - Simone Lanz
- Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Eman Hamza
- Clinical Immunology Group, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Eliane Marti
- Clinical Immunology Group, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Vincent Gerber
- Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Wickramasinghe S, Cánovas A, Rincón G, Medrano JF. RNA-Sequencing: A tool to explore new frontiers in animal genetics. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|