1
|
C8orf76 Modulates Ferroptosis in Liver Cancer via Transcriptionally Up-Regulating SLC7A11. Cancers (Basel) 2022; 14:cancers14143410. [PMID: 35884471 PMCID: PMC9316296 DOI: 10.3390/cancers14143410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Chromosome 8 open reading frame 76 (C8orf76), a novel gene located in the nucleus, is highly expressed in many tumor types. Here, we present novel insights into the molecular mechanism and function of C8orf76 in HCC via in vitro and in vivo assays. On the one hand, C8orf76 could play a vital role in cell proliferation and cell cycle progression. More importantly, on the other hand, C8orf76 also acts as an important regulator of ferroptosis in HCC through activating SLC7A11 transcriptionally, resulting in elevation of GSH synthesis and lipid peroxidation resistance. Our study indicated that C8orf76 could be a novel marker for HCC diagnosis and therapeutic target for HCC patients. Abstract Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide. Chromosome 8 open reading frame 76 (C8orf76), a novel gene located in the nucleus, is highly expressed in many tumor types. However, the specific mechanisms and functions of C8orf76 in HCC remain unclear. Here, we reported for the first time that C8orf76 gene expression levels were frequently upregulated in liver cancer and significantly correlated with HCC development. C8orf76 downregulation induced G1-S arrest and inhibited cell proliferation. Intriguingly, C8orf76 deficiency could accelerate erastin or sorafenib-induced ferroptosis through increasing lipid reactive oxygen species (ROS) levels. Moreover, although C8orf76 overexpression did not affect tumorigenesis under normal conditions, it increased resistance to lipid disturbance and ferroptosis triggered by erastin or sorafenib, which further facilitated HCC cell growth and tumor progression. Mechanistically, C8orf76 bound to the promoter region of the solute carrier family 7 member 11 (SLC7A11) gene and upregulated SLC7A11 transcriptionally. SLC7A11-dependent cystine import led to sufficient GSH synthesis and lipid peroxidation inhibition, thus accelerating tumor growth. Our study indicated that C8orf76 could be a novel marker for HCC diagnosis. In addition, a better comprehensive understanding of the potential role of C8orf76 in HCC helped us develop novel therapeutic strategies for this intractable cancer.
Collapse
|
2
|
Sivadas A, Kok VC, Ng KL. Multi-omics analyses provide novel biological insights to distinguish lobular ductal types of invasive breast cancers. Breast Cancer Res Treat 2022; 193:361-379. [PMID: 35348974 DOI: 10.1007/s10549-022-06567-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Invasive lobular carcinoma (ILC) treatment is similar to invasive ductal carcinoma (IDC; now invasive carcinoma-no special type, IBC-NST), based on its intrinsic subtype. However, further investigation is required for an integrative understanding of differentially perturbed molecular patterns and pathways in these histotypes. METHODS A dataset of 780 IDC and 201 ILC samples from the TCGA-BRCA project for cross-platform multi-omics was analyzed. We leveraged a consensus approach integrating different bioinformatic algorithms to analyze mutations, CNAs, mRNA, miRNA abundance, methylation, and protein abundance to understand the complex crosstalks that distinguish ILC and IDC samples. A histotype-matched comparison was performed. We performed Cox survival analyses for prognosis based on our identified 53 histotype-specific and four discordant genes. RESULTS Approximately 90% of ILC cases were of the luminal subtype. Somatic mutations in CDH1 were higher in ILC than in IDC (FDR-adjusted p < 0.01). Fifty-three significant oncogenic or tumor-suppressive DEGs were identified in a single histotype. PPAR signaling and lipolysis regulation in adipocytes were significantly enriched in ILC tumors. CDH1 protein had the highest differential abundance (AUC: 0.85). Moreover, BTG2, GSTA2, GPR37L1, and PGBD5 amplification was associated with poorer OS in ILC compared with no alteration. RIMS2, NACA4P, MYC, ZFPM2, and POU5F1B amplification showed a lower overall survival in patients with IDC. miR-195 showed an IDC-specific downregulation, causing overexpression of CCNE1. Integrative multi-omics supervised analysis identified 296 differentially expressed genes that successfully distinguished IDC and ILC histotypes. CONCLUSIONS Our findings identify novel molecular candidates that potentially drive and modify the disease differentially among these histotypes.
Collapse
Affiliation(s)
- Ambily Sivadas
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Victor C Kok
- Division of Medical Oncology, Kuang Tien General Hospital Cancer Center, 117 Shatien Rd Shalu Dist, Taichung, 43303, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University Taiwan, Taichung, 40354, Taiwan.
| | - Ka-Lok Ng
- Department of Bioinformatics and Medical Engineering, Asia University Taiwan, Taichung, 40354, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Center for Artificial Intelligence and Precision Medicine Research, Asia University, Taichung, 40354, Taiwan
| |
Collapse
|
3
|
Sultan A, Sahar NE, Riaz SK, Qadir J, Waqar SH, Haq F, Khaliq T, Malik MFA. Metadherin (MTDH) overexpression significantly correlates with advanced tumor grade and stages among colorectal cancer patients. Mol Biol Rep 2021; 48:7999-8007. [PMID: 34741710 DOI: 10.1007/s11033-021-06834-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Colorectal cancer is the 4th leading cause of cancer related deaths affecting both men and women worldwide. In the present study, any probable role of MTDH mRNA expression in CRC tumorigenesis was explored using both discovery and validation cohorts. METHODS AND RESULTS After prior ethical and biosafety approvals, tumor tissue samples along with their adjacent controls were collected for this study from Pakistani patients diagnosed with colorectal cancer. RNA was isolated using Trizol reagent, followed by cDNA synthesis. Transcript analysis of MTDH was performed by using qPCR. Moreover, genome-wide expression of MTDH was also determined through micro-array data analysis using BRB-array tools software. MTDH expression was significantly high in tumor tissue samples (p < 0.05) compared to their respective controls. Likewise, results of microarray analysis also revealed overamplification of MTDH in tumor samples as compared to controls. Expression of MTDH was also found to be positively correlated with KI-67 index (p < 0.05) and were observed to be significantly upregulated in advance tumor grade (p < 0.05) and stage (p < 0.05). However, no association of MTDH overexpression with age and gender could be established. CONCLUSION Hence, it can be concluded that MTDH is a core element that plays a pivotal role in colorectal tumorigenesis irrespective of patient's age and gender. Molecular insight into the tumor microenvironment revealed MTDH as a niche, representing distinctive framework for cancer progression, thus, making it an innovative target strategy for colorectal cancer treatment.
Collapse
Affiliation(s)
- Aimen Sultan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Namood-E Sahar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan.,College of Medicine, University of Nebraska, Medical Center, Omaha, USA
| | - Syeda Kiran Riaz
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Javeria Qadir
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shahzad Hussain Waqar
- Department of General Surgery, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Farhan Haq
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Tanwir Khaliq
- Department of General Surgery, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | | |
Collapse
|
4
|
Tsantoulis P, Delorenzi M, Bièche I, Vacher S, Mariani P, Cassoux N, Houy A, Stern MH, Roman-Roman S, Dietrich PY, Roth A, Cacheux W. Prospective validation in epithelial tumors of a gene expression predictor of liver metastasis derived from uveal melanoma. Sci Rep 2019; 9:17178. [PMID: 31748560 PMCID: PMC6868129 DOI: 10.1038/s41598-019-52841-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Predicting the risk of liver metastasis can have important prognostic and therapeutic implications, given the availability of liver-directed therapy. Uveal melanoma has a striking predisposition for liver metastasis despite the absence of anatomical proximity. Understanding its biology may uncover factors promoting liver metastasis in other malignancies. We quantified gene expression by RNAseq in 76 uveal melanomas and combined with public data in a meta-analysis of 196 patients. The meta-analysis of uveal melanoma gene expression identified 63 genes which remained prognostic after adjustment for chromosome 3 status. Two genes, PTP4A3 and JPH1, were selected by L1-penalized regression and combined in a prognostic score. The score predicted liver-specific relapse in a public pan-cancer dataset and in two public colorectal cancer datasets. The score varied between colorectal consensus molecular subtypes (CMS), as did the risk of liver relapse, which was lowest in CMS1. Additional prospective validation was done by real-time PCR in 463 breast cancer patients. The score was significantly correlated with liver relapse in hormone receptor positive tumors. In conclusion, the expression of PTP4A3 and JPH1 correlates with risk of liver metastasis in colorectal cancer and breast cancer. The underlying biological mechanism is an interesting area for further research.
Collapse
Affiliation(s)
- Petros Tsantoulis
- Hôpitaux Universitaires de Genève, Service d'Oncologie, Geneva, Switzerland. .,University of Geneva, Geneva, Switzerland. .,SIB Swiss Institute of Bioinformatics, Bioinformatics Core Facility, Lausanne, Switzerland.
| | - Mauro Delorenzi
- SIB Swiss Institute of Bioinformatics, Bioinformatics Core Facility, Lausanne, Switzerland.,University Lausanne, Department of Fundamental Oncology, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, Epalinges, Switzerland
| | - Ivan Bièche
- Institut Curie, Département de génétique, Paris, France
| | - Sophie Vacher
- Institut Curie, Département de génétique, Paris, France
| | | | | | - Alexandre Houy
- Institut Curie, Département de génétique, Paris, France.,Institut Curie, PSL Research University, INSERM U830, Paris, France
| | - Marc-Henri Stern
- Institut Curie, Département de génétique, Paris, France.,Institut Curie, PSL Research University, INSERM U830, Paris, France
| | - Sergio Roman-Roman
- Institut Curie, PSL Research University, Translational Research Department, Paris, France
| | - Pierre-Yves Dietrich
- Hôpitaux Universitaires de Genève, Service d'Oncologie, Geneva, Switzerland.,University of Geneva, Geneva, Switzerland
| | - Arnaud Roth
- Hôpitaux Universitaires de Genève, Service d'Oncologie, Geneva, Switzerland.,University of Geneva, Geneva, Switzerland
| | - Wulfran Cacheux
- Hôpitaux Universitaires de Genève, Service d'Oncologie, Geneva, Switzerland.,Institut Curie, Département de génétique, Paris, France.,Hôpital Privé - Pays de Savoie, Oncology department, Annemasse, France
| |
Collapse
|
5
|
Reese RM, Harrison MM, Alarid ET. Grainyhead-like Protein 2: The Emerging Role in Hormone-Dependent Cancers and Epigenetics. Endocrinology 2019; 160:1275-1288. [PMID: 30958537 DOI: 10.1210/en.2019-00213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/16/2023]
Abstract
In mammals, the grainyhead-like transcription factor (GRHL) family is composed of three nuclear proteins that are responsible for driving epithelial cell fate: GRHL1, GRHL2, and GRHL3. GRHL2 is important in maintaining proper tubulogenesis during development and in suppressing the epithelial-to-mesenchymal transition. Within the last decade, evidence indicates both tumor-suppressive and oncogenic roles for GRHL2 in various types of cancers. Recent studies suggest that GRHL2 may be especially important in hormone-dependent cancers, as correlative relationships exist between GRHL2 and various steroid receptors, such as the androgen and estrogen receptors. Acting as a pioneer factor and coactivator, GRHL2 may directly affect steroid receptor transcriptional activity. This review will highlight recent discoveries of GRHL2 activity in cancer and in maintaining the epithelial state, while also exploring recent literature on the role of GRHL2 in hormone-dependent cancers and epigenetics.
Collapse
Affiliation(s)
- Rebecca M Reese
- Department of Oncology and Carbone Comprehensive Cancer Center, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Elaine T Alarid
- Department of Oncology and Carbone Comprehensive Cancer Center, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
6
|
Huang K, Baldrich P, Meyers BC, Caplan JL. sRNA-FISH: versatile fluorescent in situ detection of small RNAs in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:359-369. [PMID: 30577085 PMCID: PMC6465150 DOI: 10.1111/tpj.14210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 05/20/2023]
Abstract
Localization of mRNA and small RNAs (sRNAs) is important for understanding their function. Fluorescent in situ hybridization (FISH) has been used extensively in animal systems to study the localization and expression of sRNAs. However, current methods for fluorescent in situ detection of sRNA in plant tissues are less developed. Here we report a protocol (sRNA-FISH) for efficient fluorescent detection of sRNAs in plants. This protocol is suitable for application in diverse plant species and tissue types. The use of locked nucleic acid probes and antibodies conjugated with different fluorophores allows the detection of two sRNAs in the same sample. Using this method, we have successfully detected the co-localization of miR2275 and a 24-nucleotide phased small interfering RNA in maize anther tapetal and archesporial cells. We describe how to overcome the common problem of the wide range of autofluorescence in embedded plant tissue using linear spectral unmixing on a laser scanning confocal microscope. For highly autofluorescent samples, we show that multi-photon fluorescence excitation microscopy can be used to separate the target sRNA-FISH signal from background autofluorescence. In contrast to colorimetric in situ hybridization, sRNA-FISH signals can be imaged using super-resolution microscopy to examine the subcellular localization of sRNAs. We detected maize miR2275 by super-resolution structured illumination microscopy and direct stochastic optical reconstruction microscopy. In this study, we describe how we overcame the challenges of adapting FISH for imaging in plant tissue and provide a step-by-step sRNA-FISH protocol for studying sRNAs at the cellular and even subcellular level.
Collapse
Affiliation(s)
- Kun Huang
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Patricia Baldrich
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, USA
| | - Blake C. Meyers
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, USA
- University of Missouri – Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, MO 65211
- To whom correspondence should be addressed: Jeffrey L. Caplan; Tel: (302) 831-3403; Fax: (302) 831-4841;
| | - Jeffrey L. Caplan
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
- To whom correspondence should be addressed: Jeffrey L. Caplan; Tel: (302) 831-3403; Fax: (302) 831-4841;
| |
Collapse
|
7
|
Zhao K, Zhao Y, Zhu JY, Dong H, Cong WM, Yu Y, Wang H, Zhu ZZ, Xu Q. A Panel of Genes Identified as Targets for 8q24.13-24.3 Gain Contributing to Unfavorable Overall Survival in Patients with Hepatocellular Carcinoma. Curr Med Sci 2018; 38:590-596. [PMID: 30128866 DOI: 10.1007/s11596-018-1918-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/17/2018] [Indexed: 12/12/2022]
Abstract
Copy number aberrations (CNAs) in chromosome arm 8q have been associated with unfavorable clinical outcomes of several cancers and progressive tumor characteristics of hepatocellular carcinoma (HCC). This study was to identify correlation of CNAs in 8q with clinical outcomes of HCC patients, and further screen for differentially expressed genes in outcome-related CNAs. Array comparative genomic hybridization and expression arrays were performed to detect CNAs and expression levels, respectively. The correlations between CNAs in 8q and outcomes were analyzed in 66 patients, with a median follow-up time of 45.0 months (range, 2.6-108.6 months). One hundred and nine cases were further evaluated to identify differentially expressed genes in the potential outcome-related CNAs. Copy number gain in 8q was observed in 22 (33.3%) of the 66 HCC cases. The most recurrent gains (with frequencies >20%) were 8q13.3-21.3,8q21.3-23.3,8q23.3-24.13,8q24.13-24.3, and 8q24.3. Survival analysis showed that 8q24.13-24.3 gain was significantly associated with reduced overall survival (jP=0.010). Multivariate Cox analysis identified 8q24.13-24.3 gain as an independent prognostic factor for poor overall survival (HR=2.47; 95% CI=1.16-5.26; Р=0.019). Apanel of 17 genes within the 8q24.13-24.3 region, including ATAD2,SQLE,PVT1,ASAP1, and NDRG1 were significantly upregulated in HCCs with 8q24.13-24.3 gain compared to those without. These results suggest that copy number gain at 8q24.13-24.3 is an unfavorable prognostic marker for HCC patients, and the potential oncogenes ATAD2,SQLE, PVT1, ASAP1,and NDRG1 within the regional gain, may contribute coordinately to the 8q24.13-24.3 gain-related poor prognosis.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Oncology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Shanghai Clinical College of Anhui Medical University, Shanghai, 200072, China
| | - Yu Zhao
- Department of Oncology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jia-Yi Zhu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Wen-Ming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Yi Yu
- Department of Oncology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui Wang
- Department of Oncology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhong-Zheng Zhu
- Department of Oncology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
8
|
Lebok P, Mittenzwei A, Kluth M, Özden C, Taskin B, Hussein K, Möller K, Hartmann A, Lebeau A, Witzel I, Mahner S, Wölber L, Jänicke F, Geist S, Paluchowski P, Wilke C, Heilenkötter U, Simon R, Sauter G, Terracciano L, Krech R, von der Assen A, Müller V, Burandt E. 8p deletion is strongly linked to poor prognosis in breast cancer. Cancer Biol Ther 2015; 16:1080-7. [PMID: 25961141 PMCID: PMC4623106 DOI: 10.1080/15384047.2015.1046025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/16/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022] Open
Abstract
Deletions of chromosome 8p occur frequently in breast cancers, but analyses of its clinical relevance have been limited to small patient cohorts and provided controversial results. A tissue microarray with 2,197 breast cancers was thus analyzed by fluorescence in-situ hybridization using an 8p21 probe in combination with a centromere 8 reference probe. 8p deletions were found in 50% of carcinomas with no special type, 67% of papillary, 28% of tubular, 37% of lobular cancers and 56% of cancers with medullary features. Deletions were always heterozygous. 8p deletion was significantly linked to advanced tumor stage (P < 0.0001), high-grade (P < 0.0001), high tumor cell proliferation (Ki67 Labeling Index; P < 0.0001), and shortened overall survival (P < 0.0001). For example, 8p deletion was seen in 32% of 290 grade 1, 43% of 438 grade 2, and 65% of 427 grade 3 cancers. In addition, 8p deletions were strongly linked to amplification of MYC (P < 0.0001), HER2 (P < 0.0001), and CCND1 (p = 0.001), but inversely associated with ER receptor expression (p = 0.0001). Remarkably, 46.5% of 8p-deleted cancers harbored amplification of at least one of the analyzed genes as compared to 27.5% amplifications in 8p-non-deleted cancers (P < 0.0001). In conclusion, 8p deletion characterizes a subset of particularly aggressive breast cancers. As 8p deletions are easy to analyze, this feature appears to be highly suited for future DNA based prognostic breast cancer panels. The strong link of 8p deletion with various gene amplifications raises the possibility of a role for regulating genomic stability.
Collapse
Key Words
- 8p
- ER, estrogen receptor
- FISH
- FISH, fluorescence in situ hybridization
- HER2, human epidermal growth factor receptor 2
- Ki67LI, Ki67 Labeling index
- LOH, loss of heterozygosity
- NGS, next generation sequencing
- NST, no special type
- PR, progesterone receptor
- TMA, tissue microarray
- breast cancer
- deletion
- pN, nodal stage
- pT, pathological tumor stage
- prognosis
Collapse
Affiliation(s)
- P Lebok
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - A Mittenzwei
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - M Kluth
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - C Özden
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - B Taskin
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - K Hussein
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - K Möller
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - A Hartmann
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - A Lebeau
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - I Witzel
- Department of Gynecology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - S Mahner
- Department of Gynecology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - L Wölber
- Department of Gynecology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - F Jänicke
- Department of Gynecology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - S Geist
- Department of Gynecology; Regio Clinic Pinneberg; Pinneberg, Germany
| | - P Paluchowski
- Department of Gynecology; Regio Clinic Pinneberg; Pinneberg, Germany
| | - C Wilke
- Department of Gynecology; Regio Clinic Elmshorn; Elmshorn, Germany
| | - U Heilenkötter
- Department of Gynecology; Clinical Center Itzehoe; Itzehoe, Germany
| | - R Simon
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - G Sauter
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - L Terracciano
- Department of Pathology; Basel University Clinics; Basel, Switzerland
| | - R Krech
- Institute of Pathology; Clinical Center Osnabrück; Osnabrück, Germany
| | | | - V Müller
- Department of Gynecology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - E Burandt
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| |
Collapse
|
9
|
Hu L, Ru K, Zhang L, Huang Y, Zhu X, Liu H, Zetterberg A, Cheng T, Miao W. Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomark Res 2014; 2:3. [PMID: 24499728 PMCID: PMC3917523 DOI: 10.1186/2050-7771-2-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/30/2014] [Indexed: 12/24/2022] Open
Abstract
Extensive studies of the genetic aberrations related to human diseases conducted over the last two decades have identified recurrent genomic abnormalities as potential driving factors underlying a variety of cancers. Over the time, a series of cutting-edge high-throughput genetic tests, such as microarrays and next-generation sequencing, have been developed and incorporated into routine clinical practice. Although it is a classical low-throughput cytogenetic test, fluorescence in situ hybridization (FISH) does not show signs of fading; on the contrary, it plays an increasingly important role in detecting specific biomarkers in solid and hematologic neoplasms and has therefore become an indispensable part of the rapidly developing field of personalized medicine. In this article, we have summarized the recent advances in FISH application for both de novo discovery and routine detection of chromosomal rearrangements, amplifications, and deletions that are associated with the pathogenesis of various hematopoietic and non-hematopoietic malignancies. In addition, we have reviewed the recent developments in FISH methodology as well.
Collapse
Affiliation(s)
- Linping Hu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, P.R. China
| | - Kun Ru
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Pathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Pediatrics, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuting Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Pediatrics, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, P.R. China
| | - Hanzhi Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, P.R. China
| | - Anders Zetterberg
- Department of Oncology-Pathology and Karolinska Cancer Center, Karolinska Institute, Stockholm, Sweden
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, P.R. China
| | - Weimin Miao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, P.R. China
| |
Collapse
|