1
|
Zhang Z, Su V, Wiese CB, Cheng L, Wang D, Cui Y, Kallapur A, Kim J, Wu X, Tran PH, Zhou Z, Casero D, Li W, Hevener AL, Reue K, Sallam T. A genome-wide ATLAS of liver chromatin accessibility reveals that sex dictates diet-induced nucleosome dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.13.623052. [PMID: 40161732 PMCID: PMC11952359 DOI: 10.1101/2024.11.13.623052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The three-dimensional organization of the genome plays an important role in cellular function. Alterations between open and closed chromatin states contributes to DNA binding, collaborative transcriptional activities and informs post-transcriptional processing. The liver orchestrates systemic metabolic control and has the ability to mount a rapid adaptive response to environmental challenges. We interrogated the chromatin architecture in liver under different dietary cues. Using ATAC-seq, we mapped over 120,000 nucleosome peaks, revealing a remarkably preserved hepatic chromatin landscape across feeding conditions. Stringent analysis of nucleosome rearrangements in response to diet revealed that sex is the dominant factor segregating changes in chromatin accessibility. A lipid-rich diet led to a more accessible chromatin confirmation at promoter regions in female mice along with enrichment of promoter binding CCAAT-binding domain proteins. Male liver exhibited stronger binding for nutrient sensing nuclear receptors. Integrative analysis with gene expression corroborated a role for chromatin states in informing functional differences in metabolic traits. We distinguished the impact of gonadal sex and chromosomal sex as determinants of chromatin modulation by diet using the Four Core Genotypes mouse model. Our data provide mechanistic evidence underlying the regulation for the critical sex-dimorphic GWAS gene, Pnpla3 . In summary, we provide a comprehensive epigenetic resource in murine liver that uncovers the complexity of chromatin dynamics in response to diet and sex. Highlights ATAC-Seq, RNA-Seq, and FCG model-integrated analysis unravel sex differences in chromatin accessibility and transcriptome responses to dietary challenges.Lipid-rich diet led to sex-biased chromatin confirmation at promoter regions.Gonadal sex emerged as the most prevalent determinant of the sex bias hepatic chromatin modulation by lipid-rich diets. The critical sex-dimorphic GWAS gene Pnpla3 is suppressed by testosterone, which underlies hepatic differences in expression between the sexes.
Collapse
|
2
|
Gu M, Feng Y, Chen Y, Fan S, Huang C. Deoxyschizandrin ameliorates obesity and non-alcoholic fatty liver disease: Involvement of dual Farnesyl X receptor/G protein-coupled bile acid receptor 1 activation and leptin sensitization. Phytother Res 2023. [PMID: 36809683 DOI: 10.1002/ptr.7770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
Natural dual farnesyl X receptor (FXR)/G protein-coupled bile acid receptor 1 (TGR5) activators have received little attention in the management of metabolic diseases. Deoxyschizandrin (DS), a natural lignan, occurs in S. chinensis fruit and has potent hepatoprotective effects, whereas its protective roles and mechanisms against obesity and non-alcoholic fatty liver disease (NAFLD) are largely elusive. Here, we identified DS as a dual FXR/TGR5 agonist using luciferase reporter and cyclic adenosine monophosphate (cAMP) assays. DS was orally or intracerebroventricularly administrated to high-fat diet-induced obesity (DIO) mice, and methionine and choline-deficient L-amino acid diet (MCD diet)-induced non-alcoholic steatohepatitis to evaluate its protective effects. Exogenous leptin treatment was employed to investigate the sensitization effect of DS on leptin. The molecular mechanism of DS was explored by Western blot, quantitative real-time PCR analysis, and ELISA. The results showed that DS activated FXR/TGR5 signaling and effectively reduced NAFLD in DIO and MCD diet-fed mice. DS countered obesity in DIO mice by promoting anorexia and energy expenditure and reversing leptin resistance, involving both peripheral and central TGR5 activation and leptin sensitization. Our findings indicate that DS may be a novel therapeutic approach for alleviating obesity and NAFLD through regulating FXR and TGR5 activities and leptin signaling.
Collapse
Affiliation(s)
- Ming Gu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaru Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yujun Chen
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
A Novel in Duck Myoblasts: The Transcription Factor Retinoid X Receptor Alpha (RXRA) Inhibits Lipid Accumulation by Promoting CD36 Expression. Int J Mol Sci 2023; 24:ijms24021180. [PMID: 36674699 PMCID: PMC9864336 DOI: 10.3390/ijms24021180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Retinoid X receptor alpha (RXRA) is a well-characterized factor that regulates lipid metabolism; however, the regulatory mechanism in muscle cells of poultry is still unknown. The overexpression and the knockdown of RXRA in myoblasts (CS2 cells), RT-PCR, and western blotting were used to detect the expression levels of genes and proteins related to PPAR-signaling pathways. Intracellular triglycerides (TGs), cholesterol (CHOL), and nonesterified free fatty acids (NEFAs) were detected by the Elisa kit. Fat droplets were stained with Oil Red O. The double-fluorescein reporter gene and chromatin immunoprecipitation (CHIP) were used to verify the relationship between RXRA and candidate target genes. The RXRA gene was highly expressed in duck breast muscle, and its mRNA and its protein were reduced during the differentiation of CS2 cells. The CS2 cells, with the overexpression of RXRA, showed reduced content in TGs, CHOL, NEFAs, and lipid droplets and upregulated the mRNA expression of CD36, ACSL1, and PPARG genes and the protein expression of CD36 and PPARG. The knockdown of RXRA expression in CS2 cells enhanced the content of TGs, CHOL, NEFAs, and lipid droplets and downregulated the mRNA and protein expression of CD36, ACLS1, ELOVL6, and PPARG. The overexpression of the RXRA gene, the activity of the double-luciferase reporter gene of the wild-type CD36 promoter was higher than that of the mutant type. RXRA bound to -860/-852 nt, -688/-680 nt, and -165/-157 nt at the promoter region of CD36. Moreover, the overexpression of CD36 in CS2 cells could suppress the content of TGs, CHOL, NEFAs, and lipid droplets, while the knockdown expression of CD36 increased the content of TGs, CHOL, NEFAs, and lipid droplets. In this study, the transcription factor, RXRA, inhibited the accumulation of TGs, CHOL, NEFAs, and fat droplets in CS2 cells by promoting CD36 expression.
Collapse
|
4
|
Chavira-Suárez E, Reyes-Castro LA, López-Tenorio II, Vargas-Hernández L, Rodríguez-González GL, Chavira R, Zárate-Segura P, Domínguez-López A, Vadillo-Ortega F, Zambrano E. Sex-differential RXRα gene methylation effects on mRNA and protein expression in umbilical cord of the offspring rat exposed to maternal obesity. Front Cell Dev Biol 2022; 10:892315. [PMID: 36072345 PMCID: PMC9442673 DOI: 10.3389/fcell.2022.892315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal obesity (MO) induces negative consequences in the offspring development. Adiposity phenotype is associated with maternal diet at early pregnancy and DNA methylation marks in the RXRα promotor at birth. Glucocorticoids play an important role in the regulation of metabolism through the activation of nuclear hormone receptors such as the RXRα protein. The aim of the study was to analyze steroid hormone changes at the end of pregnancy in the obese mother and RXRα gene methylation in the umbilical cord. For this purpose, in a well-established MO model, female Wistar rats were fed either standard chow (controls: C) or high-fat obesogenic diet (MO) before and during pregnancy to evaluate at 19 days of gestation (19 dG): 1) maternal concentration of circulating steroid hormones in MO and C groups, 2) maternal and fetal weights, 3) analysis of correlation between hormones concentration and maternal and fetal weights, 4) DNA methylation status of a single locus of RXRα gene near the early growth response (EGR-1) protein DNA binding site, and 5) RXRα mRNA and protein expressions in umbilical cords. Our results demonstrate that at 19 dG, MO body weight before and during pregnancy was higher than C; MO progesterone and corticosterone serum concentrations were higher and estradiol lower than C. There were not differences in fetal weight between male and female per group, therefore averaged data was used; MO fetal weight was lower than C. Positive correlations were found between progesterone and corticosterone with maternal weight, and estradiol with fetal weight, while negative correlation was observed between corticosterone and fetal weight. Additionally, male umbilical cords from MO were hypermethylated in RXRα gene compared to male C group, without differences in the female groups; mRNA and protein expression of RXRα were decreased in F1 male but not in female MO compared to C. In conclusion, MO results in dysregulation of circulating steroid hormones of the obese mothers and low fetal weight in the F1, modifying DNA methylation of RXRα gene as well as RXRα mRNA and protein expression in the umbilical cord in a sex-dependent manner.
Collapse
Affiliation(s)
- Erika Chavira-Suárez
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, México
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, México
| | - Luis Antonio Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Itzel Ivonn López-Tenorio
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, México
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
| | - Lilia Vargas-Hernández
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
- Instituto Mexicano del Seguro Social, Hospital de Ginecología y Obstetricia No. 4 Luis Castelazo Ayala, Mexico City, México
| | - Guadalupe L. Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Roberto Chavira
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Paola Zárate-Segura
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
| | | | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, México
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, México
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
- *Correspondence: Elena Zambrano,
| |
Collapse
|
5
|
Zorrilla Veloz RI, McKenzie T, Palacios BE, Hu J. Nuclear hormone receptors in demyelinating diseases. J Neuroendocrinol 2022; 34:e13171. [PMID: 35734821 PMCID: PMC9339486 DOI: 10.1111/jne.13171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Demyelination results from the pathological loss of myelin and is a hallmark of many neurodegenerative diseases. Despite the prevalence of demyelinating diseases, there are no disease modifying therapies that prevent the loss of myelin or promote remyelination. This review aims to summarize studies in the field that highlight the importance of nuclear hormone receptors in the promotion and maintenance of myelination and the relevance of nuclear hormone receptors as potential therapeutic targets for demyelinating diseases. These nuclear hormone receptors include the estrogen receptor, progesterone receptor, androgen receptor, vitamin D receptor, thyroid hormone receptor, peroxisome proliferator-activated receptor, liver X receptor, and retinoid X receptor. Pre-clinical studies in well-established animal models of demyelination have shown a prominent role of these nuclear hormone receptors in myelination through their promotion of oligodendrocyte maturation and development. The activation of the nuclear hormone receptors by their ligands also promotes the synthesis of myelin proteins and lipids in mouse models of demyelination. There are limited clinical studies that focus on how the activation of these nuclear hormone receptors could alleviate demyelination in patients with diseases such as multiple sclerosis (MS). However, the completed clinical trials have reported improved clinical outcome in MS patients treated with the ligands of some of these nuclear hormone receptors. Together, the positive results from both clinical and pre-clinical studies point to nuclear hormone receptors as promising therapeutic targets to counter demyelination.
Collapse
Affiliation(s)
- Rocío I Zorrilla Veloz
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Takese McKenzie
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bridgitte E Palacios
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
6
|
Xu J, Guo Y, Huang X, Ma X, Li P, Wang Y, Wang X, Yuan L. Effects of DHA dietary intervention on hepatic lipid metabolism in apolipoprotein E-deficient and C57BL/6J wild-type mice. Biomed Pharmacother 2021; 144:112329. [PMID: 34653759 DOI: 10.1016/j.biopha.2021.112329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023] Open
Abstract
Lipid metabolic disorder occurs when ApoE gene is deficient. However, the role of Docosahexaenoic acid (DHA) in relieving hepatic lipid metabolic disorder in apolipoprotein E-deficient (ApoE -/-) mice remains unknown. We fed 3-month-old C57BL/6J wild-type (C57 wt) and ApoE -/- mice respectively with normal or DHA fortified diet for 5 months. We found ApoE gene deficiency caused hepatic lipid deposition and increased lipid levels in plasma and liver. Hepatic gene expression of SRB1, CD36 and FABP5 in ApoE -/- mice, protein expression of HMGCR, LRP1 in C57 wt mice and protein expression of LRP1 in ApoE -/- mice increased after DHA intervention. In DHA-fed ApoE -/- mice, LXRα/β and PPARα protein expression down-regulated in cytoplasm, but LXRα/β protein expression up-regulated in nucleus. DHA treatment decreased RXRα and RXRβ expression in C57 wt and ApoE -/- female mice. Deletion of ApoE gene caused lipid metabolism disorder in liver of mice. DHA treatment efficiently meliorated lipid metabolism caused by ApoE deficient through the regulation of gene and protein expressions of molecules involved in liver fatty acids transport and lipid metabolism.
Collapse
Affiliation(s)
- Jingjing Xu
- School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Yujie Guo
- School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Xiaochen Huang
- School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Xiaojun Ma
- School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Pengfei Li
- School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Ying Wang
- The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, PR China
| | - Xixiang Wang
- School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
7
|
Morral N, Liu S, Conteh AM, Chu X, Wang Y, Dong XC, Liu Y, Linnemann AK, Wan J. Aberrant gene expression induced by a high fat diet is linked to H3K9 acetylation in the promoter-proximal region. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194691. [PMID: 33556624 DOI: 10.1016/j.bbagrm.2021.194691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with an estimated global prevalence of 1 in 4 individuals. Aberrant transcriptional control of gene expression is central to the pathophysiology of metabolic diseases. However, the molecular mechanisms leading to gene dysregulation are not well understood. Histone modifications play important roles in the control of transcription. Acetylation of histone 3 at lysine 9 (H3K9ac) is associated with transcriptional activity and is implicated in transcript elongation by controlling RNA polymerase II (RNAPII) pause-release. Hence, changes in this histone modification may shed information on novel pathways linking transcription control and metabolic dysfunction. Here, we carried out genome-wide analysis of H3K9ac in the liver of mice fed a control or a high-fat diet (an animal model of NAFLD), and asked whether this histone mark associates with changes in gene expression. We found that over 70% of RNAPII peaks in promoter-proximal regions overlapped with H3K9ac, consistent with a role of H3K9ac in the regulation of transcription. When comparing high-fat with control diet, approximately 17% of the differentially expressed genes were associated with changes in H3K9ac in their promoters, showing a strong correlation between changes in H3K9ac signal and gene expression. Overall, our data indicate that in response to a high-fat diet, dysregulated gene expression of a subset of genes may be attributable to changes in transcription elongation driven by H3K9ac. Our results point at an added mechanism of gene regulation that may be important in the development of metabolic diseases.
Collapse
Affiliation(s)
- Núria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Abass M Conteh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Xiaona Chu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Amelia K Linnemann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
8
|
Liu J, Cui JY, Lu YF, Corton JC, Klaassen CD. Sex-, Age-, and Race/Ethnicity-Dependent Variations in Drug-Processing and NRF2-Regulated Genes in Human Livers. Drug Metab Dispos 2021; 49:111-119. [PMID: 33162398 PMCID: PMC7804821 DOI: 10.1124/dmd.120.000181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Individual variations in xenobiotic metabolism affect the sensitivity to diseases. In this study, the impacts of sex, age, and race/ethnicity on drug-processing genes and nuclear factor erythroid 2-related factor 2 (NRF2) genes in human livers were examined via QuantiGene multiplex suspension array (226 samples) and quantitative polymerase chain reaction (qPCR) (247 samples) to profile the expression of nuclear receptors, cytochrome P450s, conjugation enzymes, transporters, bile acid metabolism, and NRF2-regulated genes. Sex differences were found in expression of about half of the genes, but in general the differences were not large. For example, females had higher transcript levels of catalase, glutamate-cysteine ligase catalytic subunit (GCLC), heme oxygenase 1 (HO-1), Kelch-like ECH-associated protein 1 (KEAP1), superoxide dismutase 1, and thioredoxin reductase-1 compared with males via qPCR. There were no apparent differences due to age, except children had higher glutamate-cysteine ligase modifier subunit (GCLM) and elderly had higher multidrug resistance protein 3. African Americans had lower expression of farnesoid X receptor (FXR) but higher expression of HO-1, Caucasians had higher expression of organic anion transporter 2, and Hispanics had higher expression of FXR, SULT2A1, small heterodimer partner, and bile salt export pump. An examination of 34 diseased and control human liver samples showed that compared with disease-free livers, fibrotic livers had higher NAD(P)H-quinone oxidoreductase 1 (NQO1), GCLC, GCLM, and NRF2; hepatocellular carcinoma had higher transcript levels of NQO1 and KEAP1; and steatotic livers had lower GCLC, GCLM, and HO-1 expression. In summary, in drug-processing gene and NRF2 genes, sex differences were the major findings, and there were no apparent age differences, and race/ethnicity differences occurred for a few genes. These descriptive findings could add to our understanding of the sex-, age-, and race/ethnicity-dependent differences in drug-processing genes as well as NRF2 genes in normal and diseased human livers. SIGNIFICANCE STATEMENT: In human liver drug-processing and nuclear factor erythroid 2-related factor 2 genes, sex differences were the main finding. There were no apparent differences due to age, except children had higher glutamate-cysteine ligase modifier subunit, and elderly had higher multidrug resistance protein 3. African Americans had lower expression of farnesoid X receptor (FXR) but higher expression of heme oxygenase 1, Caucasians had higher expression of organic anion transporter 2, and Hispanics had higher expression of FXR, small heterodimer partner, SULT2A1, and bile salt export pump.
Collapse
Affiliation(s)
- Jie Liu
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| | - Julia Yue Cui
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| | - Yuan-Fu Lu
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| | - J Christopher Corton
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| | - Curtis D Klaassen
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| |
Collapse
|
9
|
Gu M, Song H, Li Y, Jiang Y, Zhang Y, Tang Z, Ji G, Huang C. Extract of Schisandra chinensis fruit protects against metabolic dysfunction in high-fat diet induced obese mice via FXR activation. Phytother Res 2020; 34:3063-3077. [PMID: 32583938 DOI: 10.1002/ptr.6743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
Abstract
Schisandra chinensis fruit has been shown to restore carbohydrate- and lipid-metabolic disorders and has anti-hepatotoxicity and anti-hepatitis activities. However, the molecular targets mediating the pharmacological properties of S. chinensis fruit have not been clarified. Here, we assayed the effects of S. chinensis fruit ethanol extract (SCE) on farnesoid X receptor (FXR) transactivity. The pharmacological effects of SCE (1 g/100 g diet) were assessed in high-fat diet (HFD)-fed C57BL/6 mice and ob/ob mice. The FXR and Fgf15 signalling pathways were evaluated by FXR silencing, ELISA, Western blot and RT-PCR analyses. The results showed that SCE treatment increased FXR transcription activity and improved obesity, hypercholesteremia and fatty liver in HFD-fed mice, while it had limited effects on ob/ob mice. Our study suggests that SCE treatment may improve HFD-induced metabolic disorders through pharmacological activation of FXR/Fgf15 signalling, and such beneficial effects of SCE may require leptin participation.
Collapse
Affiliation(s)
- Ming Gu
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Li
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Jiang
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yali Zhang
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhipeng Tang
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Diet Modifies Pioglitazone's Influence on Hepatic PPAR γ-Regulated Mitochondrial Gene Expression. PPAR Res 2020; 2020:3817573. [PMID: 32963510 PMCID: PMC7501566 DOI: 10.1155/2020/3817573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
Pioglitazone (Pio) is a thiazolidinedione (TZD) insulin-sensitizing drug whose effects result predominantly from its modulation of the transcriptional activity of peroxisome proliferator-activated-receptor-gamma (PPARγ). Pio is used to treat human insulin-resistant diabetes and also frequently considered for treatment of nonalcoholic steatohepatitis (NASH). In both settings, Pio's beneficial effects are believed to result primarily from its actions on adipose PPARγ activity, which improves insulin sensitivity and reduces the delivery of fatty acids to the liver. Nevertheless, a recent clinical trial showed variable efficacy of Pio in human NASH. Hepatocytes also express PPARγ, and such expression increases with insulin resistance and in nonalcoholic fatty liver disease (NAFLD). Furthermore, mice that overexpress hepatocellular PPARγ and Pio-treated mice with extrahepatic PPARγ gene disruption develop features of NAFLD. Thus, Pio's direct impact on hepatocellular gene expression might also be a determinant of this drug's ultimate influence on insulin resistance and NAFLD. Previous studies have characterized Pio's PPARγ-dependent effects on hepatic expression of specific adipogenic, lipogenic, and other metabolic genes. However, such transcriptional regulation has not been comprehensively assessed. The studies reported here address that consideration by genome-wide comparisons of Pio's hepatic transcriptional effects in wildtype (WT) and liver-specific PPARγ-knockout (KO) mice given either control or high-fat (HFD) diets. The results identify a large set of hepatic genes for which Pio's liver PPARγ-dependent transcriptional effects are concordant with its effects on RXR-DNA binding in WT mice. These data also show that HFD modifies Pio's influence on a subset of such transcriptional regulation. Finally, our findings reveal a broader influence of Pio on PPARγ-dependent hepatic expression of nuclear genes encoding mitochondrial proteins than previously recognized. Taken together, these studies provide new insights about the tissue-specific mechanisms by which Pio affects hepatic gene expression and the broad scope of this drug's influence on such regulation.
Collapse
|
11
|
Fan H, Hou Y, Sahana G, Gao H, Zhu C, Du L, Zhao F, Wang L. A Transcriptomic Study of the Tail Fat Deposition in Two Types of Hulun Buir Sheep According to Tail Size and Sex. Animals (Basel) 2019; 9:ani9090655. [PMID: 31491862 PMCID: PMC6770480 DOI: 10.3390/ani9090655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Based on tail types, Hulun Buir sheep were divided into two lines including small and big fat-tailed, but these two lines have similar genetic background. In this study, we investigated the morphology and transcription level differences of tail fat between these two lines. The RNA-seq analyses indicated several differentially expressed genes when compared between sexes or two tail sizes. Interestingly, we also found an obvious sex difference in the fat metabolism in Hulun Buir sheep. Two different co-expression networks were only shown either in male or in female sheep. Our findings will provide theoretical background in understanding the genetic mechanism of fat deposition in sheep. Abstract Hulun Buir sheep of similar genetic background were divided into two lines based on tail types: Small- and big fat-tailed. To explore the molecular mechanism of fat deposition in sheep tails, we firstly evaluated the morphology and transcription level differences of tail fat between these two lines. RNA-Seq technology was used to identify differentially expressed genes (DEGs) in phenotypic extremes of tail sizes. Five comparisons were performed taking into account two factors, sex and tail type. We screened out 373 DEGs between big-tailed and small-tailed Hulun Buir sheep, and 775 and 578 DEGs between two types of tails in male and female sheep, respectively. The results showed an obvious sex difference in the fat metabolism in sheep based on gene ontology (GO), pathway, and network analyses. Intriguingly, there were two different co-expression networks only respectively shown in male and female sheep, which were insulin-related network acting on upstream pathways and PPARG-related network effect in downstream pathways. Furthermore, these two networks were linked by a classic pathway of regulating adipogenesis. This is the first study to investigate the sex differences of fat metabolism in domestic animals, and it demonstrates a new experimental way to study fat metabolism. Our findings will provide theoretical background in understanding the tail-size phenotype in sheep and can be exploited in breeding small-tailed sheep.
Collapse
Affiliation(s)
- Hongying Fan
- Key Laborary of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Mariculture, Ocean University of China, Qingdao 266000, China
| | - Yali Hou
- Beijing Institute of Genomics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101, China
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Hongding Gao
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Caiye Zhu
- Key Laborary of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixin Du
- Key Laborary of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuping Zhao
- Key Laborary of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lixian Wang
- Key Laborary of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Gu M, Zhao P, Zhang S, Fan S, Yang L, Tong Q, Ji G, Huang C. Betulinic acid alleviates endoplasmic reticulum stress-mediated nonalcoholic fatty liver disease through activation of farnesoid X receptors in mice. Br J Pharmacol 2019; 176:847-863. [PMID: 30635917 DOI: 10.1111/bph.14570] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The molecular mechanism for the pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains elusive. Both farnesoid X receptor (FXR) signalling and endoplasmic reticulum (ER) stress contribute to the progression of NAFLD; however, it is not clear whether the actions of these two pathways are dependent on each other. Moreover, the pharmacological benefits and mechanism of betulinic acid (BA) in controlling metabolic syndrome and NAFLD are largely unknown. EXPERIMENTAL APPROACH A reporter assay and a time-resolved FRET assay were used to identify BA as an agonist of the FXR. NAFLD was induced by a methionine and choline-deficient L-amino acid diet (MCD) and high-fat diet (HFD). The pharmacological effects of BA (100 mg·kg-1 ·day-1 ) and potential interactions between hepatic FXR activation and ER stress pathways were evaluated by FXR silencing, Western blot and RT-PCR analyses using control and FXR-/- mice. KEY RESULTS Activation of the FXR inhibited intracellular PERK/EIF2α/ATF4 and CHOP signalling, thereby alleviating hepatic ER stress, whereas FXR silencing resulted in an opposite effect. Furthermore, we identified BA as an FXR agonist that effectively attenuated the progression of NAFLD and metabolic disorders in both HFD- and MCD diet-fed mice and restored the hepatocellular ER homeostasis by stimulating the FXR signalling pathway and blocking PERK/EIF2α signalling. In contrast, the effects of BA were attenuated in FXR-/- mice. CONCLUSIONS AND IMPLICATIONS Our data demonstrate that pharmacological activation of the FXR by BA reduces hepatocellular ER stress and attenuates NAFLD in an animal model of hepatic steatosis.
Collapse
Affiliation(s)
- Ming Gu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiying Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- Research Center for Traditional Chinese Medicine of Complexity Systems, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine and Program in Neuroscience, Graduate School of Biological Sciences, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Cvitanović Tomaš T, Urlep Ž, Moškon M, Mraz M, Rozman D. LiverSex Computational Model: Sexual Aspects in Hepatic Metabolism and Abnormalities. Front Physiol 2018; 9:360. [PMID: 29706895 PMCID: PMC5907313 DOI: 10.3389/fphys.2018.00360] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
The liver is to date the best example of a sexually dimorphic non-reproductive organ. Over 1,000 genes are differentially expressed between sexes indicating that female and male livers are two metabolically distinct organs. The spectrum of liver diseases is broad and is usually prevalent in one or the other sex, with different contributing genetic and environmental factors. It is thus difficult to predict individual's disease outcomes and treatment options. Systems approaches including mathematical modeling can aid importantly in understanding the multifactorial liver disease etiology leading toward tailored diagnostics, prognostics and therapy. The currently established computational models of hepatic metabolism that have proven to be essential for understanding of non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) are limited to the description of gender-independent response or reflect solely the response of the males. Herein we present LiverSex, the first sex-based multi-tissue and multi-level liver metabolic computational model. The model was constructed based on in silico liver model SteatoNet and the object-oriented modeling. The crucial factor in adaptation of liver metabolism to the sex is the inclusion of estrogen and androgen receptor responses to respective hormones and the link to sex-differences in growth hormone release. The model was extensively validated on literature data and experimental data obtained from wild type C57BL/6 mice fed with regular chow and western diet. These experimental results show extensive sex-dependent changes and could not be reproduced in silico with the uniform model SteatoNet. LiverSex represents the first large-scale liver metabolic model, which allows a detailed insight into the sex-dependent complex liver pathologies, and how the genetic and environmental factors interact with the sex in disease appearance and progression. We used the model to identify the most important sex-dependent metabolic pathways, which are involved in accumulation of triglycerides representing initial steps of NAFLD. We identified PGC1A, PPARα, FXR, and LXR as regulatory factors that could become important in sex-dependent personalized treatment of NAFLD.
Collapse
Affiliation(s)
- Tanja Cvitanović Tomaš
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Urlep
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Moškon
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Mraz
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Robinson GA, Waddington KE, Pineda-Torra I, Jury EC. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function. Front Immunol 2017; 8:1636. [PMID: 29225604 PMCID: PMC5705553 DOI: 10.3389/fimmu.2017.01636] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/09/2017] [Indexed: 01/10/2023] Open
Abstract
It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.
Collapse
Affiliation(s)
- George A. Robinson
- Centre of Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Kirsty E. Waddington
- Centre of Rheumatology, Division of Medicine, University College London, London, United Kingdom
- Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
| | - Ines Pineda-Torra
- Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
| | - Elizabeth C. Jury
- Centre of Rheumatology, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
15
|
Kosters A, Abebe DF, Felix JC, Dawson PA, Karpen SJ. Inflammation-associated upregulation of the sulfated steroid transporter Slc10a6 in mouse liver and macrophage cell lines. Hepatol Res 2016; 46:794-803. [PMID: 26510996 PMCID: PMC4851596 DOI: 10.1111/hepr.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022]
Abstract
AIM Slc10a6, an incompletely characterized member of the SLC10A bile acid transporter family, was one of the most highly induced RNA transcripts identified in a screen for inflammation-responsive genes in mouse liver. This study aimed to elucidate a role for Slc10a6 in hepatic inflammation. METHODS Mice were treated with lipopolysaccharide (LPS; 2 mg/kg) or interleukin (IL)-1β (5 mg/kg) for various time points. Cells were treated with LPS (1 μg/mL) at various time points, with cell signaling inhibitors, nuclear receptor ligands and Slc10a6 substrates. All mRNA levels were determined by quantitative polymerase chain reaction. RESULTS Slc10a6 mRNA levels were upregulated in mouse liver at 2 h (7-fold), 4 h (100-fold) and 16 h (50-fold) after LPS treatment, and 35-fold by the cytokine IL-1β (4 h). Both absence of the nuclear receptor Fxr and pretreating mice with the synthetic retinoid X receptor-α ligand LG268 attenuated the LPS upregulation of Slc10a6 mRNA by 60-75%. In vitro, Slc10a6 mRNA was induced 30-fold by LPS in mouse RAW264.7 macrophages in a time-dependent manner (maximum at 8 h). The Slc10a6 substrate dehydroepiandrosterone sulfate (DHEAS) enhanced LPS induction of CCL5 mRNA, a pro-inflammatory chemokine, by 50% in RAW264.7 cells. This effect was abrogated in the presence of anti-inflammatory nuclear receptor ligands 9-cis-retinoic acid and dexamethasone. CONCLUSION Dramatic upregulation of Slc10a6 mRNA by LPS combined with enhanced LPS stimulation of CCL5 expression by the Slc10a6 substrate DHEAS in macrophages suggests that Slc10a6 function contributes to the hepatic inflammatory response.
Collapse
Affiliation(s)
- Astrid Kosters
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| | - Demesew F. Abebe
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| | - Julio C. Felix
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Paul A. Dawson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| | - Saul J. Karpen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| |
Collapse
|
16
|
Sexually Dimorphic Expression of eGFP Transgene in the Akr1A1 Locus of Mouse Liver Regulated by Sex Hormone-Related Epigenetic Remodeling. Sci Rep 2016; 6:24023. [PMID: 27087367 PMCID: PMC4834580 DOI: 10.1038/srep24023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/14/2016] [Indexed: 12/19/2022] Open
Abstract
Sexually dimorphic gene expression is commonly found in the liver, and many of these genes are linked to different incidences of liver diseases between sexes. However, the mechanism of sexually dimorphic expression is still not fully understood. In this study, a pCAG-eGFP transgenic mouse strain with a specific transgene integration site in the Akr1A1 locus presented male-biased EGFP expression in the liver, and the expression was activated by testosterone during puberty. The integration of the pCAG-eGFP transgene altered the epigenetic regulation of the adjacent chromatin, including increased binding of STAT5b, a sexually dimorphic expression regulator, and the transformation of DNA methylation from hypermethylation into male-biased hypomethylation. Through this de novo sexually dimorphic expression of the transgene, the Akr1A1eGFP mouse provides a useful model to study the mechanisms and the dynamic changes of sexually dimorphic gene expression during either development or pathogenesis of the liver.
Collapse
|
17
|
Gender Differences in Response to Prolonged Every-Other-Day Feeding on the Proliferation and Apoptosis of Hepatocytes in Mice. Nutrients 2016; 8:176. [PMID: 27007393 PMCID: PMC4808902 DOI: 10.3390/nu8030176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/07/2016] [Indexed: 02/07/2023] Open
Abstract
Intermittent fasting decreases glucose and insulin levels and increases insulin sensitivity and lifespan. Decreased food intake influences the liver. Previous studies have shown gender differences in response to various types of caloric restriction, including every-other-day (EOD) feeding, in humans and rodents. Our goal was to show the influence of prolonged EOD feeding on the morphology, proliferation and apoptosis of livers from male and female mice. After nine months of an EOD diet, the livers from male and female mice were collected. We examined their morphology on histological slides using the Hematoxilin and Eosine (H_E) method and Hoechst staining of cell nuclei to evaluate the nuclear area of hepatocytes. We also evaluated the expression of mRNA for proto-oncogens, pro-survival proteins and apoptotic markers using Real Time Polimerase Chain Reaction (PCR). We noted increased lipid content in the livers of EOD fed female mice. EOD feeding lead to a decrease of proliferation and apoptosis in the livers of female and male mice, which suggest that tissue maintenance occurred during EOD feeding. Our experiment revealed sex-specific expression of mRNA for proto-oncogenes and pro-survival and pro-apoptotic genes in mice as well as sex-specific responses to the EOD treatment.
Collapse
|
18
|
Reizel Y, Spiro A, Sabag O, Skversky Y, Hecht M, Keshet I, Berman BP, Cedar H. Gender-specific postnatal demethylation and establishment of epigenetic memory. Genes Dev 2015; 29:923-33. [PMID: 25934504 PMCID: PMC4421981 DOI: 10.1101/gad.259309.115] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA methylation patterns are set up in a relatively fixed programmed manner during normal embryonic development and are then stably maintained. Using genome-wide analysis, we discovered a postnatal pathway involving gender-specific demethylation that occurs exclusively in the male liver. This demodification is programmed to take place at tissue-specific enhancer sequences, and our data show that the methylation state at these loci is associated with and appears to play a role in the transcriptional regulation of nearby genes. This process is mediated by the secretion of testosterone at the time of sexual maturity, but the resulting methylation profile is stable and therefore can serve as an epigenetic memory even in the absence of this inducer. These findings add a new dimension to our understanding of the role of DNA methylation in vivo and provide the foundations for deciphering how environment can impact on the epigenetic regulation of genes in general.
Collapse
Affiliation(s)
- Yitzhak Reizel
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Adam Spiro
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Yael Skversky
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Merav Hecht
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Ilana Keshet
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Benjamin P Berman
- Bioinformatics and Computational Biology Research Center, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel;
| |
Collapse
|
19
|
Li J, Wan Y, Na S, Liu X, Dong G, Yang Z, Yang J, Yue J. Sex-dependent regulation of hepatic CYP3A by growth hormone: Roles of HNF6, C/EBPα, and RXRα. Biochem Pharmacol 2014; 93:92-103. [PMID: 25451687 DOI: 10.1016/j.bcp.2014.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022]
Abstract
Sex-based differences in the pharmacological profiles of many drugs are due in part to the female-predominant expression of CYP3A4, which is the most important CYP isoform responsible for drug metabolism. Transcription factors trigger the sexually dimorphic expression of drug-metabolizing enzymes in response to sex-dependent growth hormone (GH) secretion. We investigated the roles of HNF6, C/EBPα, and RXRα in the regulation of human female-predominant CYP3A4, mouse female-specific CYP3A41, and rat male-specific CYP3A2 expression by GH secretion patterns using HepG2 cells, growth hormone receptor (GHR) knockout mice as well as rat models of orchiectomy and hypophysectomy. The constitutive expression of HNF6 and RXRα was GH-dependent, and GHR deficiency decreased HNF6/C/EBPα complex levels and increased HNF6/RXRα complex levels. Feminine GH secretion induced the binding of HNF6 and C/EBPα to the CYP3A4 and Cyp3a41 promoters and HNF6/C/EBPα complex levels was more efficiently compared with masculine pattern. Additionally, a greater inhibition of the binding of RXRα to the CYP3A4 and Cyp3a41 promoters and HNF6/RXRα complex levels was observed by feminine GH secretion, but less inhibition was observed by masculine pattern. The binding of HNF6, C/EBPα, and RXRα to the CYP3A2 promoter was not directly regulated by androgens. RXRα completely abolished the synergistic activation of the CYP3A4, Cyp3a41, and CYP3A2 promoters by HNF6 and C/EBPα. The results demonstrate that sex-dependent GH secretion patterns affect the expressions and interactions of HNF6, C/EBPα, and RXRα as well as their binding to CYP3A genes. RXRα mediates the sex-dependent influence of GH on CYP3A expression as an important signalling molecule.
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yu Wan
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Shufang Na
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiaochan Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Guicheng Dong
- Baotou Teachers' College, Inner Mongolia University of Science & Technology, Baotou 014030, China
| | - Zheqiong Yang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jing Yang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jiang Yue
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
20
|
Yang F, He Y, Liu HX, Tsuei J, Jiang X, Yang L, Wang ZT, Wan YJY. All-trans retinoic acid regulates hepatic bile acid homeostasis. Biochem Pharmacol 2014; 91:483-9. [PMID: 25175738 DOI: 10.1016/j.bcp.2014.08.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 12/11/2022]
Abstract
Retinoic acid (RA) and bile acids share common roles in regulating lipid homeostasis and insulin sensitivity. In addition, the receptor for RA (retinoid x receptor) is a permissive partner of the receptor for bile acids, farnesoid x receptor (FXR/NR1H4). Thus, RA can activate the FXR-mediated pathway as well. The current study was designed to understand the effect of all-trans RA on bile acid homeostasis. Mice were fed an all-trans RA-supplemented diet and the expression of 46 genes that participate in regulating bile acid homeostasis was studied. The data showed that all-trans RA has a profound effect in regulating genes involved in synthesis and transport of bile acids. All-trans RA treatment reduced the gene expression levels of Cyp7a1, Cyp8b1, and Akr1d1, which are involved in bile acid synthesis. All-trans RA also decreased the hepatic mRNA levels of Lrh-1 (Nr5a2) and Hnf4α (Nr2a1), which positively regulate the gene expression of Cyp7a1 and Cyp8b1. Moreover, all-trans RA induced the gene expression levels of negative regulators of bile acid synthesis including hepatic Fgfr4, Fxr, and Shp (Nr0b2) as well as ileal Fgf15. All-trans RA also decreased the expression of Abcb11 and Slc51b, which have a role in bile acid transport. Consistently, all-trans RA reduced hepatic bile acid levels and the ratio of CA/CDCA, as demonstrated by liquid chromatography-mass spectrometry. The data suggest that all-trans RA-induced SHP may contribute to the inhibition of CYP7A1 and CYP8B1, which in turn reduces bile acid synthesis and affects lipid absorption in the gastrointestinal tract.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Chinese Material Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cai-Lun Road, Shanghai 201203, China; Department of Pathology and Laboratory Medicine, the University of California at Davis Medical Center, 4645, 2nd Avenue, Sacramento, CA 95817, USA.
| | - Yuqi He
- Department of Pathology and Laboratory Medicine, the University of California at Davis Medical Center, 4645, 2nd Avenue, Sacramento, CA 95817, USA.
| | - Hui-Xin Liu
- Department of Pathology and Laboratory Medicine, the University of California at Davis Medical Center, 4645, 2nd Avenue, Sacramento, CA 95817, USA.
| | - Jessica Tsuei
- Department of Pathology and Laboratory Medicine, the University of California at Davis Medical Center, 4645, 2nd Avenue, Sacramento, CA 95817, USA.
| | - Xiaoyue Jiang
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA 95134, USA.
| | - Li Yang
- Institute of Chinese Material Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cai-Lun Road, Shanghai 201203, China.
| | - Zheng-Tao Wang
- Institute of Chinese Material Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cai-Lun Road, Shanghai 201203, China.
| | - Yu-Jui Yvonne Wan
- Institute of Chinese Material Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cai-Lun Road, Shanghai 201203, China; Department of Pathology and Laboratory Medicine, the University of California at Davis Medical Center, 4645, 2nd Avenue, Sacramento, CA 95817, USA.
| |
Collapse
|