1
|
Kanaan MN, Pileggi CA, Karam CY, Kennedy LS, Fong-McMaster C, Cuperlovic-Culf M, Harper ME. Cystine/glutamate antiporter xCT controls skeletal muscle glutathione redox, bioenergetics and differentiation. Redox Biol 2024; 73:103213. [PMID: 38815331 PMCID: PMC11167394 DOI: 10.1016/j.redox.2024.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
Cysteine, the rate-controlling amino acid in cellular glutathione synthesis is imported as cystine, by the cystine/glutamate antiporter, xCT, and subsequently reduced to cysteine. As glutathione redox is important in muscle regeneration in aging, we hypothesized that xCT exerts upstream control over skeletal muscle glutathione redox, metabolism and regeneration. Bioinformatic analyses of publicly available datasets revealed that expression levels of xCT and GSH-related genes are inversely correlated with myogenic differentiation genes. Muscle satellite cells (MuSCs) isolated from Slc7a11sut/sut mice, which harbour a mutation in the Slc7a11 gene encoding xCT, required media supplementation with 2-mercaptoethanol to support cell proliferation but not myotube differentiation, despite persistently lower GSH. Slc7a11sut/sut primary myotubes were larger compared to WT myotubes, and also exhibited higher glucose uptake and cellular oxidative capacities. Immunostaining of myogenic markers (Pax7, MyoD, and myogenin) in cardiotoxin-damaged tibialis anterior muscle fibres revealed greater MuSC activation and commitment to differentiation in Slc7a11sut/sut muscle compared to WT mice, culminating in larger myofiber cross-sectional areas at 21 days post-injury. Slc7a11sut/sut mice subjected to a 5-week exercise training protocol demonstrated enhanced insulin tolerance compared to WT mice, but blunted muscle mitochondrial biogenesis and respiration in response to exercise training. Our results demonstrate that the absence of xCT inhibits cell proliferation but promotes myotube differentiation by regulating cellular metabolism and glutathione redox. Altogether, these results support the notion that myogenesis is a redox-regulated process and may help inform novel therapeutic approaches for muscle wasting and dysfunction in aging and disease.
Collapse
Affiliation(s)
- Michel N Kanaan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada; Dr. Eric Poulin Centre for Neuromuscular Disease (CNMD), University of Ottawa, ON, K1H 8M5, Canada
| | - Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Charbel Y Karam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Luke S Kennedy
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada; National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Simon L, Bourgeois BL, Molina PE. Alcohol and Skeletal Muscle in Health and Disease. Alcohol Res 2023; 43:04. [PMID: 37937295 PMCID: PMC10627576 DOI: 10.35946/arcr.v43.1.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
PURPOSE Alcohol-related myopathy is one of the earliest alcohol-associated pathological tissue changes that is progressively exacerbated by cumulative long-term alcohol misuse. Acute and chronic alcohol use leads to changes in skeletal muscle mass and function. As discussed in this evidence-based review, alcohol-mediated mechanisms are multifactorial with effects on anabolic and catabolic signaling, mitochondrial bioenergetics, extracellular matrix remodeling, and epigenomic alterations. However, systematic studies are limited, especially regarding the acute effects of alcohol on skeletal muscle. SEARCH METHODS This review focuses on peer-reviewed manuscripts published between January 2012 and November 2022 using the search terms "alcohol" or "ethanol" and "skeletal muscle" in MEDLINE, PubMed, and Web of Science using EndNote reference management software. SEARCH RESULTS Eligible manuscripts included full-length research papers that discussed acute and chronic effects of alcohol on skeletal muscle mass and function in both clinical and preclinical studies. The review also includes alcohol-mediated skeletal muscle effects in the context of comorbidities. The three databases together yielded 708 manuscripts. Of these, the authors excluded from this review 548 papers that did not have "alcohol" or "muscle" in the title and 64 papers that were duplicates or did not discuss skeletal muscle. Thus, of all the manuscripts considered for this review, 96 are included and 612 are excluded. Additionally, relevant papers published earlier than 2012 are included to provide context to the review. DISCUSSION AND CONCLUSIONS Both acute and chronic alcohol use decrease protein synthesis and increase protein degradation. Alcohol also impairs mitochondrial function and extracellular matrix remodeling. However, there is a gap in the literature on the known alcohol-mediated mechanisms, including senescence, role of immune activation, and interorgan communication, on the development of alcohol-related myopathy. With increased life expectancy, changing alcohol use patterns, and increasing frequency of alcohol use among females, current observational studies are needed on the prevalence of alcohol-related myopathy. Additionally, the compounding effects of acute and chronic alcohol use on skeletal muscle with aging or exercise, in response to injury or disuse, and in the context of comorbidities including diabetes and human immunodeficiency virus (HIV), call for further investigation. Though evidence suggests that abstinence or reducing alcohol use can improve muscle mass and function, they are not restored to normal levels. Hence, understanding the pathophysiological mechanisms can help in the design of therapeutic strategies to improve skeletal muscle health.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Brianna L Bourgeois
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
3
|
Caceres-Ayala C, Pautassi RM, Acuña MJ, Cerpa W, Rebolledo DL. The functional and molecular effects of problematic alcohol consumption on skeletal muscle: a focus on athletic performance. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:133-147. [PMID: 35389308 DOI: 10.1080/00952990.2022.2041025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Chronic alcohol misuse is associated with alcoholic myopathy, characterized by skeletal muscle weakness and atrophy. Moreover, there is evidence that sports-related people seem to exhibit a greater prevalence of problematic alcohol consumption, especially binge drinking (BD), which might not cause alcoholic myopathy but can negatively impact muscle function and amateur and professional athletic performance.Objective: To review the literature concerning the effects of alcohol consumption on skeletal muscle function and structure that can affect muscle performance.Methodology: We examined the currently available literature (PubMed, Google Scholars) to develop a narrative review summarizing the knowledge about the effects of alcohol on skeletal muscle function and exercise performance, obtained from studies in human beings and animal models for problematic alcohol consumption.Results: Exercise- and sport-based studies indicate that alcohol consumption can negatively affect muscle recovery after vigorous exercise, especially in men, while women seem less affected. Clinical studies and pre-clinical laboratory research have led to the knowledge of some of the mechanisms involved in alcohol-related muscle dysfunction, including an imbalance between anabolic and catabolic pathways, reduced regeneration, increased inflammation and fibrosis, and deficiencies in energetic balance and mitochondrial function. These pathological features can appear not only under chronic alcohol misuse but also in other alcohol consumption patterns.Conclusions: Most laboratory-based studies use chronic or acute alcohol exposure, while episodic BD, the most common drinking pattern in amateur and professional athletes, is underrepresented. Nevertheless, alcohol consumption negatively affects skeletal muscle health through different mechanisms, which collectively might contribute to reduced sports performance.
Collapse
Affiliation(s)
- Constanza Caceres-Ayala
- Centro de Excelencia En Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo M Pautassi
- Instituto de Investigación Médica M. Y M. Ferreyra, Inimec-Conicet, Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María José Acuña
- Facultad de Salud, Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago, Chile.,Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Centro de Excelencia En Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela L Rebolledo
- Centro de Excelencia En Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Wang D, Zhao D, Li Y, Dai T, Liu F, Yan C. TGM2 positively regulates myoblast differentiation via enhancing the mTOR signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119173. [PMID: 34902478 DOI: 10.1016/j.bbamcr.2021.119173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Myoblast differentiation is an essential process for the control of muscle regeneration. However, the intrinsic mechanisms underlying this dynamic process are still not well clarified. Herein, we identified transglutaminase type 2 (TGM2) as a novel regulator of muscle differentiation and regeneration in vitro and in vivo. Specifically, knockdown of TGM2 suppresses whereas overexpression of TGM2 promotes myoblast differentiation in differentiating C2C12 cells. Mechanistic studies revealed that TGM2 promotes C2C12 myoblast differentiation via enhancing GPR56 mediated activation of the mTOR signaling. Additionally, lentivirus mediated knockdown of TGM2 hinders the regeneration of muscles in a BaCl2 induced skeletal muscle injury model of mice. Finally, we found that both TGM2 and activation of the mTOR signaling are up-regulated in muscles of patients with immune-mediated necrotizing myopathy (IMNM), especially in the regenerating myofibers. Collectively, our research demonstrates that TGM2 positively regulates muscle differentiation and regeneration through facilitating the myogenic mTOR signaling, which might be a potential target of therapy for skeletal muscle injury.
Collapse
Affiliation(s)
- Dongdong Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Yuan Li
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Tingjun Dai
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Fuchen Liu
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, People's Republic of China; Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao 266035, Shandong, People's Republic of China; Brain Science Research Institute, Shandong University, Jinan 250012, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Li SZ, Zhang ZY, Chen J, Dong MY, Du XH, Gao J, Shu QP, Li C, Liang XY, Ding ZH, Du RL, Wang J, Zhang XD. NLK is required for Ras/ERK/SRF/ELK signaling to tune skeletal muscle development by phosphorylating SRF and antagonizing the SRF/MKL pathway. Cell Death Dis 2022; 8:4. [PMID: 35013153 PMCID: PMC8748963 DOI: 10.1038/s41420-021-00774-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022]
Abstract
Serum response factor (SRF) regulates differentiation and proliferation by binding to RhoA-actin-activated MKL or Ras-MAPK-activated ELK transcriptional coactivators, but the molecular mechanisms responsible for SRF regulation remain unclear. Here, we show that Nemo-like kinase (NLK) is required for the promotion of SRF/ELK signaling in human and mouse cells. NLK was found to interact with and phosphorylate SRF at serine residues 101/103, which in turn enhanced the association between SRF and ELK. The enhanced affinity of SRF/ELK antagonized the SRF/MKL pathway and inhibited mouse myoblast differentiation in vitro. In a skeletal muscle-specific Nlk conditional knockout mouse model, forming muscle myofibers underwent hypertrophic growth, resulting in an increased muscle and body mass phenotype. We propose that both phosphorylation of SRF by NLK and phosphorylation of ELKs by MAPK are required for RAS/ELK signaling, confirming the importance of this ancient pathway and identifying an important role for NLK in modulating muscle development in vivo.
Collapse
Affiliation(s)
- Shang-Ze Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, China.,School of Medicine, Chongqing University, 400030, Chongqing, China
| | - Ze-Yan Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, China
| | - Ming-You Dong
- Reproductive genetics laboratory, Affiliated hospital of Youjiang Medical University for Nationalities, 533000, Baise, Guangxi, China
| | - Xue-Hua Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, China
| | - Jie Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, China
| | - Qi-Peng Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, China
| | - Chao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, China
| | - Xin-Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, China
| | - Zhi-Hao Ding
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, China
| | - Junli Wang
- School of Medicine, Chongqing University, 400030, Chongqing, China. .,Reproductive genetics laboratory, Affiliated hospital of Youjiang Medical University for Nationalities, 533000, Baise, Guangxi, China.
| | - Xiao-Dong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, China. .,Reproductive genetics laboratory, Affiliated hospital of Youjiang Medical University for Nationalities, 533000, Baise, Guangxi, China.
| |
Collapse
|
6
|
Ahn KH, Kim S, Yang M, Lee DW. A Pillar-Based High-Throughput Myogenic Differentiation Assay to Assess Drug Safety. Molecules 2021; 26:molecules26195805. [PMID: 34641349 PMCID: PMC8510049 DOI: 10.3390/molecules26195805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
High-throughput, pillar-strip-based assays have been proposed as a drug-safety screening tool for developmental toxicity. In the assay described here, muscle cell culture and differentiation were allowed to occur at the end of a pillar strip (eight pillars) compatible with commercially available 96-well plates. Previous approaches to characterize cellular differentiation with immunostaining required a burdensome number of washing steps; these multiple washes also resulted in a high proportion of cellular loss resulting in poor yield. To overcome these limitations, the approach described here utilizes cell growth by easily moving the pillars for washing and immunostaining without significant loss of cells. Thus, the present pillar-strip approach is deemed suitable for monitoring high-throughput myogenic differentiation. Using this experimental high-throughput approach, eight drugs (including two well-known myogenic inhibitory drugs) were tested at six doses in triplicate, which allows for the generation of dose–response curves of nuclei and myotubes in a 96-well platform. As a result of comparing these F-actin (an actin-cytoskeleton protein), nucleus, and myotube data, two proposed differentiation indices—curve-area-based differentiation index (CA-DI) and maximum-point-based differentiation index (MP-DI) were generated. Both indices successfully allowed for screening of high-myogenic inhibitory drugs, and the maximum-point-based differentiation index (MP-DI) experimentally demonstrated sensitivity for quantifying drugs that inhibited myogenic differentiation.
Collapse
Affiliation(s)
- Kyeong Hwan Ahn
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Korea; (K.H.A.); (S.K.)
| | - Sooil Kim
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Korea; (K.H.A.); (S.K.)
| | - Mihi Yang
- Department of Toxicology, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (M.Y.); (D.W.L.); Tel.: +82-10-2546-9586 (D.W.L.)
| | - Dong Woo Lee
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Korea; (K.H.A.); (S.K.)
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd., Suwon 16229, Korea
- Correspondence: (M.Y.); (D.W.L.); Tel.: +82-10-2546-9586 (D.W.L.)
| |
Collapse
|
7
|
Huot JR, Thompson B, McMullen C, Marino JS, Arthur ST. GSI Treatment Preserves Protein Synthesis in C2C12 Myotubes. Cells 2021; 10:cells10071786. [PMID: 34359954 PMCID: PMC8307118 DOI: 10.3390/cells10071786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
It has been demonstrated that inhibiting Notch signaling through γ-secretase inhibitor (GSI) treatment increases myogenesis, AKT/mTOR signaling, and muscle protein synthesis (MPS) in C2C12 myotubes. The purpose of this study was to determine if GSI-mediated effects on myogenesis and MPS are dependent on AKT/mTOR signaling. C2C12 cells were assessed for indices of myotube formation, anabolic signaling, and MPS following GSI treatment in combination with rapamycin and API-1, inhibitors of mTOR and AKT, respectively. GSI treatment increased several indices of myotube fusion and MPS in C2C12 myotubes. GSI-mediated effects on myotube formation and fusion were completely negated by treatment with rapamycin and API-1. Meanwhile, GSI treatment was able to rescue MPS in C2C12 myotubes exposed to rapamycin or rapamycin combined with API-1. Examination of protein expression revealed that GSI treatment was able to rescue pGSK3β Ser9 despite AKT inhibition by API-1. These findings demonstrate that GSI treatment is able to rescue MPS independent of AKT/mTOR signaling, possibly via GSK3β modulation.
Collapse
Affiliation(s)
- Joshua R. Huot
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian Thompson
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
| | - Charlotte McMullen
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
| | - Joseph S. Marino
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
| | - Susan T. Arthur
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
- Correspondence: ; Tel.: +1-(704)-687-0856
| |
Collapse
|
8
|
Levitt DE, Yeh AY, Prendergast MJ, Budnar, Jr. RG, Adler KA, Cook G, Molina PE, Simon L. Chronic Alcohol Dysregulates Skeletal Muscle Myogenic Gene Expression after Hind Limb Immobilization in Female Rats. Biomolecules 2020; 10:E441. [PMID: 32178412 PMCID: PMC7175129 DOI: 10.3390/biom10030441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Alcohol use and aging are risk factors for falls requiring immobilization and leading to skeletal muscle atrophy. Skeletal muscle regeneration is integral to post-immobilization recovery. This study aimed to elucidate the effects of alcohol and ovarian hormone loss on the expression of genes implicated in muscle regeneration. Three-month-old female rats received an ovariectomy or a sham surgery, consumed an alcohol-containing or control diet for 10 weeks, were subjected to unilateral hind limb immobilization for seven days, and finally were allowed a three (3d)- or 14 (14d)-day recovery. Immobilization decreased the quadriceps weight at 3d and 14d, and alcohol decreased the quadriceps weight at 14d in the nonimmobilized hind limb (NI). At 3d, alcohol decreased gene expression of myoblast determination protein (MyoD) in the immobilized hind limb (IMM) and myocyte enhancer factor (Mef)2C and tumor necrosis factor (TNF)α in NI, and ovariectomy increased MyoD and decreased TNFα expression in NI. At 14d, alcohol increased the gene expression of Mef2C, MyoD, TNFα, and transforming growth factor (TFG)β in IMM and decreased monocyte chemoattractant protein (MCP)1 expression in NI; ovariectomy increased TNFα expression in NI, and alcohol and ovariectomy together increased Mef2C expression in NI. Despite increased TGFβ expression, there was no concomitant alcohol-mediated increase in collagen in IMM at 14d. Overall, these data indicate that alcohol dysregulated the post-immobilization alteration in the expression of genes implicated in regeneration. Whether alcohol-mediated molecular changes correspond with post-immobilization functional alterations remains to be determined.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.E.L.); (A.Y.Y.); (M.J.P.); (R.G.B.J.); (K.A.A.); (G.C.); (P.E.M.)
| |
Collapse
|
9
|
Petruccelli E, Feyder M, Ledru N, Jaques Y, Anderson E, Kaun KR. Alcohol Activates Scabrous-Notch to Influence Associated Memories. Neuron 2018; 100:1209-1223.e4. [PMID: 30482693 DOI: 10.1016/j.neuron.2018.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/17/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Drugs of abuse, like alcohol, modulate gene expression in reward circuits and consequently alter behavior. However, the in vivo cellular mechanisms through which alcohol induces lasting transcriptional changes are unclear. We show that Drosophila Notch/Su(H) signaling and the secreted fibrinogen-related protein Scabrous in mushroom body (MB) memory circuitry are important for the enduring preference of cues associated with alcohol's rewarding properties. Alcohol exposure affects Notch responsivity in the adult MB and alters Su(H) targeting at the dopamine-2-like receptor (Dop2R). Alcohol cue training also caused lasting changes to the MB nuclear transcriptome, including changes in the alternative splicing of Dop2R and newly implicated transcripts like Stat92E. Together, our data suggest that alcohol-induced activation of the highly conserved Notch pathway and accompanying transcriptional responses in memory circuitry contribute to addiction. Ultimately, this provides mechanistic insight into the etiology and pathophysiology of alcohol use disorder.
Collapse
Affiliation(s)
- Emily Petruccelli
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michael Feyder
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Nicolas Ledru
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Yanabah Jaques
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Edward Anderson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
10
|
Lou W, Reynolds CA, Li Y, Liu J, Hüttemann M, Schlame M, Stevenson D, Strathdee D, Greenberg ML. Loss of tafazzin results in decreased myoblast differentiation in C2C12 cells: A myoblast model of Barth syndrome and cardiolipin deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:857-865. [PMID: 29694924 DOI: 10.1016/j.bbalip.2018.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/25/2022]
Abstract
Barth syndrome (BTHS) is an X-linked genetic disorder resulting from mutations in the tafazzin gene (TAZ), which encodes the transacylase that remodels the mitochondrial phospholipid cardiolipin (CL). While most BTHS patients exhibit pronounced skeletal myopathy, the mechanisms linking defective CL remodeling and skeletal myopathy have not been determined. In this study, we constructed a CRISPR-generated stable tafazzin knockout (TAZ-KO) C2C12 myoblast cell line. TAZ-KO cells exhibit mitochondrial deficits consistent with other models of BTHS, including accumulation of monolyso-CL (MLCL), decreased mitochondrial respiration, and increased mitochondrial ROS production. Additionally, tafazzin deficiency was associated with impairment of myocyte differentiation. Future studies should determine whether alterations in myogenic determination contribute to the skeletal myopathy observed in BTHS patients. The BTHS myoblast model will enable studies to elucidate mechanisms by which defective CL remodeling interferes with normal myocyte differentiation and skeletal muscle ontogenesis.
Collapse
Affiliation(s)
- Wenjia Lou
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | | | - Yiran Li
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael Schlame
- Department of Anesthesiology and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - David Stevenson
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Douglas Strathdee
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
11
|
Prince LM, Rand MD. Methylmercury exposure causes a persistent inhibition of myogenin expression and C2C12 myoblast differentiation. Toxicology 2018; 393:113-122. [PMID: 29104120 PMCID: PMC5757876 DOI: 10.1016/j.tox.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/03/2017] [Accepted: 11/01/2017] [Indexed: 12/11/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental toxicant, best known for its selective targeting of the developing nervous system. MeHg exposure has been shown to cause motor deficits such as impaired gait and coordination, muscle weakness, and muscle atrophy, which have been associated with disruption of motor neurons. However, recent studies have suggested that muscle may also be a target of MeHg toxicity, both in the context of developmental myogenic events and of low-level chronic exposures affecting muscle wasting in aging. We therefore investigated the effects of MeHg on myotube formation, using the C2C12 mouse myoblast model. We found that MeHg inhibits both differentiation and fusion, in a concentration-dependent manner. Furthermore, MeHg specifically and persistently inhibits myogenin (MyoG), a transcription factor involved in myocyte differentiation, within the first six hours of exposure. MeHg-induced reduction in MyoG expression is contemporaneous with a reduction of a number of factors involved in mitochondrial biogenesis and mtDNA transcription and translation, which may implicate a role for mitochondria in mediating MeHg-induced change in the differentiation program. Unexpectedly, inhibition of myoblast differentiation with MeHg parallels inhibition of Notch receptor signaling. Our research establishes muscle cell differentiation as a target for MeHg toxicity, which may contribute to the underlying etiology of motor deficits with MeHg toxicity.
Collapse
Affiliation(s)
- Lisa M Prince
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Department of Environmental Medicine, Rochester, NY, 14642, USA.
| | - Matthew D Rand
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Department of Environmental Medicine, Rochester, NY, 14642, USA.
| |
Collapse
|
12
|
Shan T, Xu Z, Wu W, Liu J, Wang Y. Roles of Notch1 Signaling in Regulating Satellite Cell Fates Choices and Postnatal Skeletal Myogenesis. J Cell Physiol 2017; 232:2964-2967. [DOI: 10.1002/jcp.25730] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Tizhong Shan
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang P. R. China
| | - Ziye Xu
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang P. R. China
| | - Weiche Wu
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang P. R. China
| | - Jiaqi Liu
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang P. R. China
| | - Yizhen Wang
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang P. R. China
| |
Collapse
|
13
|
Chronic alcohol exposure induces muscle atrophy (myopathy) in zebrafish and alters the expression of microRNAs targeting the Notch pathway in skeletal muscle. Biochem Biophys Res Commun 2016; 479:590-595. [PMID: 27671199 DOI: 10.1016/j.bbrc.2016.09.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
Muscle wasting is estimated to affect 40-60% of alcoholics, and is more common than cirrhosis among chronic alcohol abusers. The molecular and cellular mechanisms underlying alcohol-related musculoskeletal dysfunction are, however, poorly understood. Muscle-specific microRNAs (miRNAs) referred to as myoMirs are now known to play a key role in both myogenesis and muscle atrophy. Yet, no studies have investigated a role for myoMirs in alcohol-related skeletal muscle damage. We developed a zebrafish model of chronic ethanol exposure to better define the mechanisms mediating alcohol-induced muscle atrophy. Adult fish maintained at 0.5% ethanol for eight weeks demonstrated significantly reduced muscle fiber cross-sectional area (∼12%, P < 0.05) compared to fish housed in normal water. Zebrafish miRNA microarray revealed marked changes in several miRNAs with ethanol treatment. Importantly, miR-140, a miRNA that shows 100% sequence homology with miR-140 from both mouse and human, is decreased 10-fold in ethanol treated fish. miR-140 targets several members of the Notch signaling pathway such as DNER, JAG1, and Hey1, and PCR data show that both Hey1 and Notch 1 are significantly up-related (3-fold) in muscle of ethanol treated fish. In addition, miR-146a, which targets the Notch antagonist Numb, is elevated in muscle from ethanol-treated fish. Upregulation of Notch signaling suppresses myogenesis and maintains muscle satellite cell quiescence. These data suggest that miRNAs targeting Notch are likely to play important roles in alcohol-related myopathy. Furthermore, zebrafish may serve as a useful model for better understanding the role of microRNAs in alcohol-related tissue damage.
Collapse
|
14
|
Kopesky P, Tiedemann K, Alkekhia D, Zechner C, Millard B, Schoeberl B, Komarova SV. Autocrine signaling is a key regulatory element during osteoclastogenesis. Biol Open 2014; 3:767-76. [PMID: 25063197 PMCID: PMC4133729 DOI: 10.1242/bio.20148128] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteoclasts are responsible for bone destruction in degenerative, inflammatory and metastatic bone disorders. Although osteoclastogenesis has been well-characterized in mouse models, many questions remain regarding the regulation of osteoclast formation in human diseases. We examined the regulation of human precursors induced to differentiate and fuse into multinucleated osteoclasts by receptor activator of nuclear factor kappa-B ligand (RANKL). High-content single cell microscopy enabled the time-resolved quantification of both the population of monocytic precursors and the emerging osteoclasts. We observed that prior to induction of osteoclast fusion, RANKL stimulated precursor proliferation, acting in part through an autocrine mediator. Cytokines secreted during osteoclastogenesis were resolved using multiplexed quantification combined with a Partial Least Squares Regression model to identify the relative importance of specific cytokines for the osteoclastogenesis outcome. Interleukin 8 (IL-8) was identified as one of RANKL-induced cytokines and validated for its role in osteoclast formation using inhibitors of the IL-8 cognate receptors CXCR1 and CXCR2 or an IL-8 blocking antibody. These insights demonstrate that autocrine signaling induced by RANKL represents a key regulatory component of human osteoclastogenesis.
Collapse
Affiliation(s)
- Paul Kopesky
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139, USA
| | - Kerstin Tiedemann
- Shriners Hospital for Children - Canada, 1529 Cedar Avenue, Montreal, QC H3G IA6, Canada Faculty of Dentistry, McGill University, 3640 rue University, Montreal, QC H3A 0C7, Canada
| | - Dahlia Alkekhia
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139, USA
| | - Christoph Zechner
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139, USA
| | - Bjorn Millard
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139, USA
| | - Birgit Schoeberl
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139, USA
| | - Svetlana V Komarova
- Shriners Hospital for Children - Canada, 1529 Cedar Avenue, Montreal, QC H3G IA6, Canada Faculty of Dentistry, McGill University, 3640 rue University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
15
|
Simon L, LeCapitaine N, Berner P, Vande Stouwe C, Mussell JC, Allerton T, Primeaux SD, Dufour J, Nelson S, Bagby GJ, Cefalu W, Molina PE. Chronic binge alcohol consumption alters myogenic gene expression and reduces in vitro myogenic differentiation potential of myoblasts from rhesus macaques. Am J Physiol Regul Integr Comp Physiol 2014; 306:R837-44. [PMID: 24671243 DOI: 10.1152/ajpregu.00502.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic alcohol abuse is associated with skeletal muscle myopathy. Previously, we demonstrated that chronic binge alcohol (CBA) consumption by rhesus macaques accentuates skeletal muscle wasting at end-stage of simian immunodeficiency virus (SIV) infection. A proinflammatory, prooxidative milieu and enhanced ubiquitin proteasome activity were identified as possible mechanisms leading to loss of skeletal muscle. The possibility that impaired regenerative capacity, as reflected by the ability of myoblasts derived from satellite cell (SCs) to differentiate into myotubes has not been examined. We hypothesized that the inflammation and oxidative stress in skeletal muscle from CBA animals impair the differentiation capacity of myoblasts to form new myofibers in in vitro assays. We isolated primary myoblasts from the quadriceps femoris of rhesus macaques that were administered CBA or isocaloric sucrose (SUC) for 19 mo. Proliferation and differentiation potential of cultured myoblasts were examined in vitro. Myoblasts from the CBA group had significantly reduced PAX7, MYOD1, MYOG, MYF5, and MEF2C expression. This was associated with decreased myotube formation as evidenced by Jenner-Giemsa staining and myonuclei fusion index. No significant difference in the proliferative ability, cell cycle distribution, or autophagy was detected between myoblasts isolated from CBA and SUC groups. Together, these results reflect marked dysregulation of myoblast myogenic gene expression and myotube formation, which we interpret as evidence of impaired skeletal muscle regenerative capacity in CBA-administered macaques. The contribution of this mechanism to alcoholic myopathy warrants further investigation.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology, Louisiana State University, Health Sciences Center, New Orleans, Lousiana
| | - Nicole LeCapitaine
- Department of Physiology, Louisiana State University, Health Sciences Center, New Orleans, Lousiana; Comprehensive Alcohol Research Center, Louisiana State University, Health Sciences Center, New Orleans, Lousiana
| | - Paul Berner
- Department of Physiology, Louisiana State University, Health Sciences Center, New Orleans, Lousiana
| | - Curtis Vande Stouwe
- Department of Physiology, Louisiana State University, Health Sciences Center, New Orleans, Lousiana
| | - Jason C Mussell
- Department of Cell Biology and Anatomy, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Timothy Allerton
- Joint Program on Diabetes, Endocrinology, and Metabolism, Pennington Biomedical Research Center, Baton Rouge and Louisiana State University, Health Sciences Center, New Orleans, Louisiana
| | - Stefany D Primeaux
- Joint Program on Diabetes, Endocrinology, and Metabolism, Pennington Biomedical Research Center, Baton Rouge and Louisiana State University, Health Sciences Center, New Orleans, Louisiana
| | - Jason Dufour
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, Louisiana; and
| | - Steve Nelson
- Department of Physiology, Louisiana State University, Health Sciences Center, New Orleans, Lousiana; Comprehensive Alcohol Research Center, Louisiana State University, Health Sciences Center, New Orleans, Lousiana; School of Medicine, Louisiana State University, Health Sciences Center, New Orleans, Louisiana
| | - Gregory J Bagby
- Department of Physiology, Louisiana State University, Health Sciences Center, New Orleans, Lousiana; Comprehensive Alcohol Research Center, Louisiana State University, Health Sciences Center, New Orleans, Lousiana; School of Medicine, Louisiana State University, Health Sciences Center, New Orleans, Louisiana
| | - William Cefalu
- Joint Program on Diabetes, Endocrinology, and Metabolism, Pennington Biomedical Research Center, Baton Rouge and Louisiana State University, Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology, Louisiana State University, Health Sciences Center, New Orleans, Lousiana; Comprehensive Alcohol Research Center, Louisiana State University, Health Sciences Center, New Orleans, Lousiana;
| |
Collapse
|