1
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
2
|
Cho I, Chang JB. Simultaneous expansion microscopy imaging of proteins and mRNAs via dual-ExM. Sci Rep 2022; 12:3360. [PMID: 35233025 PMCID: PMC8888644 DOI: 10.1038/s41598-022-06903-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2022] Open
Abstract
Simultaneous nanoscale imaging of mRNAs and proteins of the same specimen can provide better information on the translational regulation, molecular trafficking, and molecular interaction of both normal and diseased biological systems. Expansion microscopy (ExM) is an attractive option to achieve such imaging; however, simultaneous ExM imaging of proteins and mRNAs has not been demonstrated. Here, a technique for simultaneous ExM imaging of proteins and mRNAs in cultured cells and tissue slices, which we termed dual-expansion microscopy (dual-ExM), is demonstrated. First, we verified a protocol for the simultaneous labeling of proteins and mRNAs. Second, we combined the simultaneous labeling protocol with ExM to enable the simultaneous ExM imaging of proteins and mRNAs in cultured cells and mouse brain slices and quantitatively study the degree of signal retention after expansion. After expansion, both proteins and mRNAs can be visualized with a resolution beyond the diffraction limit of light in three dimensions. Dual-ExM is a versatile tool to study complex biological systems, such as the brain or tumor microenvironments, at a nanoscale resolution.
Collapse
Affiliation(s)
- In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
van Asperen JV, Robe PA, Hol EM. GFAP Alternative Splicing and the Relevance for Disease – A Focus on Diffuse Gliomas. ASN Neuro 2022; 14:17590914221102065. [PMID: 35673702 PMCID: PMC9185002 DOI: 10.1177/17590914221102065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is
characteristic for astrocytes and neural stem cells, and their malignant analogues in
glioma. Since the discovery of the protein 50 years ago, multiple alternative splice
variants of the GFAP gene have been discovered, leading to different GFAP isoforms. In
this review, we will describe GFAP isoform expression from gene to protein to network,
taking the canonical isoforms GFAPα and the main alternative variant GFAPδ as the starting
point. We will discuss the relevance of studying GFAP and its isoforms in disease, with a
specific focus on diffuse gliomas.
Collapse
Affiliation(s)
- Jessy V. van Asperen
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Pierre A.J.T. Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Elly M. Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Abstract
Fifty years have passed since the discovery of glial fibrillary acidic protein (GFAP) by Lawrence Eng and colleagues. Now recognized as a member of the intermediate filament family of proteins, it has become a subject for study in fields as diverse as structural biology, cell biology, gene expression, basic neuroscience, clinical genetics and gene therapy. This review covers each of these areas, presenting an overview of current understanding and controversies regarding GFAP with the goal of stimulating continued study of this fascinating protein.
Collapse
Affiliation(s)
- Albee Messing
- Waisman Center, University of Wisconsin-Madison.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham
| |
Collapse
|
5
|
Borodinova AA, Balaban PM, Bezprozvanny IB, Salmina AB, Vlasova OL. Genetic Constructs for the Control of Astrocytes' Activity. Cells 2021; 10:cells10071600. [PMID: 34202359 PMCID: PMC8306323 DOI: 10.3390/cells10071600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
In the current review, we aim to discuss the principles and the perspectives of using the genetic constructs based on AAV vectors to regulate astrocytes’ activity. Practical applications of optogenetic approaches utilizing different genetically encoded opsins to control astroglia activity were evaluated. The diversity of astrocytic cell-types complicates the rational design of an ideal viral vector for particular experimental goals. Therefore, efficient and sufficient targeting of astrocytes is a multiparametric process that requires a combination of specific AAV serotypes naturally predisposed to transduce astroglia with astrocyte-specific promoters in the AAV cassette. Inadequate combinations may result in off-target neuronal transduction to different degrees. Potentially, these constraints may be bypassed with the latest strategies of generating novel synthetic AAV serotypes with specified properties by rational engineering of AAV capsids or using directed evolution approach by searching within a more specific promoter or its replacement with the unique enhancer sequences characterized using modern molecular techniques (ChIP-seq, scATAC-seq, snATAC-seq) to drive the selective transgene expression in the target population of cells or desired brain regions. Realizing these strategies to restrict expression and to efficiently target astrocytic populations in specific brain regions or across the brain has great potential to enable future studies.
Collapse
Affiliation(s)
- Anastasia A. Borodinova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia;
| | - Pavel M. Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia;
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
- Correspondence:
| | - Ilya B. Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Alla B. Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
- Research Institute of Molecular Medicine and Pathobiochemistry, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Research Center of Neurology, 125367 Moscow, Russia
| | - Olga L. Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
| |
Collapse
|
6
|
RNA Localization and Local Translation in Glia in Neurological and Neurodegenerative Diseases: Lessons from Neurons. Cells 2021; 10:cells10030632. [PMID: 33809142 PMCID: PMC8000831 DOI: 10.3390/cells10030632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cell polarity is crucial for almost every cell in our body to establish distinct structural and functional domains. Polarized cells have an asymmetrical morphology and therefore their proteins need to be asymmetrically distributed to support their function. Subcellular protein distribution is typically achieved by localization peptides within the protein sequence. However, protein delivery to distinct cellular compartments can rely, not only on the transport of the protein itself but also on the transport of the mRNA that is then translated at target sites. This phenomenon is known as local protein synthesis. Local protein synthesis relies on the transport of mRNAs to subcellular domains and their translation to proteins at target sites by the also localized translation machinery. Neurons and glia specially depend upon the accurate subcellular distribution of their proteome to fulfil their polarized functions. In this sense, local protein synthesis has revealed itself as a crucial mechanism that regulates proper protein homeostasis in subcellular compartments. Thus, deregulation of mRNA transport and/or of localized translation can lead to neurological and neurodegenerative diseases. Local translation has been more extensively studied in neurons than in glia. In this review article, we will summarize the state-of-the art research on local protein synthesis in neuronal function and dysfunction, and we will discuss the possibility that local translation in glia and deregulation thereof contributes to neurological and neurodegenerative diseases.
Collapse
|
7
|
Mazaré N, Oudart M, Cohen-Salmon M. Local translation in perisynaptic and perivascular astrocytic processes - a means to ensure astrocyte molecular and functional polarity? J Cell Sci 2021; 134:237323. [PMID: 33483366 DOI: 10.1242/jcs.251629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Together with the compartmentalization of mRNAs in distal regions of the cytoplasm, local translation constitutes a prominent and evolutionarily conserved mechanism mediating cellular polarization and the regulation of protein delivery in space and time. The translational regulation of gene expression enables a rapid response to stimuli or to a change in the environment, since the use of pre-existing mRNAs can bypass time-consuming nuclear control mechanisms. In the brain, the translation of distally localized mRNAs has been mainly studied in neurons, whose cytoplasmic protrusions may be more than 1000 times longer than the diameter of the cell body. Importantly, alterations in local translation in neurons have been implicated in several neurological diseases. Astrocytes, the most abundant glial cells in the brain, are voluminous, highly ramified cells that project long processes to neurons and brain vessels, and dynamically regulate distal synaptic and vascular functions. Recent research has demonstrated the presence of local translation at these astrocytic interfaces that might regulate the functional compartmentalization of astrocytes. In this Review, we summarize our current knowledge about the localization and local translation of mRNAs in the distal perisynaptic and perivascular processes of astrocytes, and discuss their possible contribution to the molecular and functional polarity of astrocytes.
Collapse
Affiliation(s)
- Noémie Mazaré
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, F-75005 Paris, France.,École doctorale Cerveau Cognition Comportement 'ED3C' No. 158, Pierre and Marie Curie University, F-75005 Paris, France
| | - Marc Oudart
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, F-75005 Paris, France.,École doctorale Cerveau Cognition Comportement 'ED3C' No. 158, Pierre and Marie Curie University, F-75005 Paris, France
| | - Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, F-75005 Paris, France .,École doctorale Cerveau Cognition Comportement 'ED3C' No. 158, Pierre and Marie Curie University, F-75005 Paris, France
| |
Collapse
|
8
|
Brenner M, Messing A. Regulation of GFAP Expression. ASN Neuro 2021; 13:1759091420981206. [PMID: 33601918 PMCID: PMC7897836 DOI: 10.1177/1759091420981206] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Expression of the GFAP gene has attracted considerable attention because its onset is a marker for astrocyte development, its upregulation is a marker for reactive gliosis, and its predominance in astrocytes provides a tool for their genetic manipulation. The literature on GFAP regulation is voluminous, as almost any perturbation of development or homeostasis in the CNS will lead to changes in its expression. In this review, we limit our discussion to mechanisms proposed to regulate GFAP synthesis through a direct interaction with its gene or mRNA. Strengths and weaknesses of the supportive experimental findings are described, and suggestions made for additional studies. This review covers 15 transcription factors, DNA and histone methylation, and microRNAs. The complexity involved in regulating the expression of this intermediate filament protein suggests that GFAP function may vary among both astrocyte subtypes and other GFAP-expressing cells, as well as during development and in response to perturbations.
Collapse
Affiliation(s)
- Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
9
|
Bozic I, Savic D, Lavrnja I. Astrocyte phenotypes: Emphasis on potential markers in neuroinflammation. Histol Histopathol 2020; 36:267-290. [PMID: 33226087 DOI: 10.14670/hh-18-284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes, the most abundant glial cells in the central nervous system (CNS), have numerous integral roles in all CNS functions. They are essential for synaptic transmission and support neurons by providing metabolic substrates, secreting growth factors and regulating extracellular concentrations of ions and neurotransmitters. Astrocytes respond to CNS insults through reactive astrogliosis, in which they go through many functional and molecular changes. In neuroinflammatory conditions reactive astrocytes exert both beneficial and detrimental functions, depending on the context and heterogeneity of astrocytic populations. In this review we profile astrocytic diversity in the context of neuroinflammation; with a specific focus on multiple sclerosis (MS) and its best-described animal model experimental autoimmune encephalomyelitis (EAE). We characterize two main subtypes, protoplasmic and fibrous astrocytes and describe the role of intermediate filaments in the physiology and pathology of these cells. Additionally, we outline a variety of markers that are emerging as important in investigating astrocytic biology in both physiological conditions and neuroinflammation.
Collapse
Affiliation(s)
- Iva Bozic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
10
|
Ghosh AK, Rao VR, Wisniewski VJ, Zigrossi AD, Floss J, Koulen P, Stubbs EB, Kaja S. Differential Activation of Glioprotective Intracellular Signaling Pathways in Primary Optic Nerve Head Astrocytes after Treatment with Different Classes of Antioxidants. Antioxidants (Basel) 2020; 9:antiox9040324. [PMID: 32316287 PMCID: PMC7222350 DOI: 10.3390/antiox9040324] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/03/2023] Open
Abstract
Optic nerve head astrocytes are the specialized glia cells that provide structural and trophic support to the optic nerve head. In response to cellular injury, optic nerve head astrocytes undergo reactive astrocytosis, the process of cellular activation associated with cytoskeletal remodeling, increases in the rate of proliferation and motility, and the generation of Reactive Oxygen Species. Antioxidant intervention has previously been proposed as a therapeutic approach for glaucomatous optic neuropathy, however, little is known regarding the response of optic nerve head astrocytes to antioxidants under physiological versus pathological conditions. The goal of this study was to determine the effects of three different antioxidants, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin (Mn-TM-2-PyP), resveratrol and xanthohumol in primary optic nerve head astrocytes. Effects on the expression of the master regulator nuclear factor erythroid 2-related factor 2 (Nrf2), the antioxidant enzyme, manganese-dependent superoxide dismutase 2 (SOD2), and the pro-oxidant enzyme, nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), were determined by quantitative immunoblotting. Furthermore, efficacy in preventing chemically and reactive astrocytosis-induced increases in cellular oxidative stress was quantified using cell viability assays. The results were compared to the effects of the prototypic antioxidant, Trolox. Antioxidants elicited highly differential changes in the expression levels of Nrf2, SOD2, and NOX4. Notably, Mn-TM-2-PyP increased SOD2 expression eight-fold, while resveratrol increased Nrf2 expression three-fold. In contrast, xanthohumol exerted no statistically significant changes in expression levels. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) uptake and lactate dehydrogenase (LDH) release assays were performed to assess cell viability after chemically and reactive astrocytosis-induced oxidative stress. Mn-TM-2-PyP exerted the most potent glioprotection by fully preventing the loss of cell viability, whereas resveratrol and xanthohumol partially restored cell viability. Our data provide the first evidence for a well-developed antioxidant defense system in optic nerve head astrocytes, which can be pharmacologically targeted by different classes of antioxidants.
Collapse
Affiliation(s)
- Anita K. Ghosh
- Graduate Program in Biochemistry and Molecular Biology, Loyola University Chicago, Health Sciences Campus, Maywood, IL 60153, USA
- Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL 60141, USA
| | - Vidhya R. Rao
- Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL 60141, USA
- Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Victoria J. Wisniewski
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Alexandra D. Zigrossi
- Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Jamie Floss
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Peter Koulen
- Department of Ophthalmology and Biomedical Sciences, Vision Research Center, University of Missouri—Kansas City, School of Medicine, Vision Research Center, Kansas City, MO 64108, USA
| | - Evan B Stubbs
- Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL 60141, USA
- Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Simon Kaja
- Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL 60141, USA
- Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
- Correspondence: ; Tel.: +1-708-216-9223
| |
Collapse
|
11
|
Oudart M, Tortuyaux R, Mailly P, Mazaré N, Boulay AC, Cohen-Salmon M. AstroDot - a new method for studying the spatial distribution of mRNA in astrocytes. J Cell Sci 2020; 133:jcs239756. [PMID: 32079659 DOI: 10.1242/jcs.239756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/09/2020] [Indexed: 08/31/2023] Open
Abstract
Astrocytes are morphologically complex and use local translation to regulate distal functions. To study the distribution of mRNA in astrocytes, we combined mRNA detection via in situ hybridization with immunostaining of the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP). mRNAs at the level of GFAP-immunolabelled astrocyte somata, and large and fine processes were analysed using AstroDot, an ImageJ plug-in and the R package AstroStat. Taking the characterization of mRNAs encoding GFAP-α and GFAP-δ isoforms as a proof of concept, we showed that they mainly localized on GFAP processes. In the APPswe/PS1dE9 mouse model of Alzheimer's disease, the density and distribution of both α and δ forms of Gfap mRNA changed as a function of the region of the hippocampus and the astrocyte's proximity to amyloid plaques. To validate our method, we confirmed that the ubiquitous Rpl4 (large subunit ribosomal protein 4) mRNA was present in astrocyte processes as well as in microglia processes immunolabelled for ionized calcium binding adaptor molecule 1 (Iba1; also known as IAF1). In summary, this novel set of tools allows the characterization of mRNA distribution in astrocytes and microglia in physiological or pathological settings.
Collapse
Affiliation(s)
- Marc Oudart
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris 75005, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris 75005, France
| | - Romain Tortuyaux
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris 75005, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris 75005, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris 75005, France
- Orion Imaging Facility, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris 75005, France
| | - Noémie Mazaré
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris 75005, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris 75005, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris 75005, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris 75005, France
| | - Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris 75005, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris 75005, France
| |
Collapse
|
12
|
Danielsson A, Barreau K, Kling T, Tisell M, Carén H. Accumulation of DNA methylation alterations in paediatric glioma stem cells following fractionated dose irradiation. Clin Epigenetics 2020; 12:26. [PMID: 32046773 PMCID: PMC7014676 DOI: 10.1186/s13148-020-0817-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Radiation is an important therapeutic tool. However, radiotherapy has the potential to promote co-evolution of genetic and epigenetic changes that can drive tumour heterogeneity, formation of radioresistant cells and tumour relapse. There is a clinical need for a better understanding of DNA methylation alterations that may follow radiotherapy to be able to prevent the development of radiation-resistant cells. METHODS We examined radiation-induced changes in DNA methylation profiles of paediatric glioma stem cells (GSCs) in vitro. Five GSC cultures were irradiated in vitro with repeated doses of 2 or 4 Gy. Radiation was given in 3 or 15 fractions. DNA methylation profiling using Illumina DNA methylation arrays was performed at 14 days post-radiation. The cellular characteristics were studied in parallel. RESULTS Few fractions of radiation did not result in significant accumulation of DNA methylation alterations. However, extended dose fractionations changed DNA methylation profiles and induced thousands of differentially methylated positions, specifically in enhancer regions, sites involved in alternative splicing and in repetitive regions. Radiation induced dose-dependent morphological and proliferative alterations of the cells as a consequence of the radiation exposure. CONCLUSIONS DNA methylation alterations of sites with regulatory functions in proliferation and differentiation were identified, which may reflect cellular response to radiation stress through epigenetic reprogramming and differentiation cues.
Collapse
Affiliation(s)
- Anna Danielsson
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Kristell Barreau
- Sahlgrenska Cancer Center, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Teresia Kling
- Sahlgrenska Cancer Center, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Tisell
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Cancer Center, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
Lye JJ, Latorre E, Lee BP, Bandinelli S, Holley JE, Gutowski NJ, Ferrucci L, Harries LW. Astrocyte senescence may drive alterations in GFAPα, CDKN2A p14 ARF, and TAU3 transcript expression and contribute to cognitive decline. GeroScience 2019; 41:561-573. [PMID: 31654269 PMCID: PMC6885035 DOI: 10.1007/s11357-019-00100-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
The accumulation of senescent cells in tissues is causally linked to the development of several age-related diseases; the removal of senescent glial cells in animal models prevents Tau accumulation and cognitive decline. Senescent cells can arise through several distinct mechanisms; one such mechanism is dysregulation of alternative splicing. In this study, we characterised the senescent cell phenotype in primary human astrocytes in terms of SA-β-Gal staining and SASP secretion, and then assessed splicing factor expression and candidate gene splicing patterns. Finally, we assessed associations between expression of dysregulated isoforms and premature cognitive decline in 197 samples from the InCHIANTI study of ageing, where expression was present in both blood and brain. We demonstrate here that senescent astrocytes secrete a modified SASP characterised by increased IL8, MMP3, MMP10, and TIMP2 but decreased IL10 levels. We identified significant changes in splicing factor expression for 10/20 splicing factors tested in senescent astrocytes compared with early passage cells, as well as dysregulation of isoform levels for 8/13 brain or senescence genes tested. Finally, associations were identified between peripheral blood GFAPα, TAU3, and CDKN2A (P14ARF) isoform levels and mild or severe cognitive decline over a 3–7-year period. Our data are suggestive that some of the features of cognitive decline may arise from dysregulated splicing of important genes in senescent brain support cells, and that defects in alternative splicing or splicing regulator expression deserve exploration as points of therapeutic intervention in the future.
Collapse
Affiliation(s)
- Jed J Lye
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, EX2 5DW, UK
| | - Eva Latorre
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, EX2 5DW, UK
| | - Ben P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, EX2 5DW, UK
| | | | - Janet E Holley
- University of Exeter Medical School & Neurology Department, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, UK
| | - Nicholas J Gutowski
- University of Exeter Medical School & Neurology Department, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, UK
| | - Luigi Ferrucci
- National Institute on Aging, Clinical Research Branch, Harbor Hospital, Baltimore, MD, 21225, USA
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, EX2 5DW, UK.
| |
Collapse
|
14
|
Kirici M, Nedzvetsky VS, Agca CA, Gasso VY. Sublethal doses of copper sulphate initiate deregulation of glial cytoskeleton, NF-kB and PARP expression in Capoeta umbla brain tissue. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Copper sulphate pentahydrate (CuSO4∙5H2O) is widely used as a pesticide not only in agricultural but in aquaculture farming as well. Copper sulphate is a cheap chemical and able to contaminate the environment, especially water sources, which is crucial for fish harvesting and farming. The copper contamination in some areas is caused over decades because this pesticide has long been used everywhere. Copper ions inhibit invasive aquatic plants and many microorganisms but contaminate soil and natural water resources. The family of copper-containing chemicals is frequently used as algaecides in swimming pools. Despite the high toxicity of copper ions for fish in freshwater ponds, copper sulphate remains one of the prevalent pesticides in fish farming everywhere. High cytotoxicity and accumulation of the copper ions in sediments require study and calculation of the optimal dosage for its use as an antiseptic agent which will not have a detrimental effect on various tissue types of aquatic organisms. The main recognized mechanism which accompanies the toxic effect of copper ions is the generation of oxidative stress. Neural tissue cells are extremely susceptible to oxidative damage and the functions of the CNS are critical to the vitality of organisms. Glial cells maintain the structure and many vital functions of neurons. The cytoskeleton glial fibrillary acidic protein (GFAP), transcriptional nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and Poly(ADP-ribose) polymerase (PARP) are critical participants in a cellular response to a toxic agent impact. As this takes place, it could be applied in biomarking of heavy metal toxicity. In the presented study, we investigated the effects of copper ions on PARP, NF-kB, and GFAP expression in the Tigris scraper Capoeta umbla brain tissue. For 96 hours the fish were exposed to copper sulphate at sublethal concentrations, namely 1/2, 1/4 and 1/8 of the LD50 value. Western blot analysis of GFAP and PARP was used to assess further effects in the brain tissue. Every studied dose of copper significantly downregulated the expression of GFAP after 72 hours of treatment. In spite of the common increment in the GFAP content, 48 hours exposure to copper initiated the upregulation of that cytoskeleton marker. Moreover, treatment with copper sulphate induced several changes in the β-actin level, especially in the fish group treated for 72 hours. The observed effect of copper in the fish brain evidences the unspecific toxic effect of the copper ions in the brain tissue cells. The obtained results demonstrated meaningful disturbance in the expression of transcriptional factor NF-kB in the brain of the fish group exposed to copper. The changes found in the fish brain indicate the dose-dependent effect in a concentration range 185–740 µg/L of copper sulphate during 72 hours. However, the exposure to low dose of copper ions showed no effect in the fish group treated for 24 hours. Comparative analyses of the PARP content in the brain of fish exposed to copper for 72 hours was significantly less than in the groups treated with copper for both 24 and 48 hours. Thus, the copper ions in the dose range 185–740 µg/L can suppress PARP expression in a time-dependent manner. The results showed that copper ions could induce astroglial response accompanied by modulations of NF-kB and PARP-1 expression. The data obtained in this study suggest that copper sulphate has a significant effect on astrogliosis and DNA damage in the fish brain.
Collapse
|
15
|
Karp N, Lee D, Shickh S, Jenkins ME. c.1289G>A (p.Arg430His) variant in the epsilon isoform of the GFAP gene in a patient with adult onset Alexander disease. Eur J Med Genet 2018; 62:235-238. [PMID: 30048824 DOI: 10.1016/j.ejmg.2018.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/07/2018] [Accepted: 07/22/2018] [Indexed: 12/30/2022]
Abstract
Alexander disease (AD) is a rare form of leukodystrophy caused by pathogenic variants in the GFAP gene. In young children the condition is fatal, while adults have variable neurological symptoms and prognosis. On magnetic resonance imaging, a pattern of atrophy of the medulla oblongata and cervical spinal cord with a 'tadpole' appearance is highly suggestive of adult-onset Alexander disease (AOAD). GFAP gene sequencing is used to confirm the diagnosis. Pre-mRNA of this gene undergoes alternative splicing resulting in formation of at least 8 different protein isoforms. Most patients with AD described to date have a pathogenic variant in the coding sequence of the main and the most abundant gene isoform, the GFAPα. Recently, two half-siblings with neurological symptoms and radiological signs of AOAD were reported and were not found to have any pathogenic variants in the GFAPα gene while further genetic testing by next generation sequencing revealed a c.1289G>A (p.Arg430His) variant in the alternative exon 7A of the GFAPε isoform. Here we present a case of another patient with symptoms and brain MRI pattern suggestive of AOAD. Similarly to the previously described patients, this patient did not have any pathogenic variants in the main gene isoform and had the same c.1289G>A (p.Arg430His) variant in the GFAPε. This report contributes to evidence of pathogenicity of the c.1289G>A (p.Arg430His) variant in the GFAPε.
Collapse
|
16
|
Meares GP, Rajbhandari R, Gerigk M, Tien CL, Chang C, Fehling SC, Rowse A, Mulhern KC, Nair S, Gray GK, Berbari NF, Bredel M, Benveniste EN, Nozell SE. MicroRNA-31 is required for astrocyte specification. Glia 2018; 66:987-998. [PMID: 29380422 DOI: 10.1002/glia.23296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/30/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Previously, we determined microRNA-31 (miR-31) is a noncoding tumor suppressive gene frequently deleted in glioblastoma (GBM); miR-31 suppresses tumor growth, in part, by limiting the activity of NF-κB. Herein, we expand our previous studies by characterizing the role of miR-31 during neural precursor cell (NPC) to astrocyte differentiation. We demonstrate that miR-31 expression and activity is suppressed in NPCs by stem cell factors such as Lin28, c-Myc, SOX2 and Oct4. However, during astrocytogenesis, miR-31 is induced by STAT3 and SMAD1/5/8, which mediate astrocyte differentiation. We determined miR-31 is required for terminal astrocyte differentiation, and that the loss of miR-31 impairs this process and/or prevents astrocyte maturation. We demonstrate that miR-31 promotes astrocyte development, in part, by reducing the levels of Lin28, a stem cell factor implicated in NPC renewal. These data suggest that miR-31 deletions may disrupt astrocyte development and/or homeostasis.
Collapse
Affiliation(s)
- Gordon P Meares
- Departments of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, 26506
| | - Rajani Rajbhandari
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Magda Gerigk
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Chih-Liang Tien
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Chenbei Chang
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Samuel C Fehling
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Amber Rowse
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Kayln C Mulhern
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Sindhu Nair
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - G Kenneth Gray
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Nicolas F Berbari
- Departments of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202
| | - Markus Bredel
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Etty N Benveniste
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Susan E Nozell
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| |
Collapse
|
17
|
|
18
|
Abstract
A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization.
Collapse
|
19
|
Guillot F, Garcia A, Salou M, Brouard S, Laplaud DA, Nicot AB. Transcript analysis of laser capture microdissected white matter astrocytes and higher phenol sulfotransferase 1A1 expression during autoimmune neuroinflammation. J Neuroinflammation 2015; 12:130. [PMID: 26141738 PMCID: PMC4501186 DOI: 10.1186/s12974-015-0348-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 06/04/2015] [Indexed: 11/17/2022] Open
Abstract
Background Astrocytes, the most abundant cell population in mammal central nervous system (CNS), contribute to a variety of functions including homeostasis, metabolism, synapse formation, and myelin maintenance. White matter (WM) reactive astrocytes are important players in amplifying autoimmune demyelination and may exhibit different changes in transcriptome profiles and cell function in a disease-context dependent manner. However, their transcriptomic profile has not yet been defined because they are difficult to purify, compared to gray matter astrocytes. Here, we isolated WM astrocytes by laser capture microdissection (LCM) in a murine model of multiple sclerosis to better define their molecular profile focusing on selected genes related to inflammation. Based on previous data indicating anti-inflammatory effects of estrogen only at high nanomolar doses, we also examined mRNA expression for enzymes involved in steroid inactivation. Methods Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL6 mice with MOG35–55 immunization. Fluorescence activated cell sorting (FACS) analysis of a portion of individual spinal cords at peak disease was used to assess the composition of immune cell infiltrates. Using custom Taqman low-density-array (TLDA), we analyzed mRNA expression of 40 selected genes from immuno-labeled laser-microdissected WM astrocytes from lumbar spinal cord sections of EAE and control mice. Immunohistochemistry and double immunofluorescence on control and EAE mouse spinal cord sections were used to confirm protein expression in astrocytes. Results The spinal cords of EAE mice were infiltrated mostly by effector/memory T CD4+ cells and macrophages. TLDA-based profiling of LCM-astrocytes identified EAE-induced gene expression of cytokines and chemokines as well as inflammatory mediators recently described in gray matter reactive astrocytes in other murine CNS disease models. Strikingly, SULT1A1, but not other members of the sulfotransferase family, was expressed in WM spinal cord astrocytes. Moreover, its expression was further increased in EAE. Immunohistochemistry on spinal cord tissues confirmed preferential expression of this enzyme in WM astrocytic processes but not in gray matter astrocytes. Conclusions We described here for the first time the mRNA expression of several genes in WM astrocytes in a mouse model of multiple sclerosis. Besides expected pro-inflammatory chemokines and specific inflammatory mediators increased during EAE, we evidenced relative high astrocytic expression of the cytoplasmic enzyme SULT1A1. As the sulfonation activity of SULT1A1 inactivates estradiol among other phenolic substrates, its high astrocytic expression may account for the relative resistance of this cell population to the anti-neuroinflammatory effects of estradiol. Blocking the activity of this enzyme during neuroinflammation may thus help the injured CNS to maintain the anti-inflammatory activity of endogenous estrogens or limit the dose of estrogen co-regimens for therapeutical purposes. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0348-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flora Guillot
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France.
| | - Alexandra Garcia
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,CESTI/ITUN, CHU de Nantes, Nantes, France.
| | - Marion Salou
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France.
| | - Sophie Brouard
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France. .,CESTI/ITUN, CHU de Nantes, Nantes, France.
| | - David A Laplaud
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France. .,Service de Neurologie, CHU de Nantes, Nantes, France.
| | - Arnaud B Nicot
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France.
| |
Collapse
|
20
|
Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 2015; 32:121-30. [PMID: 25726916 DOI: 10.1016/j.ceb.2015.02.004] [Citation(s) in RCA: 548] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 01/14/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a reactive phenotype in acute CNS trauma, ischemia, and in neurodegenerative diseases. This coincides with an upregulation and rearrangement of the IFs, which form a highly complex system composed of GFAP (10 isoforms), vimentin, synemin, and nestin. We begin to unravel the function of the IF system of astrocytes and in this review we discuss its role as an important crisis-command center coordinating cell responses in situations connected to cellular stress, which is a central component of many neurological diseases.
Collapse
|
21
|
Petzold A. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease. Brain Res 2015; 1600:17-31. [DOI: 10.1016/j.brainres.2014.12.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/01/2014] [Indexed: 12/20/2022]
|
22
|
Pierozan P, Ferreira F, de Lima BO, Pessoa-Pureur R. Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction. J Neurosci Res 2014; 93:268-84. [DOI: 10.1002/jnr.23494] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 09/14/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Fernanda Ferreira
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Bárbara Ortiz de Lima
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
23
|
Tehrani S, Johnson EC, Cepurna WO, Morrison JC. Astrocyte processes label for filamentous actin and reorient early within the optic nerve head in a rat glaucoma model. Invest Ophthalmol Vis Sci 2014; 55:6945-52. [PMID: 25257054 DOI: 10.1167/iovs.14-14969] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine if astrocyte processes label for actin and to quantify the orientation of astrocytic processes within the optic nerve head (ONH) in a rat glaucoma model. METHODS Chronic intraocular pressure (IOP) elevation was produced by episcleral hypertonic saline injection and tissues were collected after 5 weeks. For comparison, eyes with optic nerve transection were collected at 2 weeks. Fellow eyes served as controls. Axonal degeneration in retrobulbar optic nerves was graded on a scale of 1 to 5. Optic nerve head sections (n ≥ 4 eyes per group) were colabeled with phalloidin (actin marker) and antibodies to astrocytic glial fibrillary acidic protein and aquaporin 4, or axonal tubulin βIII. Confocal microscopy and FIJI software were used to quantify the orientation of actin bundles. RESULTS Control ONHs showed stereotypically arranged actin bundles within astrocyte processes. Optic nerve head actin bundle orientation was nearly perpendicular to axons (82.9° ± 6.3° relative to axonal axis), unlike the retrobulbar optic nerve (45.4° ± 28.7°, P < 0.05). With IOP elevation, ONH actin bundle orientation became less perpendicular to axons, even in eyes with no perceivable axonal injury (i.e., 38.8° ± 15.1° in grade 1, P < 0.05 in comparison to control ONHs). With severe injury, ONH actin bundle orientation became more parallel to the axonal axis (24.1° ± 28.4°, P < 0.05 in comparison to control ONHs). Optic nerve head actin bundle orientation in transected optic nerves was unchanged. CONCLUSIONS Actin labeling identifies fine astrocyte processes within the ONH. Optic nerve head astrocyte process reorientation occurs early in response to elevated IOP.
Collapse
Affiliation(s)
- Shandiz Tehrani
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Elaine C Johnson
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - William O Cepurna
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - John C Morrison
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
24
|
Abstract
Alexander disease (AxD) is a rare neurodegenerative disorder characterized pathologically by the presence of eosinophilic inclusions known as Rosenthal fibers (RFs) within astrocytes, and is caused by dominant mutations in the coding region of the gene encoding glial fibrillary acidic protein (GFAP). GFAP is the major astrocytic intermediate filament, and in AxD patient brain tissue GFAP is a major component of RFs. TAR DNA binding protein of 43 kDa (TDP-43) is the major pathological protein in almost all cases of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and ∼50% of frontotemporal lobar degeneration (FTLD), designated as FTLD-TDP. In ALS and FTLD-TDP, TDP-43 becomes insoluble, ubiquitinated, and pathologically phosphorylated and accumulates in cytoplasmic inclusions in both neurons and glia of affected brain and spinal cord regions. Previously, TDP-43 was detected in RFs of human pilocytic astrocytomas; however, involvement of TDP-43 in AxD has not been determined. Here we show that TDP-43 is present in RFs in AxD patient brains, and that insoluble phosphorylated full-length and high molecular weight TDP-43 accumulates in white matter of such brains. Phosphorylated TDP-43 also accumulates in the detergent-insoluble fraction from affected brain regions of Gfap(R236H/+) knock-in mice, which harbor a GFAP mutation homologous to one that causes AxD in humans, and TDP-43 colocalizes with astrocytic RF pathology in Gfap(R236H/+) mice and transgenic mice overexpressing human wild-type GFAP. These findings suggest common pathogenic mechanisms in ALS, FTLD, and AxD, and this is the first report of TDP-43 involvement in a neurological disorder primarily affecting astrocytes.
Collapse
|
25
|
Zhao H, Luo F, Li H, Zhang L, Yi Y, Wan J. Antinociceptive effect of tetrandrine on LPS-induced hyperalgesia via the inhibition of IKKβ phosphorylation and the COX-2/PGE₂ pathway in mice. PLoS One 2014; 9:e94586. [PMID: 24722146 PMCID: PMC3983227 DOI: 10.1371/journal.pone.0094586] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/17/2014] [Indexed: 11/19/2022] Open
Abstract
Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid that is isolated from the Stephania Tetrandra. It is known to possess anti-inflammatory and immunomodulatory effects. We have shown that TET can effectively suppress the production of bacterial lipopolysaccharide (LPS)-induced inflammatory mediators, including cyclooxygenases (COXs), in macrophages. However, whether TET has an antinociceptive effect on LPS-induced hyperalgesia is unknown. In the present study, we investigated the potential antinociceptive effects of TET and the mechanisms by which it elicits its effects on LPS-induced hyperalgesia. LPS effectively evoked hyperalgesia and induced the production of PGE2 in the sera, brain tissues, and cultured astroglia. TET pretreatment attenuated all of these effects. LPS also activated inhibitor of κB (IκB) kinase β (IKKβ) and its downstream components in the IκB/nuclear factor (NF)-κB signaling pathway, including COX-2; the increase in expression levels of these components was significantly abolished by TET. Furthermore, in primary astroglia, knockdown of IKKβ, but not IKKα, reversed the effects of TET on the LPS-induced increase in IκB phosphorylation, P65 phosphorylation, and COX-2. Our results suggest that TET can effectively exert antinociceptive effects on LPS-induced hyperalgesia in mice by inhibiting IKKβ phosphorylation, which leads to the reduction in the production of important pain mediators, such as PGE2 and COX-2, via the IKKβ/IκB/NF-κB pathway.
Collapse
Affiliation(s)
- Hengguang Zhao
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fuling Luo
- Department of Pharmacy, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Molecular oncology and epigenetics laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongfen Yi
- Department of Pathology, Molecular Medicine and Tumor Center, Chongqing Medical University, Chongqing, China
- * E-mail: (YFY); (JYW)
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
- * E-mail: (YFY); (JYW)
| |
Collapse
|