1
|
Zirmire RK, Saha D, Dey R, Tanimu H, Zaarour R, Bird D, Cherian P, Rana I, Roy N, Sanyal A, Misra N, Jamora C. Bacopa monnieri phytochemicals regulate fibroblast cell migration via modulation of focal adhesions. iScience 2024; 27:109489. [PMID: 38558933 PMCID: PMC10981128 DOI: 10.1016/j.isci.2024.109489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/03/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The Bacopa monnieri plant contains phytochemicals that have been used extensively in traditional medicine to treat various diseases. More recently it has been shown to accelerate wound healing, though its mechanism of action is largely unknown. Here we investigated the cellular pathways activated by a methanol extract of Bacopa monnieri in human dermal fibroblasts, which play many critical roles in the wound healing program. Gene expression analysis revealed that the Bacopa monnieri extract can modulate multiple processes involved in the wound healing program such as migration, proliferation, and angiogenesis. We discovered that the extract can increase migration of fibroblasts via modulating the size and number of focal adhesions. Bacopa monnieri-mediated changes in focal adhesions are dependent on α5β1 integrin activation and subsequent phosphorylation of focal adhesion kinase (FAK). Altogether our results suggest that Bacopa monnieri extract could enhance the wound healing rate via modulating fibroblast migration into the wound bed.
Collapse
Affiliation(s)
- Ravindra K. Zirmire
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
- Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu 613401, India
| | - Dyuti Saha
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
- Department of Biology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rakesh Dey
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
| | - Habibu Tanimu
- JAIN (Deemed-to-be University), #44/4, District Fund Road, Jayanagar 9th Block, Bangalore, Karnataka 560069, India
| | - Rania Zaarour
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, UAE
| | - Deborah Bird
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
| | - Prakash Cherian
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
| | - Isha Rana
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
- Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu 613401, India
| | - Nita Roy
- L'Oréal, Research & Innovation, Bengaluru, India
| | | | - Namita Misra
- L’Oréal, Research and Innovation, Aulnay, France
| | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
| |
Collapse
|
2
|
Siwek M, Woroń J, Wrzosek A, Gupało J, Chrobak AA. Harder, better, faster, stronger? Retrospective chart review of adverse events of interactions between adaptogens and antidepressant drugs. Front Pharmacol 2023; 14:1271776. [PMID: 37829299 PMCID: PMC10565488 DOI: 10.3389/fphar.2023.1271776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Aim: We aimed to systematically evaluate the prevalence and clinical characteristics of adverse events associated with the adaptogens and antidepressant drug interactions in a retrospective chart review. Methodology: A total of 1,816 reports of adverse events were evaluated. Cases were included in the analysis if the pharmacoepidemiological analysis showed the presence of a high probability of a causal relationship between an adaptogen and antidepressant interaction and the occurrence of adverse events. The following data were extracted from the reports: age, sex, antidepressant, plant products containing adaptogens, other concomitant medications, and clinical consequences of the interactions and their possible mechanisms. Results: Adaptogens were involved in 9% of adverse events associated with the concomitant use of antidepressants and other preparations. We identified 30 reports in which side effects presented a causal relationship with the use of antidepressants and adaptogens. Here, we present the list of adaptogens with the corresponding antidepressants and the side effects caused by their interactions: Withania somnifera: reboxetine (testicle pain and ejaculatory dysfunctions), sertraline (severe diarrhea), escitalopram (myalgia, epigastric pain, nausea, vomiting, restless legs syndrome, and severe cough), and paroxetine (generalized myalgia, ophthalmalgia, and ocular hypertension); Eleutherococcus senticosus: duloxetine (upper gastrointestinal bleeding), paroxetine (epistaxis), sertraline (vaginal hemorrhage), and agomelatine (irritability, agitation, headache, and dizziness); Schisandra chinensis: bupropion (arthralgia and thrombocytopenia), amitriptyline (delirium), and fluoxetine (dysuria); Tribulus terrestris: citalopram (generalized pruritus), escitalopram (galactorrhea), and trazodone (psoriasis relapse); Coptis chinensis: mianserin (arrhythmias), mirtazapine (edema of lower limbs and myalgia), and fluoxetine (gynecomastia); Cimicifuga racemosa: mianserin (restless legs syndrome), paroxetine (gynecomastia and mastalgia), and venlafaxine (hyponatremia); Bacopa monnieri: agomelatine (back pain and hyperhidrosis) and moclobemide (myocardial infarction); Gynostemma pentaphyllum: duloxetine (back pain); Cordyceps sinensis: sertraline (upper gastrointestinal bleeding); Lepidium meyenii: mianserin (restless legs syndrome); and Scutellaria baicalensis: bupropion (seizures). Conclusion: Clinicians should monitor the adverse events associated with the concomitant use of adaptogens and antidepressant drugs in patients with mental disorders. Aggregation of side effects and pharmacokinetic interactions (inhibition of CYP and p-glycoprotein) between those medicines may result in clinically significant adverse events.
Collapse
Affiliation(s)
- Marcin Siwek
- Department of Affective Disorders, Chair of Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| | - Jarosław Woroń
- Department of Clinical Pharmacology, Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Department of Anesthesiology and Intensive Care, University Hospital in Cracow, Kraków, Poland
- University Center for Monitoring and Research on Adverse Drug Effects in Krakow, Kraków, Poland
| | - Anna Wrzosek
- Department of Anesthesiology and Intensive Care, University Hospital in Cracow, Kraków, Poland
- Department of Interdisciplinary Intensive Care, Jagiellonian University, Krakow, Poland
| | - Jarosław Gupało
- Pharma Consult, Pharmacotherapy Safety Team, Zakopane, Poland
| | - Adrian Andrzej Chrobak
- Department of Adult Psychiatry, Chair of Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
3
|
Narayanan VA, Sharma A, S. RK, R. AT, P. GM, S. P, John A. Bilosomes as a Potential Carrier to Enhance Cognitive Effects of Bacopa monnieri Extract on Oral Administration. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2022. [DOI: 10.1055/s-0042-1757969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe Indian system of medicine, Ayurveda employs Bacopa monnieri extract (BME) for memory enhancement. This study attempts to prepare and test a more potent formulation by incorporating BME in nanovesicles. BME-loaded liposomes and bilosomes (bile salt-stabilized liposomes) were formulated using soy phosphatidylcholine. Liposomes and bilosomes had homogeneous size distribution and an average size of 285.7 nm and 84 nm, respectively, with satisfactory zeta potential. Spherical multilamellar bilosomes and unilamellar liposomes were observed under transmission electron microscope (TEM), with BME entrapment efficiency of 85% and 45%, respectively. During a 72 h interval, bilosomes and liposomes released 78% and 65% of the loaded BME, exhibiting a biphasic release, following the Higuchi model diffusion. Both liposomes and bilosomes were stable in simulated gastric and intestinal fluids. When tested on dementia-induced Swiss albino mouse models using the Y-maze apparatus, the bilosome-treated group showed significant cognition enhancement activity than those treated with liposomal vesicles. The better pharmacological effect shown by bilosomes may be attributed to better bioavailability, possibly augmented by higher entrapment efficiency, and improved vesicle integrity afforded by bile salts. Likewise, bilosomes were more stable than liposomes in simulated gastric and intestinal fluids. Taken together, innovative formulation techniques hold substantial promise for enhancing the ethnopharmacological claims of BME.
Collapse
Affiliation(s)
- V. Anoop Narayanan
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Derlakatte, Mangalore, Karnataka, India
| | - Ankitha Sharma
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Derlakatte, Mangalore, Karnataka, India
| | - Rajesh K. S.
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Derlakatte, Mangalore, Karnataka, India
| | - Arunraj T. R.
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Derlakatte, Mangalore, Karnataka, India
| | - Gururaj M. P.
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Derlakatte, Mangalore, Karnataka, India
| | - Parasuraman S.
- Unit Head, Unit of Pharmacology, Faculty of Pharmacy, AIMST University, Bedong, Malaysia
| | - Anish John
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Derlakatte, Mangalore, Karnataka, India
| |
Collapse
|
4
|
Abdul Manap AS, Vijayabalan S, Madhavan P, Chia YY, Arya A, Wong EH, Rizwan F, Bindal U, Koshy S. Bacopa monnieri, a Neuroprotective Lead in Alzheimer Disease: A Review on Its Properties, Mechanisms of Action, and Preclinical and Clinical Studies. Drug Target Insights 2019; 13:1177392819866412. [PMID: 31391778 PMCID: PMC6669844 DOI: 10.1177/1177392819866412] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 01/24/2023] Open
Abstract
Alzheimer disease is a neurodegenerative disease that is signified by cognitive decline, memory loss, and erratic behavior. Till date, no cure for Alzheimer exists and the current Alzheimer medications have limited effectiveness. However, herbal medicines may slow down the disease’s progression, which may hopefully reduce the number of cases in the years to come. Numerous studies have been done on characterizing the neuroprotective properties from plants belonging to Scrophulariaceae family, particularly Bacopa monnieri and its polyphenolic compounds known as bacosides. This review presents the findings on bacosides in therapeutic plants and their impact on Alzheimer disease pathology. These reports present data on the clinical, cellular activities, phytochemistry, and biological applications that may be used in new drug treatment for Alzheimer disease.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Shantini Vijayabalan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Yoke Yin Chia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Aditya Arya
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Farzana Rizwan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Umesh Bindal
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Shajan Koshy
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
5
|
Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun 2019; 10:89. [PMID: 30626868 PMCID: PMC6327034 DOI: 10.1038/s41467-018-07859-7] [Citation(s) in RCA: 416] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023] Open
Abstract
The importance of gut microbiota in human health and pathophysiology is undisputable. Despite the abundance of metagenomics data, the functional dynamics of gut microbiota in human health and disease remain elusive. Urolithin A (UroA), a major microbial metabolite derived from polyphenolics of berries and pomegranate fruits displays anti-inflammatory, anti-oxidative, and anti-ageing activities. Here, we show that UroA and its potent synthetic analogue (UAS03) significantly enhance gut barrier function and inhibit unwarranted inflammation. We demonstrate that UroA and UAS03 exert their barrier functions through activation of aryl hydrocarbon receptor (AhR)- nuclear factor erythroid 2–related factor 2 (Nrf2)-dependent pathways to upregulate epithelial tight junction proteins. Importantly, treatment with these compounds attenuated colitis in pre-clinical models by remedying barrier dysfunction in addition to anti-inflammatory activities. Cumulatively, the results highlight how microbial metabolites provide two-pronged beneficial activities at gut epithelium by enhancing barrier functions and reducing inflammation to protect from colonic diseases. Urolithins are microbial metabolites derived from food polyphenols. Here, Singh et al. show that urolithin A and a synthetic analogue enhance gut barrier function via Nrf2-dependent pathways and mitigate inflammation and colitis in mice, highlighting a potential application for inflammatory bowel diseases.
Collapse
|
6
|
Khurshid F, Govindasamy J, Khalilullah H, Nomani MS, Shahid M, Ain MR, Alsultan MS. Effect of herb-drug interactions of Bacopa monnieri Linn. (Brahmi) formulation on the pharmacokinetics of amitriptyline in rats. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902017000417072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Kumar D, Trivedi N, Dixit RK. Evaluation of the synergistic effect of Allium sativum, Eugenia jambolana, Momordica charantia, Ocimum sanctum, and Psidium guajava on hepatic and intestinal drug metabolizing enzymes in rats. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:372-382. [PMID: 27757267 PMCID: PMC5061480 DOI: 10.5455/jice.20160723124347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/27/2016] [Indexed: 11/05/2022]
Abstract
Aims/Background: This study was to investigated the synergistic effect of polyherbal formulations (PHF) of Allium sativum L., Eugenia jambolana Lam., Momordica charantia L., Ocimum sanctum Linn., and Psidium guajava L. in the inhibition/induction of hepatic and intestinal cytochrome P450 (CYPs) and Phase-II conjugated drug metabolizing enzymes (DMEs). Consumption of these herbal remedy has been extensively documented for diabetes treatment in Ayurveda. Methodology: PHF of these five herbs was prepared, and different doses were orally administered to Sprague–Dawley rats of different groups except control group. Expression of mRNA and activity of DMEs were examined by real-time polymerase chain reaction and high performance liquid chromatography in isolated liver and intestine microsomes in PHF pretreated rats. Results: The activities of hepatic and intestinal Phase-II enzyme levels increased along with mRNA levels except CYP3A mRNA level. PHF administration increases the activity of hepatic and intestinal UDP-glucuronyltransferase and glutathione S-transferase in response to dose and time; however, the activity of hepatic sulfotransferase increased at higher doses. Conclusions: CYPs and Phase-II conjugated enzymes levels can be modulated in dose and time dependent manner. Observations suggest that polyherbal formulation might be a possible cause of herb-drug interaction, due to changes in pharmacokinetic of crucial CYPs and Phase-II substrate drug.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India; Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Neerja Trivedi
- Center of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - Rakesh K Dixit
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Ramakrishna R, Bhateria M, Singh R, Bhatta RS. Evaluation of the impact of 16-dehydropregnenolone on the activity and expression of rat hepatic cytochrome P450 enzymes. J Steroid Biochem Mol Biol 2016; 163:183-92. [PMID: 27224941 DOI: 10.1016/j.jsbmb.2016.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/13/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
Abstract
16-dehydropregnenolone (DHP) is a promising novel antihyperlipidemic agent developed and patented by Central Drug Research Institute (CDRI), India. The purpose of the present study was to investigate whether DHP influences the activities and mRNA expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C11, CYP2D2, CYP2E1 and CYP3A1) in Sprague-Dawley (SD) rats. A cocktail suspension of CYP probe substrates which contained caffeine (CYP1A2), tolbutamide (CYP2C11), dextromethorphan (CYP2D2), chlorzoxazone (CYP2E1) and dapsone (CYP3A1) was administered orally on eighth- or fifteenth-day to rats pre-treated with DHP intragastrically at a dose of 36 and 72mg/kg for one week and two weeks. The concentrations of probe drugs in plasma were estimated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Alongside, the effect of DHP on CYPs activity and mRNA expression levels were assayed in isolated rat liver microsomes and by real-time reverse transcription-polymerase chain reaction (RT-PCR), respectively. DHP had significant inducing effects on CYP1A2, 2C11, 2D2 and 2E1 with no effect on CYP3A1 in dose- and time-dependent manner, as revealed from the pharmacokinetic profiles of the probe drugs in rats. In-vitro microsomal activities and mRNA expression results were in good agreement with the in-vivo pharmacokinetic results. Collectively, the results unveiled that DHP is an inducer of rat hepatic CYP enzymes. Hence, intense attention should be paid when DHP is co-administered with drugs metabolized by CYP1A2, 2C11, 2D2 and 2E1, which might result in drug-drug interactions and therapeutic failure.
Collapse
Affiliation(s)
- Rachumallu Ramakrishna
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, 110001, India
| | - Manisha Bhateria
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, 110001, India
| | - Rajbir Singh
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Rabi Sankar Bhatta
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, 110001, India.
| |
Collapse
|
9
|
Kumar D, Trivedi N, Dixit RK. Evaluation of the potential effect of Allium sativum, Momordica charantia, Eugenia jambolana, Ocimum sanctum, and Psidium guajava on intestinal p-glycoprotein in rats. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 6:68-74. [PMID: 28163963 PMCID: PMC5289091 DOI: 10.5455/jice.20160902023435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/21/2016] [Indexed: 11/03/2022]
Abstract
AIMS/BACKGROUND This study was evaluated synergistic effect of a polyherbal formulation (PHF) of Allium sativum L., Eugenia jambolana Lam., Momordica charantia L., Ocimum sanctum Linn., and Psidium guajava L. on p-glycoprotein (Pgp) of intestine. These five herbs were traditionally used for diabetes. These herbs are commonly present in Ayurvedic product as antidiabetics in India. MATERIALS AND METHODS PHF was prepared by five indigenous herbs. Different doses (50, 100 and 200 mg/kg/day) of were orally administered to Sprague-Dawley rats of different groups for multiple weeks except control groups. Alteration in Pgp expression was evaluated by real-time-polymerase chain reaction and western blotting while modulation in activity of Pgp was evaluated using rhodamine 123 (Rh123) as transport substrate by in-situ absorption and everted gut sac method. RESULTS In PHF, pretreated group received 50, 100 and 200 mg/kg/day for 7 days, mRNA level decreased by 1.75, 2.45 and 2.37-fold, respectively, as compared to control. Similarly, when PHF at dose of 100 mg/kg/day was given consequently for 4 weeks, maximum decrease in Pgp expression level was observed only after 1 week and further increase in the treatment duration did not produce significant decrease compared to the 1st week treatment. Pgp mediated transport of Rh123 was significantly decreased with everted gut sac prepared from PHF pretreated rats (1 week) compared to those prepared from vehicle treated rats. CONCLUSIONS We report that PHF pretreatment downregulated the expression of intestinal Pgp and this downregulated intestinal Pgp would result in decreased functional activity. In addition, this downregulated Pgp expression might affect the bioavailability of antidiabetic Pgp substrate drugs.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India; Department of Biotechnology, Dr. APJ Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Neerja Trivedi
- Center of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Rakesh K Dixit
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Ramasamy S, Chin SP, Sukumaran SD, Buckle MJC, Kiew LV, Chung LY. In Silico and In Vitro Analysis of Bacoside A Aglycones and Its Derivatives as the Constituents Responsible for the Cognitive Effects of Bacopa monnieri. PLoS One 2015; 10:e0126565. [PMID: 25965066 PMCID: PMC4428790 DOI: 10.1371/journal.pone.0126565] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/03/2015] [Indexed: 12/20/2022] Open
Abstract
Bacopa monnieri has been used in Ayurvedic medicine to improve memory and cognition. The active constituent responsible for its pharmacological effects is bacoside A, a mixture of dammarane-type triterpenoid saponins containing sugar chains linked to a steroid aglycone skeleton. Triterpenoid saponins have been reported to be transformed in vivo to metabolites that give better biological activity and pharmacokinetic characteristics. Thus, the activities of the parent compounds (bacosides), aglycones (jujubogenin and pseudojujubogenin) and their derivatives (ebelin lactone and bacogenin A1) were compared using a combination of in silico and in vitro screening methods. The compounds were docked into 5-HT1A, 5-HT2A, D1, D2, M1 receptors and acetylcholinesterase (AChE) using AutoDock and their central nervous system (CNS) drug-like properties were determined using Discovery Studio molecular properties and ADMET descriptors. The compounds were screened in vitro using radioligand receptor binding and AChE inhibition assays. In silico studies showed that the parent bacosides were not able to dock into the chosen CNS targets and had poor molecular properties as a CNS drug. In contrast, the aglycones and their derivatives showed better binding affinity and good CNS drug-like properties, were well absorbed through the intestines and had good blood brain barrier (BBB) penetration. Among the compounds tested in vitro, ebelin lactone showed binding affinity towards M1 (Ki = 0.45 μM) and 5-HT2A (4.21 μM) receptors. Bacoside A and bacopaside X (9.06 μM) showed binding affinity towards the D1 receptor. None of the compounds showed any inhibitory activity against AChE. Since the stimulation of M1 and 5-HT2A receptors has been implicated in memory and cognition and ebelin lactone was shown to have the strongest binding energy, highest BBB penetration and binding affinity towards M1 and 5-HT2A receptors, we suggest that B. monnieri constituents may be transformed in vivo to the active form before exerting their pharmacological activity.
Collapse
Affiliation(s)
- Seetha Ramasamy
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sri Devi Sukumaran
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Center for Natural Products and Drug Research (CENAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Neilson HK, Conroy SM, Friedenreich CM. The Influence of Energetic Factors on Biomarkers of Postmenopausal Breast Cancer Risk. Curr Nutr Rep 2013; 3:22-34. [PMID: 24563822 PMCID: PMC3921460 DOI: 10.1007/s13668-013-0069-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Strong and consistent evidence exists that physical activity reduces breast cancer risk by 10-25 %, and several proposed biologic mechanisms have now been investigated in randomized, controlled, exercise intervention trials. Leading hypothesized mechanisms relating to postmenopausal breast cancer include adiposity, endogenous sex hormones, insulin resistance, and chronic low-grade inflammation. In addition, other pathways are emerging as potentially important, including those involving oxidative stress and telomere length, global DNA hypomethylation, immune function, and vitamin D exposure. Recent exercise trials in overweight/obese postmenopausal women implicate weight loss as a mechanism whereby exercise induces favorable changes in circulating estradiol levels and other biomarkers as well. Still it is plausible that some exercise-induced biomarker changes do not require loss of body fat, whereas others depend on abdominal fat loss. We highlight the latest findings from randomized, controlled trials of healthy postmenopausal women, relating exercise to proposed biomarkers for postmenopausal breast cancer risk.
Collapse
Affiliation(s)
- Heather K Neilson
- Department of Population Health Research, CancerControl Alberta, Alberta Health Services, Quarry Park, c/o 10101 Southport Rd SW, Calgary, Alberta T2W 3N2 Canada
| | - Shannon M Conroy
- Department of Population Health Research, CancerControl Alberta, Alberta Health Services, Quarry Park, c/o 10101 Southport Rd SW, Calgary, Alberta T2W 3N2 Canada
| | - Christine M Friedenreich
- Department of Population Health Research, CancerControl Alberta, Alberta Health Services, Quarry Park, c/o 10101 Southport Rd SW, Calgary, Alberta T2W 3N2 Canada ; Department of Community Health Sciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N2 Canada ; Department of Oncology, Faculty of Medicine, University of Calgary, 1331 29 St. N.W., Calgary, Alberta T2N 4N2 Canada
| |
Collapse
|