1
|
Sato Y. Effects of hyperbaric oxygen pre-exposure on the motor learning acquisition phase. Behav Brain Res 2025; 476:115243. [PMID: 39278465 DOI: 10.1016/j.bbr.2024.115243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Hyperbaric oxygen (HBO) exposure has recently been reported to be effective in spatial learning and memory. Additionally, HBO exposure considerably improves performance on motor tasks. These findings suggest that HBO exposure may facilitate motor learning. However, the specific effects of HBO exposure on motor learning remain largely unexplored. The present study aimed to investigate the effects of HBO exposure on motor learning tasks. In the experimental animal models (control n = 8, HBO n = 8), the HBO environment was exposed to 100 % oxygen with the chamber at 2.0 atmosphere absolute (ATA) for 90 min/day for 20 days. The motor learning task was an accelerated rotating bar task (bar width, 3 and 6 cm; rotation speed, 4-40 rpm; acceleration, 0.4, 0.6, and 0.8 rpm/s). The learning task was performed for 3 consecutive days. The HBO group showed a main effect of the day factor on the bar with a width of 6 cm, and significant differences were observed for each day comparison. However, no main effect of the day factor was observed in the control group. Additionally, significant differences were found in the bar with a width of 3 cm for both groups between days 1 and 2 and between days 1 and 3. In conclusion, these findings suggest that HBO exposure has a positive effect on more challenging motor learning tasks.
Collapse
Affiliation(s)
- Yamato Sato
- Laboratory of Motor Learning and Motor Control, Faculty of Creative Engineering, Chiba Institute of Technology, Chiba, Japan.
| |
Collapse
|
2
|
Narang BJ, Drole K, Barber JFP, Goods PSR, Debevec T. Utility of hypoxic modalities for musculoskeletal injury rehabilitation in athletes: A narrative review of mechanisms and contemporary perspectives. J Sports Sci 2024:1-14. [PMID: 39448892 DOI: 10.1080/02640414.2024.2416779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Recent evidence suggests that different hypoxic modalities might accelerate the rehabilitation process in injured athletes. In this review, the application of hypoxia during rehabilitation from musculoskeletal injury is explored in relation to two principles: (1) facilitating the healing of damaged tissue, and (2) mitigating detraining and inducing training adaptations with a reduced training load. Key literature that explores the underlying mechanisms for these themes is presented, and considerations for practice and future research directions are outlined. For principle (1), passive intermittent hypoxic exposures might accelerate tissue healing through angiogenic and osteogenic mechanisms. Experimental evidence is largely derived from rodent research, so further work is warranted to establish whether clinically meaningful effects can be observed in humans, before optimal protocols are determined (duration, frequency, and hypoxic severity). Regarding principle (2), a hypoxia-related increase in the cardiometabolic stimulus imposed by low-load exercise is appealing for load-compromised athletes. As rehabilitation progresses, a variety of hypoxic modalities can be implemented to enhance adaptation to energy-systems and resistance-based training, and more efficiently return the athlete to competition readiness. While hypoxic modalities seem promising for accelerating musculoskeletal injury rehabilitation in humans, and are already being widely used in practice, a significant gap remains regarding their evidence-based application.
Collapse
Affiliation(s)
- Benjamin Jonathan Narang
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Kristina Drole
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | | | - Paul S R Goods
- Physical Activity, Sport and Exercise (PHASE) Research Group, School of Allied Health (Exercise Science), Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
3
|
Eldisoky RH, Younes SA, Omar SS, Gharib HS, Tamara TA. Hyperbaric oxygen therapy efficacy on mandibular defect regeneration in rats with diabetes mellitus: an animal study. BMC Oral Health 2023; 23:101. [PMID: 36793042 PMCID: PMC9930221 DOI: 10.1186/s12903-023-02801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND This study aimed to investigate the influence of hyperbaric oxygen therapy on mandibular critical-sized defect regeneration in rats with experimentally induced type I diabetes mellitus. Restoration of large osseous defects in an impaired osteogenic condition such as diabetes mellitus is a challenging task in clinical practice. Therefore, investigating adjunctive therapies to accelerate the regeneration of such defects is crucial. MATERIALS AND METHODS Sixteen albino rats were divided into two groups (n = 8/group). To induce diabetes mellitus, a single streptozotocin dosage was injected. Critical-sized defects were created in the right posterior mandibles and filled with beta-tricalcium phosphate graft. The study group was subjected to 90-min sessions of hyperbaric oxygen at 2.4 ATA, for 5 consecutive days per week. Euthanasia was carried out after 3 weeks of therapy. Bone regeneration was examined histologically and histomorphometrically. Angiogenesis was assessed by immunohistochemistry against vascular endothelial progenitor cell marker (CD34) and the microvessel density was calculated. RESULTS Exposure of diabetic animals to hyperbaric oxygen resulted in superior bone regeneration and increased endothelial cell proliferation, which were revealed histologically and immunohistochemically, respectively. These results were confirmed by histomorphometric analysis which disclosed a higher percentage of new bone surface area and microvessel density in the study group. CONCLUSIONS Hyperbaric oxygen has a beneficial effect on bone regenerative capacity, qualitatively and quantitively, as well as the ability to stimulate angiogenesis.
Collapse
Affiliation(s)
- Rodina H. Eldisoky
- grid.7155.60000 0001 2260 6941Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Salwa A. Younes
- grid.7155.60000 0001 2260 6941Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Samia S. Omar
- grid.7155.60000 0001 2260 6941Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Hagar S. Gharib
- grid.7155.60000 0001 2260 6941Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Tarek A. Tamara
- grid.489816.a0000000404522383Naval Hyperbaric Medical Institute, Military Medical Academy, Alexandria, Egypt
| |
Collapse
|
4
|
Ma Y, Zhong Y, Chen X, Liu H, Shi Y, Zhang X, Sun H. Hyperbaric Oxygen Treatment Ameliorates the Decline in Oocyte Quality and Improves the Fertility of Aged Female Mice. Reprod Sci 2022; 30:1834-1840. [PMID: 36520404 PMCID: PMC9753892 DOI: 10.1007/s43032-022-01082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 12/23/2022]
Abstract
The age-related decay in oocyte quality contributes to the gradual decline in fertility and the final occurrence of natural sterility. In this study, we aimed to investigate the effects of the hyperbaric oxygen treatment (HBOT) on oocyte quality in aging mouse oocyte. Eight- and forty-week-old female C57BL/6 J mice were treated with HBO for 10 days, and the quality of oocytes was analyzed. The results revealed that HBOT improved the age-related serum AMH levels. While compared with untreated aged mice, HBOT showed reduced follicular apoptosis and improved oocyte maturation, fertilization, and blastocyst formation in aged mice. HBO triggered changes in the microRNA expression in the ovaries of aged mice. In this study, 27 DEGs were identified in the HBOT mouse ovarian tissues, of which 9 were upregulated and 18 were downregulated. Notably, KEGG analysis revealed that these genes involved in different biological processes differed significantly in the ovary. Among these, the PI3K-Akt signaling was the most prominent pathway that controlled the recruitment and growth of primordial follicles. The calcium signaling pathway was found to be involved during the peri-implantation period. These results suggest that HBOT can be applied to improve the quality of oocytes, and it could be a potential clinical application to improve the fertility of aged female.
Collapse
Affiliation(s)
- Yang Ma
- Department of Reproductive Center, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, No. 68 Gehu Road, Changzhou, 213003 Jiangsu China
| | - Yanyu Zhong
- Department of Reproductive Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu China
| | - Xia Chen
- Department of Reproductive Center, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, No. 68 Gehu Road, Changzhou, 213003 Jiangsu China
| | - Huijun Liu
- Department of Reproductive Center, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, No. 68 Gehu Road, Changzhou, 213003 Jiangsu China
| | - Yichao Shi
- Department of Reproductive Center, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, No. 68 Gehu Road, Changzhou, 213003 Jiangsu China
| | - Xiuwen Zhang
- Department of Reproductive Center, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, No. 68 Gehu Road, Changzhou, 213003 Jiangsu China
| | - Huiting Sun
- Department of Reproductive Center, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, No. 68 Gehu Road, Changzhou, 213003 Jiangsu China
| |
Collapse
|
5
|
Farris AL, Lambrechts D, Zhou Y, Zhang NY, Sarkar N, Moorer MC, Rindone AN, Nyberg EL, Perdomo-Pantoja A, Burris SJ, Free K, Witham TF, Riddle RC, Grayson WL. 3D-printed oxygen-releasing scaffolds improve bone regeneration in mice. Biomaterials 2022; 280:121318. [PMID: 34922272 PMCID: PMC8918039 DOI: 10.1016/j.biomaterials.2021.121318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/06/2021] [Accepted: 12/08/2021] [Indexed: 01/03/2023]
Abstract
Low oxygen (O2) diffusion into large tissue engineered scaffolds hinders the therapeutic efficacy of transplanted cells. To overcome this, we previously studied hollow, hyperbarically-loaded microtanks (μtanks) to serve as O2 reservoirs. To adapt these for bone regeneration, we fabricated biodegradable μtanks from polyvinyl alcohol and poly (lactic-co-glycolic acid) and embedded them to form 3D-printed, porous poly-ε-caprolactone (PCL)-μtank scaffolds. PCL-μtank scaffolds were loaded with pure O2 at 300-500 psi. When placed at atmospheric pressures, the scaffolds released O2 over a period of up to 8 h. We confirmed the inhibitory effects of hypoxia on the osteogenic differentiation of human adipose-derived stem cells (hASCs and we validated that μtank-mediated transient hyperoxia had no toxic impacts on hASCs, possibly due to upregulation of endogenous antioxidant regulator genes. We assessed bone regeneration in vivo by implanting O2-loaded, hASC-seeded, PCL-μtank scaffolds into murine calvarial defects (4 mm diameters × 0.6 mm height) and subcutaneously (4 mm diameter × 8 mm height). In both cases we observed increased deposition of extracellular matrix in the O2 delivery group along with greater osteopontin coverages and higher mineral deposition. This study provides evidence that even short-term O2 delivery from PCL-μtank scaffolds may enhance hASC-mediated bone tissue regeneration.
Collapse
Affiliation(s)
- Ashley L. Farris
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dennis Lambrechts
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuxiao Zhou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Y. Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Naboneeta Sarkar
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Megan C. Moorer
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD,Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Alexandra N. Rindone
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan L. Nyberg
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - S. J. Burris
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kendall Free
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Timothy F. Witham
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan C. Riddle
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD,Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Warren L. Grayson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD,Corresponding author:
| |
Collapse
|
6
|
Horiike M, Ogawa Y, Kawada S. Effects of hyperoxia and hypoxia on the proliferation of C2C12 myoblasts. Am J Physiol Regul Integr Comp Physiol 2021; 321:R572-R587. [PMID: 34431403 DOI: 10.1152/ajpregu.00269.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hyperoxic conditions are known to accelerate skeletal muscle regeneration after injuries. In the early phase of regeneration, macrophages invade the injured area and subsequently secrete various growth factors, which regulate myoblast proliferation and differentiation. Although hyperoxic conditions accelerate muscle regeneration, it is unknown whether this effect is indirectly mediated by macrophages. Here, using C2C12 cells, we show that not only hyperoxia but also hypoxia enhance myoblast proliferation directly, without accelerating differentiation into myotubes. Under hyperoxic conditions (95% O2 + 5% CO2), the cell membrane was damaged because of lipid oxidization, and a disrupted cytoskeletal structure, resulting in suppressed cell proliferation. However, a culture medium containing vitamin C (VC), an antioxidant, prevented this lipid oxidization and cytoskeletal disruption, resulting in enhanced proliferation in response to hyperoxia exposure of ≤4 h/day. In contrast, exposure to hypoxic conditions (95% N2 + 5% CO2) for ≤8 h/day enhanced cell proliferation. Hyperoxia did not promote cell differentiation into myotubes, regardless of whether the culture medium contained VC. Similarly, hypoxia did not accelerate cell differentiation. These results suggest that regardless of hyperoxia or hypoxia, changes in oxygen tension can enhance cell proliferation directly, but do not influence differentiation efficiency in C2C12 cells. Moreover, excess oxidative stress abrogated the enhancement of myoblast proliferation induced by hyperoxia. This research will contribute to basic data for applying the effects of hyperoxia or hypoxia to muscle regeneration therapy.
Collapse
Affiliation(s)
- Misa Horiike
- Department of Sport and Medical Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yoshiko Ogawa
- Department of Sport and Medical Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Shigeo Kawada
- Department of Sport and Medical Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
7
|
Hyperbaric Oxygen Exposure Attenuates Circulating Stress Biomarkers: A Pilot Interventional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217853. [PMID: 33120884 PMCID: PMC7663415 DOI: 10.3390/ijerph17217853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Hyperbaric oxygen therapy (HBOT) has been used to provide oxygen to underperfused organs following ischemia or carbon monoxide intoxication. Various beneficial consequences of HBOT have been reported, including wound healing, anti-inflammatory action, and cell survival; however, the molecular mechanisms underlying these effects have not been elucidated yet. We applied a single HBOT program consisting of administration of 2.8 atmospheres absolute (ATA) for 45 min, followed by 2.0 ATA for 55 min, to 10 male volunteers without any metabolic disease. Within 1 week of HBOT, there was no alteration in serum biochemical variables, except for an increase in triglyceride content. As a mitochondrial stress indicator, the serum concentration of growth differentiation factor 15 was reduced by HBOT. The circulating level of γ–glutamyltransferase was also decreased by HBOT, suggesting an attenuation of oxidative stress. HBOT increased adiponectin and reduced leptin levels in the serum, leading to an elevated adiponectin/leptin ratio. This is the first study to investigate the effect of HBOT on serum levels of metabolic stress-related biomarkers. We suggest that HBOT attenuates mitochondrial and oxidative stresses, and relieves metabolic burdens, indicating its potential for use in therapeutic applications to metabolic diseases.
Collapse
|
8
|
Júnior LHF, Limirio PHJO, Soares PBF, Dechichi P, de Souza Castro Filice L, Quagliatto PS, Rocha FS. The effect of hyperbaric oxygen therapy on bone macroscopy, composition and biomechanical properties after ionizing radiation injury. Radiat Oncol 2020; 15:95. [PMID: 32375798 PMCID: PMC7201996 DOI: 10.1186/s13014-020-01542-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Radiotherapy used in tumor treatment compromises vascularization of bone tissue. Hyperbaric oxygenation (HBO) increases oxygen availability and improves vascularization, minimizing the deleterious effects of ionizing radiation (IR). Therefore, the aim of this study was to evaluate HBO therapy effect on bone macroscopy, composition and biomechanical properties after IR damage. METHODS Twenty male Wistar rats weighing 300 ± 20 g (10 weeks of age) were submitted to IR (30 Gy) to the left leg, where the right leg was not irradiated. After 30 days, ten animals were submitted to HBO therapy, which was performed daily for 1 week at 250 kPa for 90-min sessions. All animals were euthanized 37 days after irradiation and the tibia were separated into four groups (n = 10): from animals without HBO - right tibia Non-irradiated (noIRnoHBO) and left tibia Irradiated (IRnoHBO); and from animals with HBO - right tibiae Non-irradiated (noIRHBO) and left tibia Irradiated (IRHBO). The length (proximal-distal) and thickness (anteroposterior and mediolateral) of the tibiae were measured. Biomechanical analysis evaluated flexural strength and stiffness. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) was used to calculate the amide I ratio, crystallinity index, and matrix to mineral ratios. RESULTS In the macroscopic and ATR-FTIR analysis, the IRnoHBO showed lower values of length, thickness and amide I ratio, crystallinity index and matrix to mineral ratios compared to noIRnoHBO (p < 0.03). IRnoHBO showed no statistical difference compared to IRHBO for these analyses (p > 0.05). Biomechanics analysis showed that the IRnoHBO group had lower values of flexural strength and stiffness compared to noIRnoHBO and IRHBO groups (p < 0.04). In addition, the noIRHBO group showed higher value of flexural strength when compared to noIRnoHBO and IRHBO groups (p < 0.02). CONCLUSIONS The present study concluded that IR arrests bone development, decreases the collagen maturation and mineral deposition process, thus reducing the flexural strength and stiffness bone mechanical parameters. Moreover, HBO therapy minimizes deleterious effects of irradiation on flexural strength and the bone stiffness analysis.
Collapse
Affiliation(s)
- Luiz Henrique Ferreira Júnior
- Integrated Dental Clinic Program, Faculty of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais 38.400-902 Brazil
| | - Pedro Henrique Justino Oliveira Limirio
- Integrated Dental Clinic Program, Faculty of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais 38.400-902 Brazil
| | - Priscilla Barbosa Ferreira Soares
- Department of Periodontology and Oral Implantology, Faculty of Dentistry, Federal University of Uberlândia, Avenida Pará s/nº, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais 38.400-902 Brazil
| | - Paula Dechichi
- Department of Cell Biology, Histology and Embryology, Faculty of Dentistry, Federal University of Uberlândia, Avenida Pará s/nº, Campus Umuarama, Bloco 2B, Bairro Umuarama, Uberlândia, Minas Gerais 38.400-902 Brazil
| | - Letícia de Souza Castro Filice
- Department of Clinical Medicine, Histology and Embryology, Faculty of Medicine, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4U, Bairro Umuarama, Uberlândia, Minas Gerais 38.400-902 Brazil
| | - Paulo Sérgio Quagliatto
- Department of Dentistry and Dental Materials, Faculty of Dentistry, Federal University of Uberlândia, Avenida Pará s/nº, Campus Umuarama, Bloco 2B, Bairro Umuarama, Uberlândia, Minas Gerais 38.400-902 Brazil
| | - Flaviana Soares Rocha
- Department of Oral and Maxillofacial Surgery and Traumatology and Implantology, Faculty of Dentistry, Federal University of Uberlândia, Avenida Pará s/nº, Campus Umuarama, Bloco 2B, Bairro Umuarama, Uberlândia, Minas Gerais 38.400-902 Brazil
| |
Collapse
|
9
|
Chiu CH, Chang SS, Chang GJ, Chen ACY, Cheng CY, Chen SC, Chan YS. The Effect of Hyperbaric Oxygen Treatment on Myoblasts and Muscles After Contusion Injury. J Orthop Res 2020; 38:329-335. [PMID: 31531986 DOI: 10.1002/jor.24478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/13/2019] [Indexed: 02/04/2023]
Abstract
The recommended treatment varies depending on the severity of muscle injuries. The aim of this study was to evaluate the in vitro myoblast proliferation and the in vivo histologic and physiologic effects of hyperbaric oxygen treatment on muscle healing after contusion. Cells from the C2C12 myoblast cell line were exposed to 100% O2 for 25 min then to air for 5 min at 2.5 atmospheres absolute in a hyperbaric chamber for a total treatment duration of 90 min per 48 h at intervals of 2, 4, 6 and 8 days. Cell growth measurements and western blot analysis of myogenin and actin were performed. Then, 18 mice aged 8-10 weeks were used in the muscle contusion model. The histologic and physiologic effects and muscle regeneration after hyperbaric oxygen treatment were evaluated. The myoblast growth rate was significantly higher (p < 0.05) after hyperbaric oxygen treatment. Densitometric evaluation demonstrated a 39% (p < 0.05) and 25% (p < 0.05) increase in myogenin and actin protein levels, respectively, in the cells treated with 1 dose of hyperbaric oxygen. Similarly, the myogenin and actin protein levels increased for samples receiving multiple hyperbaric oxygen treatments when compared with the control. Physiologic evaluation of fast twitch and tetanus strength revealed a significant difference between the control group and the 14-day hyperbaric oxygen group. In conclusion, hyperbaric oxygen treatment increases the myoblast growth rate and myogenin and actin production. Better histologic and physiologic performance were found after hyperbaric oxygen treatment in animal contusion model. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:329-335, 2020.
Collapse
Affiliation(s)
- Chih-Hao Chiu
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shih-Sheng Chang
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical and Medicinal Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Alvin Chao-Yu Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chun-Ying Cheng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Su-Ching Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yi-Sheng Chan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
10
|
Johnson JP, Born CT, Thomas N, Truntzer J, Mansuripur PK, Kleiner J, McAlister ST, Garcia D, Koruprolu S. Development of a novel murine femur fracture and fixation model. J Orthop 2020; 17:162-167. [PMID: 31879498 PMCID: PMC6919350 DOI: 10.1016/j.jor.2019.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/09/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Animal models have been used for decades to simulate human fractures in the laboratory setting. Fracture models in mice are attractive because they offer a high volume, relatively low-cost method of investigating fracture healing characteristics. We report on the development of a novel murine femur fracture model that is rapid, reproducible and inexpensive. METHODS As part of a pilot study to investigate the effects of smoking on fracture healing, fifteen 35-43 g twelve-week old female CD-1 mice underwent a novel surgical protocol using direct visualization of femur fracture creation and fixation. Following surgery, mice were sacrificed at 14 days, 28 days and 42 days. After sacrifice, the femora were analyzed using MicroCT and histology to evaluate progression of healing. RESULTS Of the 14 mice that survived the surgical procedure (one succumbed to a complication of anesthesia), two lost reduction and did not heal. Histology demonstrated at 14 days 44.1% (SD±2.9%) of callus composed of cartilage. At 28 days there was 19.0% (SD±3.4%) of callus composed of cartilage. At 42 days there was 8.4% (SD±2.6%) callus composed of cartilage (p < 0.005). MicroCT demonstrated that from 14 to 42 days the average callus volume decreased from 101.6 mm3 to 68.2 mm3 while the relative bone volume of callus increased from 14 to 42 days (15%-31%) (p = 0.068). CONCLUSIONS Our novel fracture and fixation model is an effective, rapid, reproducible and inexpensive method to simulate a fracture in a laboratory setting. Additionally, our model reliably creates a reproducible progression of radiographic and histological bone healing.
Collapse
Affiliation(s)
- Joey P. Johnson
- Department of Orthopedic Surgery, Loma Linda University, 11406 Loma Linda Drive, Suite 128, Loma Linda, CA, 92354, USA
| | - Christopher T. Born
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, RI, 593 Eddy Street, Providence, RI, 02903, USA
| | - Nathan Thomas
- Warren Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI, 02912, USA
| | - Jeremy Truntzer
- Department of Orthopedic Surgery, Stanford University, 291 University Drive, Stanford, CA, 94305, USA
| | - P. Kaveh Mansuripur
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, RI, 593 Eddy Street, Providence, RI, 02903, USA
| | - Justin Kleiner
- Warren Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI, 02912, USA
| | - Scott T. McAlister
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, RI, 593 Eddy Street, Providence, RI, 02903, USA
| | - Dioscaris Garcia
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, RI, 593 Eddy Street, Providence, RI, 02903, USA
| | - Sarath Koruprolu
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, RI, 593 Eddy Street, Providence, RI, 02903, USA
| |
Collapse
|
11
|
An H, Lee JT, Oh SE, Park KM, Hu KS, Kim S, Chung MK. Adjunctive hyperbaric oxygen therapy for irradiated rat calvarial defects. J Periodontal Implant Sci 2019; 49:2-13. [PMID: 30847252 PMCID: PMC6399085 DOI: 10.5051/jpis.2019.49.1.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/30/2019] [Indexed: 01/26/2023] Open
Abstract
Purpose The aim of this study was to conduct a histologic evaluation of irradiated calvarial defects in rats 4 weeks after applying fibroblast growth factor-2 (FGF-2) with hyaluronan or biphasic calcium phosphate (BCP) block in the presence or absence of adjunctive hyperbaric oxygen (HBO) therapy. Methods Twenty rats were divided into HBO and non-HBO (NHBO) groups, each of which was divided into FGF-2 and BCP-block subgroups according to the grafted material. Localized radiation with a single 12-Gy dose was applied to the calvaria of rats to simulate radiotherapy. Four weeks after applying this radiation, 2 symmetrical circular defects with a diameter of 6 mm were created in the parietal bones of each animal. The right-side defect was filled with the materials mentioned above and the left-side defect was not filled (as a control). All defects were covered with a resorbable barrier membrane. During 4 weeks of healing, 1 hour of HBO therapy was applied to the rats in the HBO groups 5 times a week. The rats were then killed, and the calvarial specimens were harvested for radiographic and histologic analyses. Results New bone formation was greatest in the FGF-2 subgroup, and improvement was not found in the BCP subgroup. HBO seemed to have a minimal effect on new bone formation. There was tendency for more angiogenesis in the HBO groups than the NHBO groups, but the group with HBO and FGF-2 did not show significantly better outcomes than the HBO-only group or the NHBO group with FGF-2. Conclusions HBO exerted beneficial effects on angiogenesis in calvarial defects of irradiated rats over a 4-week healing period, but it appeared to have minimal effects on bone regeneration. FGF-2 seemed to enhance new bone formation and angiogenesis, but its efficacy appeared to be reduced when HBO was applied.
Collapse
Affiliation(s)
- Heesuk An
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, Korea
| | - Jung-Tae Lee
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Seo-Eun Oh
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Kyeong-Mee Park
- Department of Advanced General Dentistry, Yonsei University College of Dentistry, Seoul, Korea
| | - Kyung-Seok Hu
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Sungtae Kim
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Moon-Kyu Chung
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
12
|
Dias PC, Limirio PHJO, Linhares CRB, Bergamini ML, Rocha FS, Morais RBD, Balbi APC, Hiraki KRN, Dechichi P. Hyperbaric Oxygen therapy effects on bone regeneration in Type 1 diabetes mellitus in rats. Connect Tissue Res 2018; 59:574-580. [PMID: 29378458 DOI: 10.1080/03008207.2018.1434166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The aim of this study was evaluate the effect of HBO on diabetic rats. MATERIALS AND METHODS Twenty rats were distributed into four groups (n = 5): Control (C); Control + HBO (CH); Diabetes (D) and Diabetes + HBO (DH). Diabetes was induced by streptozotocin, and bone defects were created in both femurs in all animals. HBO therapy began immediately after surgery and was performed daily in the CH and DH groups. After 7 days, the animals were euthanized. The femurs were removed, demineralized, embedded in paraffin, and histologic images were analyzed. RESULTS Qualitative histologic analyses showed more advanced stage bone regeneration in control groups (C and CH) compared with diabetic groups (D and DH). Histomorphometric analysis showed significantly increased bone neoformation in CH compared with the other groups (p < 0.001). Diabetic Group (D) showed decreased bone neoformation compared with non-diabetic groups (C and CH) (p < 0.001); however DH did not differ from C Group (p > 0.05). The mast cell population increased in CH compared with the other groups (C, D, and DH) (p < 0.05). The mast cell population did not differ between D and DH Groups. CONCLUSIONS This study showed that HBO therapy improved early bone regeneration in diabetic rats and increased the mast cell population only in non-diabetic animals. HBO was shown to be important treatment for minimizing deleterious effects of diabetes on bone regeneration.
Collapse
Affiliation(s)
- Pâmella Coelho Dias
- a Faculty of Dentistry , Morgana Potrich University , Mineiros , Goiás , Brazil
| | | | | | - Mariana Lobo Bergamini
- b Faculty of Dentistry , Federal University of Uberlândia , Uberlândia , Minas Gerais , Brazil
| | - Flaviana Soares Rocha
- c Faculty of Dentistry, Departamento de CTBMF e Implantodontia , Federal University of Uberlândia , Uberlândia , Minas Gerais , Brazil
| | - Richarlisson Borges de Morais
- d Faculty of Nursing, Departamento de Enfermagem , Federal University of Mato Grosso , Cuiabá , Mato Grosso , Brasil
| | - Ana Paula Coelho Balbi
- e Departamento de Fisiologia , Biomedical Science Institute, Federal University of Uberlândia , Uberlândia , Minas Gerais , Brazil
| | - Karen Renata Nakamura Hiraki
- e Departamento de Fisiologia , Biomedical Science Institute, Federal University of Uberlândia , Uberlândia , Minas Gerais , Brazil
| | - Paula Dechichi
- e Departamento de Fisiologia , Biomedical Science Institute, Federal University of Uberlândia , Uberlândia , Minas Gerais , Brazil
| |
Collapse
|
13
|
Suzuki J. Endurance performance is enhanced by intermittent hyperbaric exposure via up-regulation of proteins involved in mitochondrial biogenesis in mice. Physiol Rep 2018; 5:5/15/e13349. [PMID: 28778990 PMCID: PMC5555885 DOI: 10.14814/phy2.13349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
This study was designed to (1) investigate the effects of acute hyperbaric exposure on muscle mRNA expression levels, and (2) clarify the mechanisms by which intermittent hyperbaric exposure improves endurance capacity. Experiment 1: Male mice were subjected to acute 1-h hyperbaric exposure (1.3 atmospheres absolute with 20.9% O2). The expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA significantly increased in the soleus (7.2-fold) and red gastrocnemius muscles (Gr, 5.1-fold) 3 h after hyperbaric exposure. Peroxisome proliferator-activated receptor alpha (PPARα) mRNA levels significantly increased in the plantaris (PL, 2.9-fold) and Gr (2.3-fold) 3 h after hyperbaric exposure. Experiment 2: Mice were subjected to exercise training with (HypTr) and without (Tr) 1-h hyperbaric exposure for 4 weeks. Increases in maximal exercise capacity were significantly greater in HypTr than in Tr. In PL, activity levels of 3-hydroxyacyl-CoA-dehydrogenase and citrate synthase (CS) were significantly greater in HypTr than in Tr. CS and phosphofructokinase activities both markedly increased in the white gastrocnemius muscle (Gw) in HypTr only. PGC-1α expression in the nucleus was significantly greater in HypTr than in Tr in PL (4.8-fold), Gr (3.2-fold), and Gw (15-fold). Protein levels of mitochondrial transcription factor A and heat shock protein 70 significantly increased after training with hyperbaric exposure. These results suggest that exercise training with intermittent hyperbaric exposure represents a beneficial strategy for increasing endurance performance by facilitating oxidative and glycolytic capacities and the expression of proteins involved in mitochondrial biogenesis in the hindlimb muscles.
Collapse
Affiliation(s)
- Junichi Suzuki
- Laboratory of Exercise Physiology, Health and Sports Sciences, Course of Sports Education, Department of Education, Hokkaido University of Education, Midorigaoka, Iwamizawa, Hokkaido, Japan
| |
Collapse
|
14
|
Limirio PHJO, da Rocha Junior HA, de Morais RB, Hiraki KRN, Balbi APC, Soares PBF, Dechichi P. Influence of hyperbaric oxygen on biomechanics and structural bone matrix in type 1 diabetes mellitus rats. PLoS One 2018; 13:e0191694. [PMID: 29451877 PMCID: PMC5815582 DOI: 10.1371/journal.pone.0191694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
Background The aim of this study was to evaluate the biomechanics and structural bone matrix in diabetic rats subjected to hyperbaric oxygen therapy (HBO). Methods Twenty-four male rats were divided into the following groups: Control; Control + HBO; Diabetic, and Diabetic + HBO. Diabetes was induced with streptozotocin (STZ) in the diabetic Groups. After 30 days, HBO was performed every 48h in HBO groups and all animals were euthanized 60 days after diabetic induction. The femur was submitted to a biomechanical (maximum strength, energy-to-failure and stiffness) and Attenuated Total Reflectance Fourier transform infrared (ATR-FTIR) analyses (crosslink ratio, crystallinity index, matrix-to-mineral ratio: Amide I + II/Hydroxyapatite (M:MI) and Amide III + Collagen/HA (M:MIII)). Results In biomechanical analysis, diabetic animals showed lower values of maximum strength, energy and stiffness than non-diabetic animals. However, structural strength and stiffness were increased in groups with HBO compared with non-HBO. ATR-FTIR analysis showed decreased collagen maturity in the ratio of crosslink peaks in diabetic compared with the other groups. The bone from the diabetic groups showed decreased crystallinity compared with non-diabetic groups. M:MI showed no statistical difference between groups. However, M:MIII showed an increased matrix mineral ratio in diabetic+HBO and control+HBO compared with control and diabetic groups. Correlations between mechanical and ATR-FTIR analyses showed significant positive correlation between collagen maturity and stiffness. Conclusions Diabetes decreased collagen maturation and the mineral deposition process, thus reducing biomechanical properties. Moreover, the study showed that HBO improved crosslink maturation and increased maximum strength and stiffness in the femur of T1DM animals.
Collapse
Affiliation(s)
| | | | | | | | - Ana Paula Coelho Balbi
- Department of Physiology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Paula Dechichi
- Department of Histology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
15
|
Effect of hyperbaric oxygen therapy (HBO) on implant-associated osteitis in a femur fracture model in mice. PLoS One 2018; 13:e0191594. [PMID: 29377928 PMCID: PMC5788341 DOI: 10.1371/journal.pone.0191594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
Hyperbaric oxygen therapy (HBO) is applied very successfully in treatment of various diseases such as chronic wounds. It has been already suggested as adjunctive treatment option for osteitis by immune- and fracture modulating effects. This study evaluates the importance of HBO in an early implant-associated localized osteitis caused by Staphylococcus aureus (SA) compared to the standard therapy. In a standardized murine model the left femur of 120 BALB/c mice were osteotomized and fixed by a titanium locking plate. Osteitis has been induced with a defined amount of SA into the fracture gap. Debridément and lavages were progressed on day 7, 14, 28 and 56 to determine the local bacterial growth and the immune reaction. Hyperbaric oxygen (2 ATA, 90%) was applied for 90 minutes on day 7 to 21 for those mice allocated to HBO therapy. To evaluate the effect of HBO therapy the following groups were analyzed: Two sham-groups (12 mice / group) with and without HBO therapy, two osteotomy groups (24 mice / group) with plate osteosynthesis of the femur with and without HBO therapy, and two osteotomy SA infection groups (24 mice / group) with and without HBO therapy. Fracture healing was also quantified on day 7, 14, 28 and 56 by a.p. x-ray and bone healing markers from blood samples. Progression of infection was assessed by estimation of colony-forming units (CFU) and immune response was analyzed by determination of polymorphonuclear neutrophils (PMN), Interleukin (IL) - 6, and the circulating free DNA (cfDNA) in lavage samples. Osteitis induced significantly higher IL-6, cfDNA- and PMN-levels in the lavage samples (on day 7 and 14, each p < 0.05). HBO-therapy did not have a significant influence on the CFU and immune response compared to the standard therapy (each p > 0.05). At the same time HBO-therapy was associated with a delayed bone healing assessed by x-ray radiography and a higher rate of non-union until day 28. In conclusion, osteitis led to significantly higher bacterial count and infection parameters. HBO-therapy neither had a beneficial influence on local infection nor on immune response or fracture healing compared to the standard therapy in an osteitis mouse model.
Collapse
|
16
|
Kawada S, Harada A, Hashimoto N. Impairment of cold injury-induced muscle regeneration in mice receiving a combination of bone fracture and alendronate treatment. PLoS One 2017; 12:e0181457. [PMID: 28715470 PMCID: PMC5513540 DOI: 10.1371/journal.pone.0181457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/01/2017] [Indexed: 02/01/2023] Open
Abstract
Alendronate, a nitrogen-containing bisphosphonate, is well established as a treatment for osteoporosis through regulation of osteoclast activity. Previously, the pharmacological effects of bisphosphonates on cells outside the bone environment have been considered irrelevant because bisphosphonates target bone. Here we show that administration of alendronate impairs muscle regeneration in mice after bone fracture. A series of injections of alendronate alone or bone fracture alone did not affect muscle regeneration induced by cold injury. In contrast, alendronate treatment plus bone fracture severely impaired the regeneration of muscle that closely contacts the bone fracture site after cold injury. After cold injury, M-cadherin-positive myogenic cells disappeared in the damaged muscle areas of mice receiving the combination of alendronate treatment and bone fracture. The present results suggest that the muscle regeneration capacity is impaired by bone fracture in mice receiving alendronate treatment. The present research on the pharmacological effects of alendronate on muscle regeneration will aid in understanding of the in vivo action of alendronate on skeletal muscles.
Collapse
Affiliation(s)
- Shigeo Kawada
- Department of Regenerative Medicine, Institute, National Center for Geriatrics and Gerontology, Morioka, Oobu, Aichi, Japan
| | - Atsushi Harada
- Department of Orthopedic Surgery, Hospital, National Center for Geriatrics and Gerontology, Morioka, Oobu, Aichi, Japan
| | - Naohiro Hashimoto
- Department of Regenerative Medicine, Institute, National Center for Geriatrics and Gerontology, Morioka, Oobu, Aichi, Japan
- * E-mail:
| |
Collapse
|
17
|
Wang T, Zhang X, Bikle DD. Osteogenic Differentiation of Periosteal Cells During Fracture Healing. J Cell Physiol 2016; 232:913-921. [PMID: 27731505 DOI: 10.1002/jcp.25641] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
Abstract
Five to ten percent of fractures fail to heal normally leading to additional surgery, morbidity, and altered quality of life. Fracture healing involves the coordinated action of stem cells primarily coming from the periosteum which differentiate into the chondrocytes and osteoblasts, forming first the soft (cartilage) callus followed by the hard (bone) callus. These stem cells are accompanied by a vascular invasion that appears critical for the differentiation process and which may enable the entry of osteoclasts necessary for the remodeling of the callus into mature bone. However, more research is needed to clarify the signaling events that activate the osteochondroprogenitor cells of periosteum and stimulate their differentiation into chondrocytes and osteoblasts. Ultimately a thorough understanding of the mechanisms for differential regulation of these osteochondroprogenitors will aid in the treatment of bone healing and the prevention of delayed union and nonunion of fractures. In this review, evidence supporting the concept that the periosteal cells are the major cell sources of skeletal progenitors for the fracture callus will be discussed. The osteogenic differentiation of periosteal cells manipulated by Wnt/β-catenin, TGF/BMP, Ihh/PTHrP, and IGF-1/PI3K-Akt signaling in fracture repair will be examined. The effect of physical (hypoxia and hyperoxia) and chemical factors (reactive oxygen species) as well as the potential coordinated regulatory mechanisms in the periosteal progenitor cells promoting osteogenic differentiation will also be discussed. Understanding the regulation of periosteal osteochondroprogenitors during fracture healing could provide insight into possible therapeutic targets and thereby help to enhance future fracture healing and bone tissue engineering approaches. J. Cell. Physiol. 232: 913-921, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tao Wang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York.,Endocrine Unit, VA Medical Center and University of California, San Francisco, California
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Daniel D Bikle
- Endocrine Unit, VA Medical Center and University of California, San Francisco, California
| |
Collapse
|
18
|
Influence of hyperbaric oxygen on the initial stages of bone healing. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:581-7. [DOI: 10.1016/j.oooo.2015.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022]
|
19
|
Fujita N, Ono M, Tomioka T, Deie M. Effects of hyperbaric oxygen at 1.25 atmospheres absolute with normal air on macrophage number and infiltration during rat skeletal muscle regeneration. PLoS One 2014; 9:e115685. [PMID: 25531909 PMCID: PMC4274106 DOI: 10.1371/journal.pone.0115685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/01/2014] [Indexed: 12/17/2022] Open
Abstract
Use of mild hyperbaric oxygen less than 2 atmospheres absolute (2026.54 hPa) with normal air is emerging as a common complementary treatment for severe muscle injury. Although hyperbaric oxygen at over 2 atmospheres absolute with 100% O2 promotes healing of skeletal muscle injury, it is not clear whether mild hyperbaric oxygen is equally effective. The purpose of the present study was to investigate the impact of hyperbaric oxygen at 1.25 atmospheres absolute (1266.59 hPa) with normal air on muscle regeneration. The tibialis anterior muscle of male Wistar rats was injured by injection of bupivacaine hydrochloride, and rats were randomly assigned to a hyperbaric oxygen experimental group or to a non-hyperbaric oxygen control group. Immediately after the injection, rats were exposed to hyperbaric oxygen, and the treatment was continued for 28 days. The cross-sectional area of centrally nucleated muscle fibers was significantly larger in rats exposed to hyperbaric oxygen than in controls 5 and 7 days after injury. The number of CD68- or CD68- and CD206-positive cells was significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. Additionally, tumor necrosis factor-α and interleukin-10 mRNA expression levels were significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. The number of Pax7- and MyoD- or MyoD- and myogenin-positive nuclei per mm2 and the expression levels of these proteins were significantly higher in rats exposed to hyperbaric oxygen than in controls 5 days after injury. These results suggest that mild hyperbaric oxygen promotes skeletal muscle regeneration in the early phase after injury, possibly due to reduced hypoxic conditions leading to accelerated macrophage infiltration and phenotype transition. In conclusion, mild hyperbaric oxygen less than 2 atmospheres absolute with normal air is an appropriate support therapy for severe muscle injuries.
Collapse
Affiliation(s)
- Naoto Fujita
- Graduate School of Biomedicine and Health Sciences, Hiroshima University, Hiroshima City, Hiroshima, Japan
- Faculty of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
- * E-mail:
| | - Miharu Ono
- Graduate School of Biomedicine and Health Sciences, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Tomoka Tomioka
- Graduate School of Biomedicine and Health Sciences, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Masataka Deie
- Graduate School of Biomedicine and Health Sciences, Hiroshima University, Hiroshima City, Hiroshima, Japan
- Faculty of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| |
Collapse
|
20
|
Hyperbaric oxygen therapy accelerates osteoblast differentiation and promotes bone formation. J Dent 2014; 43:382-8. [PMID: 25456611 DOI: 10.1016/j.jdent.2014.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Hyperbaric oxygen therapy (HBO) has been used as an adjunctive therapy in the treatment of radiotherapy or bisphosphonate-induced osteonecrosis of the jaw however the effect of HBO on osteoblast formation and mineralisation has not been extensively studied. The current study therefore examined the effects of HBO, elevated pressure or elevated oxygen alone on osteoblast differentiation and bone nodule formation. METHODS Saos-2 human osteoblast cells were exposed to HBO (2.4 ATA, 97.9% O2, 90 min per day), elevated pressure alone (2.4 ATA, 8.8% O2, 90 min per day) or elevated oxygen alone (1 ATA, 95% O2, 90 min per day) after culturing under normoxic or hypoxic conditions and osteoblast differentiation and bone formation assessed by alkaline phosphatase activity and calcein incorporation. Expression of key regulators of osteoblast differentiation and bone matrix proteins were assessed by quantitative PCR. RESULTS Daily exposure to HBO accelerated the rate of osteoblast differentiation as determined by increased alkaline phosphatase activity and expression of type I collagen and Runx-2 mRNA during the early stages of culture. HBO also augmented bone nodule formation in hypoxic conditions. HBO had a more pronounced effect on these key markers of osteoblast differentiation than elevated oxygen or pressure alone. CONCLUSIONS The data from this study shows that daily HBO treatment accelerated the rate of osteoblast differentiation leading to an increase in bone formation. CLINICAL SIGNIFICANCE These studies add to our understanding of HBO's reparative action in osteonecrotic bone loss. In addition to stimulating angiogenesis HBO may also improve surgical outcomes through a direct beneficial effect on osteoblast differentiation generating a larger bone mass available for reconstruction.
Collapse
|
21
|
The impact of hyperbaric hyperoxia on fracture repair. BONEKEY REPORTS 2013; 2:465. [PMID: 24422157 PMCID: PMC3844987 DOI: 10.1038/bonekey.2013.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|