1
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
2
|
Konstantoulea K, Louros N, Rousseau F, Schymkowitz J. Heterotypic interactions in amyloid function and disease. FEBS J 2021; 289:2025-2046. [PMID: 33460517 DOI: 10.1111/febs.15719] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 11/27/2022]
Abstract
Amyloid aggregation results from the self-assembly of identical aggregation-prone sequences into cross-beta-sheet structures. The process is best known for its association with a wide range of human pathologies but also as a functional mechanism in all kingdoms of life. Less well elucidated is the role of heterotypic interactions between amyloids and other proteins and macromolecules and how this contributes to disease. We here review current data with a focus on neurodegenerative amyloid-associated diseases. Evidence indicates that heterotypic interactions occur in a wide range of amyloid processes and that these interactions modify fundamental aspects of amyloid aggregation including seeding, aggregation rates and toxicity. More work is required to understand the mechanistic origin of these interactions, but current understanding suggests that both supersaturation and sequence-specific binding can contribute to heterotypic amyloid interactions. Further unravelling these mechanisms may help to answer outstanding questions in the field including the selective vulnerability of cells types and tissues and the stereotypical spreading patterns of amyloids in disease.
Collapse
Affiliation(s)
- Katerina Konstantoulea
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nikolaos Louros
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Cazzaniga FA, De Luca CMG, Bistaffa E, Consonni A, Legname G, Giaccone G, Moda F. Cell-free amplification of prions: Where do we stand? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:325-358. [PMID: 32958239 DOI: 10.1016/bs.pmbts.2020.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), atypical parkinsonisms, frontotemporal dementia (FTLD) and prion diseases are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Although the cause for the initiation of protein aggregation is not well understood, these aggregates are disease-specific. For instance, AD is characterized by the intraneuronal accumulation of tau and extracellular deposition of amyloid-β (Aβ), PD is marked by the intraneuronal accumulation of α-synuclein, many FTLD are associated with the accumulation of TDP-43 while prion diseases show aggregates of misfolded prion protein. Hence, misfolded proteins are considered disease-specific biomarkers and their identification and localization in the CNS, collected postmortem, is required for a definitive diagnosis. With the development of two innovative cell-free amplification techniques named Protein Misfolding Cyclic Amplification (PMCA) and Real-Time Quaking-Induced Conversion (RT-QuIC), traces of disease-specific biomarkers were found in CSF and other peripheral tissues (e.g., urine, blood, and olfactory mucosa) of patients with different NDs. These techniques exploit an important feature shared by many misfolded proteins, that is their ability to interact with their normally folded counterparts and force them to undergo similar structural rearrangements. Essentially, RT-QuIC and PMCA mimic in vitro the same pathological processes of protein misfolding which occur in vivo in a very rapid manner. For this reason, they have been employed for studying different aspects of protein misfolding but, overall, they seem to be very promising for the premortem diagnosis of NDs.
Collapse
Affiliation(s)
- Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | | | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Alessandra Consonni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Milan, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy.
| |
Collapse
|
4
|
Bistaffa E, Vuong TT, Cazzaniga FA, Tran L, Salzano G, Legname G, Giaccone G, Benestad SL, Moda F. Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids. Sci Rep 2019; 9:18595. [PMID: 31819115 PMCID: PMC6901582 DOI: 10.1038/s41598-019-55078-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic wasting disease (CWD) is a highly contagious prion disease affecting captive and free-ranging cervid populations. CWD has been detected in United States, Canada, South Korea and, most recently, in Europe (Norway, Finland and Sweden). Animals with CWD release infectious prions in the environment through saliva, urine and feces sustaining disease spreading between cervids but also potentially to other non-cervids ruminants (e.g. sheep, goats and cattle). In the light of these considerations and due to CWD unknown zoonotic potential, it is of utmost importance to follow specific surveillance programs useful to minimize disease spreading and transmission. The European community has already in place specific surveillance measures, but the traditional diagnostic tests performed on nervous or lymphoid tissues lack sensitivity. We have optimized a Real-Time Quaking-Induced Conversion (RT-QuIC) assay for detecting CWD prions with high sensitivity and specificity to try to overcome this problem. In this work, we show that bank vole prion protein (PrP) is an excellent substrate for RT-QuIC reactions, enabling the detection of trace-amounts of CWD prions, regardless of prion strain and cervid species. Beside supporting the traditional diagnostic tests, this technology could be exploited for detecting prions in peripheral tissues from live animals, possibly even at preclinical stages of the disease.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Linh Tran
- Norwegian Veterinary Institute, Oslo, Norway
| | - Giulia Salzano
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy.
| |
Collapse
|
5
|
Koutsoumanis K, Allende A, Alvarez-Ordoňez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Skandamis P, Suffredini E, Andreoletti O, Benestad SL, Comoy E, Nonno R, da Silva Felicio T, Ortiz-Pelaez A, Simmons MM. Update on chronic wasting disease (CWD) III. EFSA J 2019; 17:e05863. [PMID: 32626163 PMCID: PMC7008890 DOI: 10.2903/j.efsa.2019.5863] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The European Commission asked EFSA for a Scientific Opinion: to revise the state of knowledge about the differences between the chronic wasting disease (CWD) strains found in North America (NA) and Europe and within Europe; to review new scientific evidence on the zoonotic potential of CWD and to provide recommendations to address the potential risks and to identify risk factors for the spread of CWD in the European Union. Full characterisation of European isolates is being pursued, whereas most NA CWD isolates have not been characterised in this way. The differing surveillance programmes in these continents result in biases in the types of cases that can be detected. Preliminary data support the contention that the CWD strains identified in Europe and NA are different and suggest the presence of strain diversity in European cervids. Current data do not allow any conclusion on the implications of strain diversity on transmissibility, pathogenesis or prevalence. Available data do not allow any conclusion on the zoonotic potential of NA or European CWD isolates. The risk of CWD to humans through consumption of meat cannot be directly assessed. At individual level, consumers of meat, meat products and offal derived from CWD-infected cervids will be exposed to the CWD agent(s). Measures to reduce human dietary exposure could be applied, but exclusion from the food chain of whole carcasses of infected animals would be required to eliminate exposure. Based on NA experiences, all the risk factors identified for the spread of CWD may be associated with animals accumulating infectivity in both the peripheral tissues and the central nervous system. A subset of risk factors is relevant for infected animals without involvement of peripheral tissues. All the risk factors should be taken into account due to the potential co-localisation of animals presenting with different disease phenotypes.
Collapse
|
6
|
Benestad SL, Telling GC. Chronic wasting disease: an evolving prion disease of cervids. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:135-151. [PMID: 29887133 DOI: 10.1016/b978-0-444-63945-5.00008-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic wasting disease (CWD) is a relatively new and burgeoning prion epidemic of deer, elk, reindeer, and moose, which are members of the cervid family. While the disease was first described in captive deer, its subsequent discovery in various species of free-ranging animals makes it the only currently recognized prion disorder of both wild and farmed animals. In addition to its expanding range of host species, CWD continues to spread from North America to new geographic areas, including South Korea, and most recently Norway, marking the first time this disease was detected in Europe. Its unparalleled efficiency of contagious transmission, combined with high densities of deer in certain areas, complicates strategies for controlling CWD, raising concerns about its potential for spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, and since prions from cattle with bovine spongiform encephalopathy have been transmitted to humans causing variant Creutzfeldt-Jakob disease, the possibility of zoonotic transmission of CWD is particularly concerning. Here we review the clinical and pathologic features of CWD and its disturbing epidemiology, and discuss features that affect its transmission, including genetic susceptibility, pathogenesis, and agent strain variability. Finally, we discuss evidence that speaks to the potential for zoonotic transmission of this emerging disease.
Collapse
Affiliation(s)
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
7
|
Houston F, Andréoletti O. The zoonotic potential of animal prion diseases. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:447-462. [PMID: 29887151 DOI: 10.1016/b978-0-444-63945-5.00025-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bovine spongiform encephalopathy (BSE) is the only animal prion disease that has been demonstrated to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans. The link between BSE and vCJD was established by careful surveillance, epidemiologic investigations, and experimental studies using in vivo and in vitro models of cross-species transmission. Similar approaches have been used to assess the zoonotic potential of other animal prion diseases, including atypical forms identified through active surveillance. There is no epidemiologic evidence that classical or atypical scrapie, atypical forms of BSE, or chronic wasting disease (CWD) is associated with human prion disease, but the limitations of the epidemiologic data should be taken into account when interpreting these results. Transmission experiments in nonhuman primates and human PrP transgenic mice suggest that classic scrapie, L-type atypical BSE (L-BSE), and CWD may have zoonotic potential, which for L-BSE appears to be equal to or greater than that of classic BSE. The results of in vitro conversion assays to analyze the human transmission barrier correlate well with the in vivo data. However, it is still difficult to predict the likelihood that an animal prion disease will transmit to humans under conditions of field exposure from the results of in vivo or in vitro experiments. This emphasizes the importance of continuing systematic surveillance for both human and animal prion diseases in identifying zoonotic transmission of diseases other than classic BSE.
Collapse
Affiliation(s)
- Fiona Houston
- Neurobiology Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom.
| | | |
Collapse
|
8
|
Waddell L, Greig J, Mascarenhas M, Otten A, Corrin T, Hierlihy K. Current evidence on the transmissibility of chronic wasting disease prions to humans-A systematic review. Transbound Emerg Dis 2017; 65:37-49. [PMID: 28139079 DOI: 10.1111/tbed.12612] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 12/19/2022]
Abstract
A number of prion diseases affect humans, including Creutzfeldt-Jakob disease; most of these are due to genetic mutations in the affected individual and occur sporadically, but some result from transmission of prion proteins from external sources. Of the known animal prion diseases, only bovine spongiform encephalopathy prions have been shown to be transmissible from animals to humans under non-experimental conditions. Chronic wasting disease (CWD) is a prion disease that affects cervids (e.g., deer and elk) in North America and isolated populations in Korea and Europe. Systematic review methodology was used to identify, select, critically appraise and analyse data from relevant research. Studies were evaluated for adherence to good conduct based on their study design following the Cochrane collaboration's approach to grading the quality of evidence and the strength of recommendations (GRADE). Twenty-three studies were included after screening 800 citations from the literature search and evaluating 78 full papers. Studies examined the transmissibility of CWD prions to humans using epidemiological study design, in vitro and in vivo experiments. Five epidemiological studies, two studies on macaques and seven studies on humanized transgenic mice provided no evidence to support the possibility of transmission of CWD prions to humans. Ongoing surveillance in the United States and Canada has not documented CWD transmission to humans. However, two studies on squirrel monkeys provided evidence that transmission of CWD prions resulting in prion disease is possible in these monkeys under experimental conditions and seven in vitro experiments provided evidence that CWD prions can convert human prion protein to a misfolded state. Therefore, future discovery of CWD transmission to humans cannot be entirely ruled out on the basis of current studies, particularly in the light of possible decades-long incubation periods for CWD prions in humans. It would be prudent to continue CWD research and epidemiologic surveillance, exercise caution when handling potentially contaminated material and explore CWD management opportunities.
Collapse
Affiliation(s)
- L Waddell
- Public Health Risk Sciences Division of the National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - J Greig
- Public Health Risk Sciences Division of the National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - M Mascarenhas
- Public Health Risk Sciences Division of the National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - A Otten
- Public Health Risk Sciences Division of the National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - T Corrin
- Public Health Risk Sciences Division of the National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - K Hierlihy
- Public Health Risk Sciences Division of the National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| |
Collapse
|
9
|
Xiao K, Zhang BY, Zhang XM, Wang J, Chen C, Chen LN, Lv Y, Shi Q, Dong XP. Re-infection of the prion from the scrapie‑infected cell line SMB-S15 in three strains of mice, CD1, C57BL/6 and Balb/c. Int J Mol Med 2016; 37:716-26. [PMID: 26820255 PMCID: PMC4771105 DOI: 10.3892/ijmm.2016.2465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/23/2015] [Indexed: 11/08/2022] Open
Abstract
It is well known that the SMB-S15 cell line was originally established by cultures from the brains of mice affected by the Chandler scrapie strain, and this cell line may express PrPSc permanently. However, the infectivity of the S15-derived prions on experimental animals has not yet been well documented. In the present study, the cell lysates of SMB-S15 were intracerebrally inoculated into three different strains of mice, namely C57BL/6, Balb/c and CD1. Prion protein (PRNP) gene sequencing revealed the same encoded PrP proteins in the sequences of amino acids in the three strains of mice, in addition to a synonymous single nucleotide polymorphism (SNP) in CD1 mice. All infected mice developed typical experimental transmissible spongiform encephalopathies (TSEs) approximately six months post-infection. The clinical features of three infected mice were comparable. The pathogenic characteristics, such as the electrophoretic and glycosylation profiles and proteinase K (PK) resistance of PrPSc molecules, as well as the neuropathological characteristics, such as spongiform vacuolation, PrPSc deposits in cortex regions, astrogliosis and activated microglia, were also similar in all three strains of infected mice. However, PrPSc deposits in the cerebellums of CD1 mice were significantly fewer, which was linked with the observation that lower numbers of CD1 mice presented cerebellum-associated symptoms. Successive inoculation of the individual strains of mice with brain homogenates from the infected mice also induced typical experimental scrapie. The data in the present study thus confirm that the prion agent in SMB-S15 cells causes stable infectivity in different types of mice with distinct phenotypes after long-term propagation in vitro. The present study also provides further scrapie rodent models, which may be used in further studies.
Collapse
Affiliation(s)
- Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases of Zhejiang University, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases of Zhejiang University, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xiao-Mei Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases of Zhejiang University, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Jing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases of Zhejiang University, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases of Zhejiang University, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Li-Na Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases of Zhejiang University, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Yan Lv
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases of Zhejiang University, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases of Zhejiang University, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases of Zhejiang University, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| |
Collapse
|
10
|
Conformational Switching and Nanoscale Assembly of Human Prion Protein into Polymorphic Amyloids via Structurally Labile Oligomers. Biochemistry 2015; 54:7505-13. [DOI: 10.1021/acs.biochem.5b01110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Insights into Chronic Wasting Disease and Bovine Spongiform Encephalopathy Species Barriers by Use of Real-Time Conversion. J Virol 2015; 89:9524-31. [PMID: 26157118 PMCID: PMC4542379 DOI: 10.1128/jvi.01439-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The propensity for transspecies prion transmission is related to the structural characteristics of the enciphering and new host PrP, although the exact mechanism remains incompletely understood. The effects of variability in prion protein on cross-species prion transmission have been studied with animal bioassays, but the influence of prion protein structure versus that of host cofactors (e.g., cellular constituents, trafficking, and innate immune interactions) remains difficult to dissect. To isolate the effects of protein-protein interactions on transspecies conversion, we used recombinant PrP(C) and real-time quaking-induced conversion (RT-QuIC) and compared chronic wasting disease (CWD) and classical bovine spongiform encephalopathy (cBSE) prions. To assess the impact of transmission to a new species, we studied feline CWD (fCWD) and feline BSE (i.e., feline spongiform encephalopathy [FSE]). We cross-seeded fCWD and FSE into each species' full-length, recombinant PrP(C) and measured the time required for conversion to the amyloid (PrP(Res)) form, which we describe here as the rate of amyloid conversion. These studies revealed the following: (i) CWD and BSE seeded their homologous species' PrP best; (ii) fCWD was a more efficient seed for feline rPrP than for white-tailed deer rPrP; (iii) conversely, FSE more efficiently converted bovine than feline rPrP; (iv) and CWD, fCWD, BSE, and FSE all converted human rPrP, although not as efficiently as homologous sCJD prions. These results suggest that (i) at the level of protein-protein interactions, CWD adapts to a new species more readily than does BSE and (ii) the barrier preventing transmission of CWD to humans may be less robust than estimated. IMPORTANCE We demonstrate that bovine spongiform encephalopathy prions maintain their transspecies conversion characteristics upon passage to cats but that chronic wasting disease prions adapt to the cat and are distinguishable from the original prion. Additionally, we showed that chronic wasting disease prions are effective at seeding the conversion of normal human prion protein to an amyloid conformation, perhaps the first step in crossing the species barrier.
Collapse
|
12
|
Scientific Opinion on a request for a review of a scientific publication concerning the zoonotic potential of ovine scrapie prions. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Kurt TD, Jiang L, Fernández-Borges N, Bett C, Liu J, Yang T, Spraker TR, Castilla J, Eisenberg D, Kong Q, Sigurdson CJ. Human prion protein sequence elements impede cross-species chronic wasting disease transmission. J Clin Invest 2015; 125:1485-96. [PMID: 25705888 PMCID: PMC4396485 DOI: 10.1172/jci79408] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/08/2015] [Indexed: 11/17/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal prion disease of North American deer and elk and poses an unclear risk for transmission to humans. Human exposure to CWD occurs through hunting activities and consumption of venison from prion-infected animals. Although the amino acid residues of the prion protein (PrP) that prevent or permit human CWD infection are unknown, NMR-based structural studies suggest that the β2-α2 loop (residues 165-175) may impact species barriers. Here we sought to define PrP sequence determinants that affect CWD transmission to humans. We engineered transgenic mice that express human PrP with four amino acid substitutions that result in expression of PrP with a β2-α2 loop (residues 165-175) that exactly matches that of elk PrP. Compared with transgenic mice expressing unaltered human PrP, mice expressing the human-elk chimeric PrP were highly susceptible to elk and deer CWD prions but were concurrently less susceptible to human Creutzfeldt-Jakob disease prions. A systematic in vitro survey of amino acid differences between humans and cervids identified two additional residues that impacted CWD conversion of human PrP. This work identifies amino acids that constitute a substantial structural barrier for CWD transmission to humans and helps illuminate the molecular requirements for cross-species prion transmission.
Collapse
Affiliation(s)
- Timothy D. Kurt
- Departments of Pathology and Medicine, UCSD, La Jolla, California, USA
| | - Lin Jiang
- UCLA-DOE Institute, Howard Hughes Medical Institute, and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | | | - Cyrus Bett
- Departments of Pathology and Medicine, UCSD, La Jolla, California, USA
| | - Jun Liu
- Departments of Pathology and Medicine, UCSD, La Jolla, California, USA
| | - Tom Yang
- Departments of Pathology and Medicine, UCSD, La Jolla, California, USA
| | - Terry R. Spraker
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Joaquín Castilla
- CIC bioGUNE, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - David Eisenberg
- UCLA-DOE Institute, Howard Hughes Medical Institute, and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Qingzhong Kong
- Departments of Pathology and Neurology, and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christina J. Sigurdson
- Departments of Pathology and Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Microbiology, and Immunology, UCD, Davis, California, USA
| |
Collapse
|
14
|
West Greenlee MH, Smith JD, Platt EM, Juarez JR, Timms LL, Greenlee JJ. Changes in retinal function and morphology are early clinical signs of disease in cattle with bovine spongiform encephalopathy. PLoS One 2015; 10:e0119431. [PMID: 25756286 PMCID: PMC4355414 DOI: 10.1371/journal.pone.0119431] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) belongs to a group of fatal, transmissible protein misfolding diseases known as transmissible spongiform encephalopathies (TSEs). All TSEs are caused by accumulation of misfolded prion protein (PrPSc) throughout the central nervous system (CNS), which results in neuronal loss and ultimately death. Like other protein misfolding diseases including Parkinson's disease and Alzheimer's disease, TSEs are generally not diagnosed until the onset of disease after the appearance of unequivocal clinical signs. As such, identification of the earliest clinical signs of disease may facilitate diagnosis. The retina is the most accessible part of the central nervous system, and retinal pathology in TSE affected animals has been previously reported. Here we describe antemortem changes in retinal function and morphology that are detectable in BSE inoculated animals several months (up to 11 months) prior to the appearance of any other signs of clinical disease. We also demonstrate that differences in the severity of these clinical signs reflect the amount of PrPSc accumulation in the retina and the resulting inflammatory response of the tissue. These results are the earliest reported clinical signs associated with TSE infection and provide a basis for understanding the pathology and evaluating therapeutic interventions.
Collapse
Affiliation(s)
- M. Heather West Greenlee
- Department of Biomedical Sciences and Interdepartmental Toxicology Program, Iowa State University, Ames, IA 50010, United States of America
- * E-mail:
| | - Jodi D. Smith
- Virus and Prion Research Unit, National Animal Disease Center, Ames, IA 50010, United States of America
| | - Ekundayo M. Platt
- Department of Genetics and Cell Biology and Interdepartmental Toxicology Program, Iowa State University, Ames, IA 50010, United States of America
| | - Jessica R. Juarez
- Department of Animal Science, Iowa State University, Ames, IA 50010, United States of America
| | - Leo L. Timms
- Department of Animal Science, Iowa State University, Ames, IA 50010, United States of America
| | - Justin J. Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Ames, IA 50010, United States of America
| |
Collapse
|
15
|
Shi Q, Xiao K, Zhang BY, Zhang XM, Chen LN, Chen C, Gao C, Dong XP. Successive passaging of the scrapie strains, ME7-ha and 139A-ha, generated by the interspecies transmission of mouse-adapted strains into hamsters markedly shortens the incubation times, but maintains their molecular and pathological properties. Int J Mol Med 2015; 35:1138-46. [PMID: 25683243 DOI: 10.3892/ijmm.2015.2102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 02/10/2015] [Indexed: 11/06/2022] Open
Abstract
As a type of zoonotic disease, prion diseases may be transmitted naturally and experimentally among species. In a previous study, we demonstrated that the mouse-adapted scrapie strains, ME7 (ME7-mo) and 139A (139A-mo), can overcome the species barrier and induce experimental scrapie when inoculated into Golden hamsters and generated 2 new hamster-adapted strains, ME7 (ME7-ha) and 139A (139A-ha). In the present study, in order to assess the infectivity and other molecular and neuropathological properties of the newly formed scrapie agents, ME7-ha and 139A-ha were further intracerebrally inoculated into hamsters. Compared with infection with 1st passage strains, the incubation times and clinical courses of infection with 2nd passage strains were markedly shorter, which were quite comparable with those of the mice infected with their parent mouse strains. The glycosylation patterns of brain PrP(Sc) in the animals infected with the 2nd passage of those 2 strains maintained similar features as those in the animals infected with the 1st passage of those strains, with predominantly diglycosylated PrP(Sc). Neuropathological assays revealed comparable spongiform degeneration and microglia proliferation in the brain tissues from the infected mice and hamsters, but markedly more plaque-like deposits of PrP(Sc) and more severe astrogliosis in the brains of the hamster. These data indicate that the strains, ME7-ha 1st and 139A-ha 1st generated by interspecies infection can passage in the new host hamster and stably maintain their molecular and neuropathological characteristics.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xiao-Mei Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Li-Na Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| |
Collapse
|