1
|
Nafe R, Hattingen E. The Spectrum of Molecular Pathways in Gliomas-An Up-to-Date Review. Biomedicines 2023; 11:2281. [PMID: 37626776 PMCID: PMC10452344 DOI: 10.3390/biomedicines11082281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
During the last 20 years, molecular alterations have gained increasing significance in the diagnosis and biological assessment of tumors. Gliomas represent the largest group of tumors of the central nervous system, and the main aim of this review is to present the current knowledge on molecular pathways and their alterations in gliomas. A wide range of new insights has been gained, including evidence for the involvement of the WNT pathway or the hippo pathway in the pathobiology of gliomas, indicating a broad involvement of different pathways formerly not considered to play a central role in gliomas. Even new aspects of angiogenic, apoptotic, and metabolic pathways are presented, as well as the rapidly growing field of epigenetic processes, including non-coding RNAs. The two major conclusions drawn from the present review are the distinct interconnectivity of the whole spectrum of molecular pathways and the prominent role of non-coding RNAs, especially circular RNAs, in the regulation of specific targets. All these new insights are discussed, even considering the topic of the resistance to therapy of gliomas, along with aspects that are still incompletely understood, like the role of hydroxymethylation, or even ferroptosis, in the pathobiology of gliomas.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
2
|
Zhang B, Lapenta K, Wang Q, Nam JH, Chung D, Robert ME, Nathanson MH, Yang X. Trefoil factor 2 secreted from damaged hepatocytes activates hepatic stellate cells to induce fibrogenesis. J Biol Chem 2021; 297:100887. [PMID: 34146542 PMCID: PMC8267550 DOI: 10.1016/j.jbc.2021.100887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a common characteristic of chronic liver diseases. The activation of hepatic stellate cells (HSCs) plays a key role in fibrogenesis in response to liver injury, yet the mechanism by which damaged hepatocytes modulate the activation of HSCs is poorly understood. Our previous studies have established that liver-specific deletion of O-GlcNAc transferase (OGT)leads to hepatocyte necroptosis and spontaneous fibrosis. Here, we report that OGT-deficient hepatocytes secrete trefoil factor 2 (TFF2) that activates HSCs and contributes to the fibrogenic process. The expression and secretion of TFF2 are induced in OGT-deficient hepatocytes but not in WT hepatocytes. TFF2 activates the platelet-derived growth factor receptor beta signaling pathway that promotes the proliferation and migration of primary HSCs. TFF2 protein expression is elevated in mice with carbon tetrachloride-induced liver injury. These findings identify TFF2 as a novel factor that mediates intercellular signaling between hepatocytes and HSCs and suggest a role of the hepatic OGT–TFF2 axis in the process of fibrogenesis.
Collapse
Affiliation(s)
- Bichen Zhang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Kalina Lapenta
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Qi Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Jin Hyun Nam
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Marie E Robert
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael H Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
3
|
Tilak M, Holborn J, New LA, Lalonde J, Jones N. Receptor Tyrosine Kinase Signaling and Targeting in Glioblastoma Multiforme. Int J Mol Sci 2021; 22:1831. [PMID: 33673213 PMCID: PMC7918566 DOI: 10.3390/ijms22041831] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is amongst the deadliest of human cancers, with a median survival rate of just over one year following diagnosis. Characterized by rapid proliferation and diffuse infiltration into the brain, GBM is notoriously difficult to treat, with tumor cells showing limited response to existing therapies and eventually developing resistance to these interventions. As such, there is intense interest in better understanding the molecular alterations in GBM to guide the development of more efficient targeted therapies. GBM tumors can be classified into several molecular subtypes which have distinct genetic signatures, and they show aberrant activation of numerous signal transduction pathways, particularly those connected to receptor tyrosine kinases (RTKs) which control glioma cell growth, survival, migration, invasion, and angiogenesis. There are also non-canonical modes of RTK signaling found in GBM, which involve G-protein-coupled receptors and calcium channels. This review uses The Cancer Genome Atlas (TCGA) GBM dataset in combination with a data-mining approach to summarize disease characteristics, with a focus on select molecular pathways that drive GBM pathogenesis. We also present a unique genomic survey of RTKs that are frequently altered in GBM subtypes, as well as catalog the GBM disease association scores for all RTKs. Lastly, we discuss current RTK targeted therapies and highlight emerging directions in GBM research.
Collapse
Affiliation(s)
| | | | | | | | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.T.); (J.H.); (L.A.N.); (J.L.)
| |
Collapse
|
4
|
DeNies MS, Smrcka AV, Schnell S, Liu AP. β-arrestin mediates communication between plasma membrane and intracellular GPCRs to regulate signaling. Commun Biol 2020; 3:789. [PMID: 33339901 PMCID: PMC7749148 DOI: 10.1038/s42003-020-01510-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/16/2020] [Indexed: 01/14/2023] Open
Abstract
It has become increasingly apparent that G protein-coupled receptor (GPCR) localization is a master regulator of cell signaling. However, the molecular mechanisms involved in this process are not well understood. To date, observations of intracellular GPCR activation can be organized into two categories: a dependence on OCT3 cationic channel-permeable ligands or the necessity of endocytic trafficking. Using CXC chemokine receptor 4 (CXCR4) as a model, we identified a third mechanism of intracellular GPCR signaling. We show that independent of membrane permeable ligands and endocytosis, upon stimulation, plasma membrane and internal pools of CXCR4 are post-translationally modified and collectively regulate EGR1 transcription. We found that β-arrestin-1 (arrestin 2) is necessary to mediate communication between plasma membrane and internal pools of CXCR4. Notably, these observations may explain that while CXCR4 overexpression is highly correlated with cancer metastasis and mortality, plasma membrane localization is not. Together these data support a model where a small initial pool of plasma membrane-localized GPCRs are capable of activating internal receptor-dependent signaling events. DeNies et al. identify a new mechanism of intracellular GPCR signalling. Using CXC chemokine receptor 4 (CXCR4) as a model, they show that upon stimulation with receptor agonists that not only plasma membrane-localized receptors, but also intracellular CXCR4 molecules are post-translationally modified and regulate transcription. This study suggests that a small pool of plasma membrane-localized GPCRs can activate internal receptor-dependent signaling, and that β-arrestin-1 mediates this activation.
Collapse
Affiliation(s)
- Maxwell S DeNies
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Santiago Schnell
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Allen P Liu
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA. .,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Jin W. The Role of Tyrosine Kinases as a Critical Prognostic Parameter and Its Targeted Therapies in Ewing Sarcoma. Front Cell Dev Biol 2020; 8:613. [PMID: 32754598 PMCID: PMC7381324 DOI: 10.3389/fcell.2020.00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (ES) is a rare, highly aggressive, bone, or soft tissue-associated tumor. Although this sarcoma often responds well to initial chemotherapy, 40% of the patients develop a lethal recurrence of the disease, with death recorded in 75-80% of patients with metastatic ES within 5 years, despite receiving high-dose chemotherapy. ES is genetically well-characterized, as indicated by the EWS-FLI1 fusion protein encoded as a result of chromosomal translocation in 80-90% of patients with ES, as well as in ES-related cancer cell lines. Recently, tyrosine kinases have been identified in the pathogenesis of ES. These tyrosine kinases, acting as oncoproteins, are associated with the clinical pathogenesis, metastasis, acquisition of self-renewal traits, and chemoresistance of ES, through the activation of various intracellular signaling pathways. This review describes the recent progress related to cellular and molecular functional roles of tyrosine kinases in the progression of ES.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
6
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
7
|
Targeted genomic CRISPR-Cas9 screen identifies MAP4K4 as essential for glioblastoma invasion. Sci Rep 2019; 9:14020. [PMID: 31570734 PMCID: PMC6768851 DOI: 10.1038/s41598-019-50160-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/02/2019] [Indexed: 01/11/2023] Open
Abstract
Among high-grade brain tumors, glioblastoma is particularly difficult to treat, in part due to its highly infiltrative nature which contributes to the malignant phenotype and high mortality in patients. In order to better understand the signaling pathways underlying glioblastoma invasion, we performed the first large-scale CRISPR-Cas9 loss of function screen specifically designed to identify genes that facilitate cell invasion. We tested 4,574 genes predicted to be involved in trafficking and motility. Using a transwell invasion assay, we discovered 33 genes essential for invasion. Of the 11 genes we selected for secondary testing using a wound healing assay, 6 demonstrated a significant decrease in migration. The strongest regulator of invasion was mitogen-activated protein kinase 4 (MAP4K4). Targeting of MAP4K4 with single guide RNAs or a MAP4K4 inhibitor reduced migration and invasion in vitro. This effect was consistent across three additional patient derived glioblastoma cell lines. Analysis of epithelial-mesenchymal transition markers in U138 cells with lack or inhibition of MAP4K4 demonstrated protein expression consistent with a non-invasive state. Importantly, MAP4K4 inhibition limited migration in a subset of human glioma organotypic slice cultures. Our results identify MAP4K4 as a novel potential therapeutic target to limit glioblastoma invasion.
Collapse
|
8
|
PDGFR-induced autocrine SDF-1 signaling in cancer cells promotes metastasis in advanced skin carcinoma. Oncogene 2019; 38:5021-5037. [PMID: 30874597 PMCID: PMC6756210 DOI: 10.1038/s41388-019-0773-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/21/2019] [Accepted: 02/22/2019] [Indexed: 12/22/2022]
Abstract
Advanced and undifferentiated skin squamous cell carcinomas (SCCs) exhibit aggressive growth and enhanced metastasis capability, which is associated in mice with an expansion of the cancer stem-like cell (CSC) population and with changes in the regulatory mechanisms that control the proliferation and invasion of these cells. Indeed, autocrine activation of PDGFRα induces CSC invasion and promotes distant metastasis in advanced SCCs. However, the mechanisms involved in this process were unclear. Here, we show that CSCs of mouse advanced SCCs (L-CSCs) express CXCR4 and CXCR7, both receptors of SDF-1. PDGFRα signaling induces SDF-1 expression and secretion, and the autocrine activation of this pathway in L-CSCs. Autocrine SDF-1/CXCR4 signaling induces L-CSC proliferation and survival, and mediates PDGFRα-induced invasion, promoting in vivo lung metastasis. Validation of these findings in patient samples of skin SCCs shows a strong correlation between the expression of SDF1, PDGFRA, and PDGFRB, which is upregulated, along CXCR4 in tumor cells of advanced SCCs. Furthermore, PDGFR regulates SDF-1 expression and inhibition of SDF-1/CXCR4 and PDGFR pathways blocks distant metastasis of human PD/S-SCCs. Our results indicate that functional crosstalk between PDGFR/SDF-1 signaling regulates tumor cell invasion and metastasis in human and mouse advanced SCCs, and suggest that CXCR4 and/or PDGFR inhibitors could be used to block metastasis of these aggressive tumors.
Collapse
|
9
|
Radiation Increases Functional KCa3.1 Expression and Invasiveness in Glioblastoma. Cancers (Basel) 2019; 11:cancers11030279. [PMID: 30813636 PMCID: PMC6468446 DOI: 10.3390/cancers11030279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/25/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is a deadly brain tumor, with fast recurrence even after surgical intervention, radio- and chemotherapies. One of the reasons for relapse is the early invasion of surrounding brain parenchyma by GBM, rendering tumor eradication difficult. Recent studies demonstrate that, in addition to eliminate possible residual tumoral cells after surgery, radiation stimulates the infiltrative behavior of GBM cells. The intermediate conductance of Ca2+-activated potassium channels (KCa3.1) play an important role in regulating the migration of GBM. Here, we show that high dose radiation of patient-derived GBM cells increases their invasion, and induces the transcription of key genes related to these functions, including the IL-4/IL-4R pair. In addition, we demonstrate that radiation increases the expression of KCa3.1 channels, and that their pharmacological inhibition counteracts the pro-invasive phenotype induced by radiation in tumor cells. Our data describe a possible approach to treat tumor resistance that follows radiation therapy in GBM patients.
Collapse
|
10
|
Lepore F, D'Alessandro G, Antonangeli F, Santoro A, Esposito V, Limatola C, Trettel F. CXCL16/CXCR6 Axis Drives Microglia/Macrophages Phenotype in Physiological Conditions and Plays a Crucial Role in Glioma. Front Immunol 2018; 9:2750. [PMID: 30542347 PMCID: PMC6277753 DOI: 10.3389/fimmu.2018.02750] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/08/2018] [Indexed: 01/09/2023] Open
Abstract
Microglia are patrolling cells that sense changes in the brain microenvironment and respond acquiring distinct phenotypes that can be either beneficial or detrimental for brain homeostasis. Anti-inflammatory microglia release soluble factors that might promote brain repair; however, in glioma, anti-inflammatory microglia dampen immune response and promote a brain microenvironment that foster tumor growth and invasion. The chemokine CXCL16 is expressed in the brain, where it is neuroprotective against brain ischemia, and it has been found to be over-expressed in glioblastoma (GBM). Considering that CXCL16 specific receptor CXCR6 is diffusely expressed in the brain including in microglia cells, we wanted to investigate the role of CXCL16 in the modulation of microglia cell activity and phenotype, and in the progression of glioma. Here we report that CXCL16 drives microglia polarization toward an anti-inflammatory phenotype, also restraining microglia polarization toward an inflammatory phenotype upon LPS and IFNγ stimulation. In the context of glioma, we demonstrate that CXCL16 released by tumor cells is determinant in promoting glioma associated microglia/macrophages (GAMs) modulation toward an anti-inflammatory/pro-tumor phenotype, and that cxcr6ko mice, orthotopically implanted into the brain with GL261 glioma cells,survive longer compared to wild-type mice. We also describe that CXCL16/CXCR6 signaling acts directly on mouse glioma cells, as well as human primary GBM cells, promoting tumor cell growth, migration and invasion. All together these data suggest that CXCL16 signaling could represent a good target to modulate microglia phenotype in order to restrain inflammation or to limit glioma progression.
Collapse
Affiliation(s)
- Francesca Lepore
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Fabrizio Antonangeli
- Department of Molecular Medicine, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti Rome, Italy
| | - Antonio Santoro
- Department of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Vincenzo Esposito
- IRCCS Neuromed, Pozzilli, Italy.,Department of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti Rome, Italy
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
11
|
Kv1.3 activity perturbs the homeostatic properties of astrocytes in glioma. Sci Rep 2018; 8:7654. [PMID: 29769580 PMCID: PMC5955950 DOI: 10.1038/s41598-018-25940-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/02/2018] [Indexed: 01/06/2023] Open
Abstract
Glial cells actively maintain the homeostasis of brain parenchyma, regulating neuronal excitability and preserving the physiological composition of the extracellular milieu. Under pathological conditions, some functions of glial cells could be compromised, exacerbating the neurotoxic processes. We investigated if the homeostatic activities of astrocytes and microglia could be modulated by the voltage-gated K+ channel Kv1.3. To this end we used in vitro and in vivo systems to model cell-to-cell interactions in tumoral conditions, using a specific inhibitor of Kv1.3 channels, 5-(4-phenoxybutoxy) psoralen (PAP-1). We demonstrated that PAP-1 increases astrocytic glutamate uptake, reduces glioma-induced neurotoxicity, and decreases microglial migration and phagocytosis. We also found in a tumor blood brain barrier model that Kv1.3 activity is required for its integrity. The crucial role of Kv1.3 channels as modulators of glial cell activity was confirmed in a mouse model of glioma, where PAP-1 treatment reduces tumor volume only in the presence of active glutamate transporters GLT-1. In the same mouse model, PAP-1 reduces astrogliosis and microglial infiltration. PAP-1 also reduces tumor cell invasion. All these findings point to Kv1.3 channels as potential targets to re-instruct glial cells toward their homeostatic functions, in the context of brain tumors.
Collapse
|
12
|
Siripurapu P, Kankanamge D, Ratnayake K, Senarath K, Karunarathne A. Two independent but synchronized Gβγ subunit-controlled pathways are essential for trailing-edge retraction during macrophage migration. J Biol Chem 2017; 292:17482-17495. [PMID: 28864771 DOI: 10.1074/jbc.m117.787838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/27/2017] [Indexed: 12/25/2022] Open
Abstract
Chemokine-induced directional cell migration is a universal cellular mechanism and plays crucial roles in numerous biological processes, including embryonic development, immune system function, and tissue remodeling and regeneration. During the migration of a stationary cell, the cell polarizes, forms lamellipodia at the leading edge (LE), and triggers the concurrent retraction of the trailing edge (TE). During cell migration governed by inhibitory G protein (Gi)-coupled receptors (GPCRs), G protein βγ (Gβγ) subunits control the LE signaling. Interestingly, TE retraction has been linked to the activation of the small GTPase Ras homolog family member A (RhoA) by the Gα12/13 pathway. However, it is not clear how the activation of Gi-coupled GPCRs at the LE orchestrates the TE retraction in RAW264.7 macrophages. Here, using an optogenetic approach involving an opsin to activate the Gi pathway in defined subcellular regions of RAW cells, we show that in addition to their LE activities, free Gβγ subunits also govern TE retraction by operating two independent, yet synchronized, pathways. The first pathway involves RhoA activation, which prevents dephosphorylation of the myosin light chain, allowing actomyosin contractility to proceed. The second pathway activates phospholipase Cβ and induces myosin light chain phosphorylation to enhance actomyosin contractility through increasing cytosolic calcium. We further show that both of these pathways are essential, and inhibition of either one is sufficient to abolish the Gi-coupled GPCR-governed TE retraction and subsequent migration of RAW cells.
Collapse
Affiliation(s)
- Praneeth Siripurapu
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Dinesh Kankanamge
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Kasun Ratnayake
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Kanishka Senarath
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Ajith Karunarathne
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
13
|
Başer G, Sivrikoz ON, Karahan E, Şeker Ün E, Yıldırım H, Sarıoğlu S. Chemokine CXCR-4 and cyclooxygenase-2 in the pathogenesis of pterygium. Turk J Med Sci 2017; 47:1061-1066. [PMID: 29152967 DOI: 10.3906/sag-1508-91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background/aim: This study aimed to investigate the expression of chemokine receptor 4 (CXCR-4) and cyclooxygenase-2 (COX-2) in the epithelium and stroma of pterygium tissue in comparison with healthy conjunctiva. Materials and methods: The expression of CXCR4 and COX-2 was investigated by immunohistochemistry in the epithelium and stroma of the pterygium tissue of 29 eyes and compared with healthy conjunctival tissues. The correlation between CXCR4 and COX-2 expression as well as the correlation of these markers with the area of pterygium were evaluated statistically. Results: COX-2 staining scores were 1.75 ± 0.63 in the epithelium and 1.20 ± 0.62 in the stroma of the pterygium tissue. Mean CXCR-4 staining in the epithelium was 0.069 ± 0.37, whereas it was 5.0 ± 2.84 cells in the stroma. There was almost no staining of COX-2 and CXCR4 in the control samples. There was a strong positive correlation between the expression of CXCR-4 and COX-2 in the stroma of the pterygium. Conclusion: CXCR-4 and COX-2 may play important roles in the pathogenesis of pterygium.
Collapse
|
14
|
3-Bromopyruvate treatment induces alterations of metabolic and stress-related pathways in glioblastoma cells. J Proteomics 2017; 152:329-338. [DOI: 10.1016/j.jprot.2016.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/27/2022]
|
15
|
Li H, Zheng J, Guan R, Zhu Z, Yuan X. Tyrphostin AG 1296 induces glioblastoma cell apoptosis in vitro and in vivo. Oncol Lett 2015; 10:3429-3433. [PMID: 26788146 PMCID: PMC4665272 DOI: 10.3892/ol.2015.3781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma is the most common type of malignant human brain tumor. Currently available chemotherapies for glioblastoma focus on targeting tyrosine kinases. However, the existing inhibitors of tyrosine kinases have not produced the therapeutic outcomes that were anticipated. In order to investigate the viability alternative chemotherapeutic agents in this disease, the present study examined the anticancer effects of tyrphostin AG 1296, focusing on its involvement in apoptosis in glioblastoma cells. The study aimed to identify whether tyrphostin AG 1296 affects glioblastoma cell growth by inducing cell apoptosis. To achieve this, cell viability, propidium iodide analysis and cell invasion assay were used to measure cell growth, cell apoptosis and cell migration of human glioblastoma cells. The results showed that tyrphostin AG 1296 treatment reduced cell viability and suppressed migration of human glioblastoma cells. It was also demonstrated that tyrphostin AG 1296 induced cell apoptosis in vitro. Finally, tyrphostin AG 1296 was also shown to significantly inhibit the growth of glioblastoma cells and to increase tumor cell apoptosis in vivo. These findings suggest that tyrphostin AG 1296 induces apoptosis, thereby reducing cell viability and capacity for migration of glioblastoma cells.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Neurosurgery, The Eight People's Hospital of Shenzhen, Shenzhen, Guangdong 510000, P.R. China
| | - Junning Zheng
- Department of Neurosurgery, The Eight People's Hospital of Shenzhen, Shenzhen, Guangdong 510000, P.R. China
| | - Ruiyun Guan
- Department of Neurosurgery, The Eight People's Hospital of Shenzhen, Shenzhen, Guangdong 510000, P.R. China
| | - Zifeng Zhu
- Department of Neurosurgery, The Eight People's Hospital of Shenzhen, Shenzhen, Guangdong 510000, P.R. China
| | - Xianhou Yuan
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
16
|
Tegge AN, Sharp N, Murali TM. Xtalk: a path-based approach for identifying crosstalk between signaling pathways. Bioinformatics 2015; 32:242-51. [PMID: 26400040 DOI: 10.1093/bioinformatics/btv549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 09/04/2015] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION Cells communicate with their environment via signal transduction pathways. On occasion, the activation of one pathway can produce an effect downstream of another pathway, a phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs rely on simple overlap statistics. RESULTS We present Xtalk, a path-based approach for identifying pairs of pathways that may crosstalk. Xtalk computes the statistical significance of the average length of multiple short paths that connect receptors in one pathway to the transcription factors in another. By design, Xtalk reports the precise interactions and mechanisms that support the identified crosstalk. We applied Xtalk to signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which Xtalk achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over the closest competing approach. The area under the receiver operator characteristic curve varied with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level. We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000 pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature (81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by Xtalk that accurately recovered known mechanisms of crosstalk. AVAILABILITY AND IMPLEMENTATION The XTALK software is available at http://bioinformatics.cs.vt.edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-bioinformatics-xtalk. CONTACT ategge@vt.edu, murali@cs.vt.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Allison N Tegge
- Department of Computer Science, Department of Statistics and
| | | | - T M Murali
- Department of Computer Science, ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
17
|
Davidescu M, Macchioni L, Scaramozzino G, Cristina Marchetti M, Migliorati G, Vitale R, Corcelli A, Roberti R, Castigli E, Corazzi L. The energy blockers bromopyruvate and lonidamine lead GL15 glioblastoma cells to death by different p53-dependent routes. Sci Rep 2015; 5:14343. [PMID: 26387611 PMCID: PMC4585687 DOI: 10.1038/srep14343] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 08/26/2015] [Indexed: 12/29/2022] Open
Abstract
The energy metabolism of tumor cells relies on aerobic glycolysis rather than mitochondrial oxidation. This difference between normal and cancer cells provides a biochemical basis for new therapeutic strategies aimed to block the energy power plants of cells. The effects produced by the energy blockers bromopyruvate (3BP) and lonidamine (LND) and the underlying biochemical mechanisms were investigated in GL15 glioblastoma cells. 3BP exerts early effects compared to LND, even though both drugs lead cells to death but by different routes. A dramatic decrease of ATP levels occurred after 1 hour treatment with 3BP, followed by cytochrome c and hexokinase II degradation, and by the decrease of both LC3I/LC3II ratio and p62, markers of an autophagic flux. In addition, Akt(Ser(473)) and p53(Ser(15)/Ser(315)) dephosphorylation occurred. In LND treatment, sustained ATP cellular levels were maintained up to 40 hours. The autophagic response of cells was overcome by apoptosis that was preceded by phosphatidylinositol disappearance and pAkt decrease. This last event favored p53 translocation to mitochondria triggering a p53-dependent apoptotic route, as observed at 48 and 72 hours. Adversely, in 3BP treatment, phospho-p53 dephosphorylation targeted p53 to MDM2-dependent proteolysis, thus channeling cells to irreversible autophagy.
Collapse
Affiliation(s)
| | - Lara Macchioni
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Gaetano Scaramozzino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | | | | | - Rita Vitale
- IMM-CNR, Institute for Microelectronics and Microsystems, National Research Council, Lecce, Italy
| | - Angela Corcelli
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "A. Moro", Bari, Italy
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Emilia Castigli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Lanfranco Corazzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
18
|
Catalano M, D'Alessandro G, Lepore F, Corazzari M, Caldarola S, Valacca C, Faienza F, Esposito V, Limatola C, Cecconi F, Di Bartolomeo S. Autophagy induction impairs migration and invasion by reversing EMT in glioblastoma cells. Mol Oncol 2015; 9:1612-25. [PMID: 26022108 DOI: 10.1016/j.molonc.2015.04.016] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/20/2022] Open
Abstract
Cell migration and invasion are highly regulated processes involved in both physiological and pathological conditions. Here we show that autophagy modulation regulates the migration and invasion capabilities of glioblastoma (GBM) cells. We observed that during autophagy occurrence, obtained by nutrient deprivation or by pharmacological inhibition of the mTOR complexes, GBM migration and chemokine-mediated invasion were both impaired. We also observed that SNAIL and SLUG, two master regulators of the epithelial-mesenchymal transition (EMT process), were down-regulated upon autophagy stimulation and, as a consequence, we found a transcriptional and translational up-regulation of N- and R-cadherins. Conversely, in BECLIN 1-silenced GBM cells, an increased migration capability and an up-regulation of SNAIL and SLUG was observed, with a resulting decrease in N- and R-cadherin mRNAs. ATG5 and ATG7 down-regulation also resulted in an increased migration and invasion of GBM cells combined to an up-regulation of the two EMT regulators. Finally, experiments performed in primary GBM cells from patients largely confirmed the results obtained in established cell cultures. Overall, our results indicate that autophagy modulation triggers a molecular switch from a mesenchymal phenotype to an epithelial-like one in GBM cellular models. Since the aggressiveness and lethality of GBM is defined by local invasion and resistance to chemotherapy, we believe that our evidence provides a further rationale for including autophagy/mTOR-based targets in the current therapeutical regimen of GBM patients.
Collapse
Affiliation(s)
- Myriam Catalano
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; Neuromed IRCCS, Via Atinese, Pozzilli, Italy
| | - Giuseppina D'Alessandro
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; Neuromed IRCCS, Via Atinese, Pozzilli, Italy
| | - Francesca Lepore
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marco Corazzari
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS L. Spallanzani, Rome, Italy
| | - Sara Caldarola
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cristina Valacca
- Department of Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Cristina Limatola
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; Neuromed IRCCS, Via Atinese, Pozzilli, Italy
| | - Francesco Cecconi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Department of Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy; Unit of Cell Stress and Survival, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Sabrina Di Bartolomeo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Department of Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
19
|
Noskovičová N, Petřek M, Eickelberg O, Heinzelmann K. Platelet-Derived Growth Factor Signaling in the Lung. From Lung Development and Disease to Clinical Studies. Am J Respir Cell Mol Biol 2015; 52:263-84. [DOI: 10.1165/rcmb.2014-0294tr] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Sana J, Radova L, Lakomy R, Kren L, Fadrus P, Smrcka M, Besse A, Nekvindova J, Hermanova M, Jancalek R, Svoboda M, Hajduch M, Slampa P, Vyzula R, Slaby O. Risk Score based on microRNA expression signature is independent prognostic classifier of glioblastoma patients. Carcinogenesis 2014; 35:2756-62. [PMID: 25322872 DOI: 10.1093/carcin/bgu212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary brain tumor. The prognosis of GBM patients varies considerably and the histopathological examination is not sufficient for individual risk estimation. MicroRNAs (miRNAs) are small, non-coding RNAs that function as post-transcriptional regulators of gene expression and were repeatedly proved to play important roles in pathogenesis of GBM. In our study, we performed global miRNA expression profiling of 58 glioblastoma tissue samples obtained during surgical resections and 10 non-tumor brain tissues. The subsequent analysis revealed 28 significantly deregulated miRNAs in GBM tissue, which were able to precisely classify all examined samples. Correlation with clinical data led to identification of six-miRNA signature significantly associated with progression free survival [hazard ratio (HR) 1.98, 95% confidence interval (CI) 1.33-2.94, P < 0.001] and overa+ll survival (HR 2.86, 95% CI 1.91-4.29, P < 0.001). O(6)-methylguanine-DNA methyltransferase methylation status was evaluated as reference method and Risk Score based on six-miRNA signature indicated significant superiority in prediction of clinical outcome in GBM patients. Multivariate Cox analysis indicated that the Risk Score based on six-miRNA signature is an independent prognostic classifier of GBM patients. We suggest that the Risk Score presents promising prognostic algorithm with potential for individualized treatment decisions in clinical management of GBM patients.
Collapse
Affiliation(s)
- Jiri Sana
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Radek Lakomy
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Leos Kren
- Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Department of Pathology, University Hospital Brno, Brno 62500, Czech Republic
| | - Pavel Fadrus
- Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Department of Neurosurgery, University Hospital Brno, Brno 62500, Czech Republic
| | - Martin Smrcka
- Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Department of Neurosurgery, University Hospital Brno, Brno 62500, Czech Republic
| | - Andrej Besse
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Jana Nekvindova
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine and Faculty Hospital in Hradec Kralove, Charles University, Hradec Kralove 50005, Czech Republic
| | - Marketa Hermanova
- Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, First Department of Pathological Anatomy, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Radim Jancalek
- Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Department of Neurosurgery, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Marek Svoboda
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc 77900, Czech Republic and
| | - Pavel Slampa
- Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic
| | - Rostislav Vyzula
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Ondrej Slaby
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic,
| |
Collapse
|
21
|
Cherry AE, Stella N. G protein-coupled receptors as oncogenic signals in glioma: emerging therapeutic avenues. Neuroscience 2014; 278:222-36. [PMID: 25158675 DOI: 10.1016/j.neuroscience.2014.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 12/20/2022]
Abstract
Gliomas are the most common malignant intracranial tumors. Newly developed targeted therapies for these cancers aim to inhibit oncogenic signals, many of which emanate from receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR). Unfortunately, the first-generation treatments targeting these oncogenic signals provide little survival benefit in both mouse xenograft models and human patients. The search for new treatment options has uncovered several G protein-coupled receptor (GPCR) candidates and generated a growing interest in this class of proteins as alternative therapeutic targets for the treatment of various cancers, including glioblastoma multiforme (GBM). GPCRs constitute a large family of membrane receptors that influence oncogenic pathways through canonical and non-canonical signaling. Accordingly, evidence indicates that GPCRs display a unique ability to crosstalk with receptor tyrosine kinases, making them important molecular components controlling tumorigenesis. This review summarizes the current research on GPCR functionality in gliomas and explores the potential of modulating these receptors to treat this devastating disease.
Collapse
Affiliation(s)
- A E Cherry
- Department of Pharmacology, University of Washington, 1959 NE Pacific Street, BB1538, Health Sciences Building, Seattle, WA 98195, United States.
| | - N Stella
- Department of Pharmacology, University of Washington, 1959 NE Pacific Street, BB1538, Health Sciences Building, Seattle, WA 98195, United States; Department of Psychiatry & Behavioral Sciences, University of Washington, 1959 NE Pacific Street, BB1538, Health Sciences Building, Seattle, WA 98195, United States.
| |
Collapse
|
22
|
Li R, Li X, Ning S, Ye J, Han L, Kang C, Li X. Identification of a core miRNA-pathway regulatory network in glioma by therapeutically targeting miR-181d, miR-21, miR-23b, β-Catenin, CBP, and STAT3. PLoS One 2014; 9:e101903. [PMID: 25007077 PMCID: PMC4090169 DOI: 10.1371/journal.pone.0101903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/12/2014] [Indexed: 11/24/2022] Open
Abstract
The application of microRNAs (miRNAs) in the therapeutics of glioma and other human diseases is an area of intense interest. However, it’s still a great challenge to interpret the functional consequences of using miRNAs in glioma therapy. Here, we examined paired deep sequencing expression profiles of miRNAs and mRNAs from human glioma cell lines after manipulating the levels of miRNAs miR-181d, -21, and -23b, as well as transcriptional regulators β-catenin, CBP, and STAT3. An integrated approach was used to identify functional miRNA-pathway regulatory networks (MPRNs) responding to each manipulation. MiRNAs were identified to regulate glioma related biological pathways collaboratively after manipulating the level of either post-transcriptional or transcriptional regulators, and functional synergy and crosstalk was observed between different MPRNs. MPRNs responsive to multiple interventions were found to occupy central positions in the comprehensive MPRN (cMPRN) generated by integrating all the six MPRNs. Finally, we identified a core module comprising 14 miRNAs and five pathways that could predict the survival of glioma patients and represent potential targets for glioma therapy. Our results provided novel insight into miRNA regulatory mechanisms implicated in therapeutic interventions and could offer more inspiration to miRNA-based glioma therapy.
Collapse
Affiliation(s)
- Ronghong Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiang Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jingrun Ye
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lei Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China
- * E-mail: (XL); (CK)
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- * E-mail: (XL); (CK)
| |
Collapse
|
23
|
Würth R, Bajetto A, Harrison JK, Barbieri F, Florio T. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Front Cell Neurosci 2014; 8:144. [PMID: 24904289 PMCID: PMC4036438 DOI: 10.3389/fncel.2014.00144] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022] Open
Abstract
Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells. Glioblastoma (GBM) is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem-like cells (CSCs) is believed to be the main responsible for tumor cell dissemination to the brain. GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g., CXCL12) causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4. This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include chemokine-based drugs.
Collapse
Affiliation(s)
- Roberto Würth
- Sezione di Farmacologia, Dipartimento di Medicina Interna, University of Genova Genova, Italy ; Centro di Eccellenza per la Ricerca Biomedica, University of Genova Genova, Italy
| | - Adriana Bajetto
- Sezione di Farmacologia, Dipartimento di Medicina Interna, University of Genova Genova, Italy ; Centro di Eccellenza per la Ricerca Biomedica, University of Genova Genova, Italy
| | - Jeffrey K Harrison
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida Gainesville, FL, USA
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna, University of Genova Genova, Italy ; Centro di Eccellenza per la Ricerca Biomedica, University of Genova Genova, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna, University of Genova Genova, Italy ; Centro di Eccellenza per la Ricerca Biomedica, University of Genova Genova, Italy
| |
Collapse
|
24
|
Abstract
Background Non-healing foot ulcers are the most common cause of non-traumatic amputation and hospitalization amongst diabetics in the developed world. Impaired wound neovascularization perpetuates a cycle of dysfunctional tissue repair and regeneration. Evidence implicates defective mobilization of marrow-derived progenitor cells (PCs) as a fundamental cause of impaired diabetic neovascularization. Currently, there are no FDA-approved therapies to address this defect. Here we report an endogenous PC strategy to improve diabetic wound neovascularization and closure through a combination therapy of AMD3100, which mobilizes marrow-derived PCs by competitively binding to the cell surface CXCR4 receptor, and PDGF-BB, which is a protein known to enhance cell growth, progenitor cell migration and angiogenesis. Methods and Results Wounded mice were assigned to 1 of 5 experimental arms (n = 8/arm): saline treated wild-type, saline treated diabetic, AMD3100 treated diabetic, PDGF-BB treated diabetic, and AMD3100/PDGF-BB treated diabetic. Circulating PC number and wound vascularity were analyzed for each group (n = 8/group). Cellular function was assessed in the presence of AMD3100. Using a validated preclinical model of type II diabetic wound healing, we show that AMD3100 therapy (10 mg/kg; i.p. daily) alone can rescue diabetes-specific defects in PC mobilization, but cannot restore normal wound neovascularization. Through further investigation, we demonstrate an acquired trafficking-defect within AMD3100-treated diabetic PCs that can be rescued by PDGF-BB (2 μg; topical) supplementation within the wound environment. Finally, we determine that combination therapy restores diabetic wound neovascularization and accelerates time to wound closure by 40%. Conclusions Combination AMD3100 and PDGF-BB therapy synergistically improves BM PC mobilization and trafficking, resulting in significantly improved diabetic wound closure and neovascularization. The success of this endogenous, cell-based strategy to improve diabetic wound healing using FDA-approved therapies is inherently translatable.
Collapse
|