1
|
Motahari Z, Lepe JJ, Bautista MR, Hoerig C, Plant-Fox AS, Das B, Fowler CD, Magge SN, Bota DA. Preclinical assessment of MAGMAS inhibitor as a potential therapy for pediatric medulloblastoma. PLoS One 2024; 19:e0300411. [PMID: 39436961 PMCID: PMC11495579 DOI: 10.1371/journal.pone.0300411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/01/2024] [Indexed: 10/25/2024] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. It has WNT-driven, SHH-driven/TP53 mutant, SHH-driven/TP53 wildtype, and non-WNT/non-SHH subgroups. MAGMAS (Mitochondrial Associated Granulocyte Macrophage colony-stimulating factor Signaling molecules) encodes a mitochondrial import inner membrane translocase subunit and is responsible for the translocation of matrix proteins across the inner membrane. We previously reported that a small molecule MAGMAS inhibitor, BT9, decreases cell proliferation, migration, and oxidative phosphorylation in adult glioblastoma cell lines. The aim of our study was to investigate whether the chemotherapeutic effect of BT9 can be extended to pediatric medulloblastoma. METHODS DAOY (SHH driven/tp53 mutant) and D425 (non-SHH group 3) were treated with BT9. For in vitro analysis, cell proliferation, death, migration, invasion, and metabolic activity were assessed using MTT assay, TUNEL staining, scratch wound assay, Matrigel invasion chambers, and seahorse assay, respectively. A D425 orthotopic xenograft mouse model was used to evaluate BT9 efficacy in vivo. RESULTS BT9 treatment resulted in a significant decrease in cell proliferation (DAOY, 24 hours IC50: 3.6 μM, 48 hours IC50: 2.3 μM, 72 hours IC50: 2.1 μM; D425 24 hours IC50: 3.4 μM, 48 hours IC50: 2.2 μM, 72 hours IC50: 2.1 μM) and a significant increase in cell death (DAOY, 24 hours p = 0.0004, 48 hours p<0.0001; D425, 24 hours p = 0.0001, 48 hours p = 0.02). In DAOY cells, 3 μM BT9 delayed migration and significantly reduced DAOY and D425 cell invasion (p < 0.0001). It also modified mitochondrial respiratory function in both medulloblastoma cell lines. Compared to control, however, BT9 administration did not improve survival in a D425 orthotopic xenograft mouse model. CONCLUSIONS Our in vitro data showed BT9 antitumor efficacy in DAOY and D425 cell lines, suggesting that BT9 may represent a promising targeted therapeutic in pediatric medulloblastoma. These data, however, need to be further validated in animal models.
Collapse
Affiliation(s)
- Zahra Motahari
- CHOC Neuroscience Institute, Children’s Hospital of Orange County, Orange, CA, United States of America
- Department of Pediatrics, University of Irvine, Irvine, CA, United States of America
| | - Javier J. Lepe
- Department of Neurology, School of Medicine, University of Irvine, Irvine, CA, United States of America
| | - Malia R. Bautista
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, United States of America
| | - Clay Hoerig
- Department of Pediatric Oncology, Children’s Hospital of Orange County, Orange, CA, United States of America
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Ashley S. Plant-Fox
- Department of Pediatric Oncology, Children’s Hospital of Orange County, Orange, CA, United States of America
- Department of Pediatric Oncology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States of America
| | - Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, United States of America
- Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Christie D. Fowler
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, United States of America
| | - Suresh N. Magge
- CHOC Neuroscience Institute, Children’s Hospital of Orange County, Orange, CA, United States of America
- Department of Neurosurgery, Children’s Hospital of Orange County, Orange, CA, United States of America
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Daniela A. Bota
- Department of Neurology, School of Medicine, University of Irvine, Irvine, CA, United States of America
| |
Collapse
|
2
|
Motahari Z, Lepe JJ, Bautista MR, Hoerig C, Plant-Fox AS, Das B, Fowler CD, Magge SN, Bota DA. Preclinical assessment of MAGMAS inhibitor as a potential therapy for pediatric medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582709. [PMID: 38464047 PMCID: PMC10925277 DOI: 10.1101/2024.02.29.582709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Medulloblastoma, the most common pediatric brain malignancy, has Sonic Hedgehog (SHH) and non-SHH group3 subtypes. MAGMAS (Mitochondrial Associated Granulocyte Macrophage colony-stimulating factor Signaling molecules) encode for mitochondrial import inner membrane translocase subunit and is responsible for translocation of matrix proteins across the inner membrane. We previously reported that a small molecule MAGMAS inhibitor, BT9, decreases cell proliferation, migration, and oxidative phosphorylation in adult glioblastoma cell lines. The aim of our study was to investigate whether the chemotherapeutic effect of BT9 can be extended to pediatric medulloblastoma. Methods Multiple in vitro assays were performed using human DAOY (SHH activated tp53 mutant) and D425 (non-SHH group 3) cells. The impact of BT9 on cellular growth, death, migration, invasion, and metabolic activity were quantified using MTT assay, TUNEL staining, scratch wound assay, Matrigel invasion chambers, and seahorse assay, respectively. Survival following 50mg/kg BT9 treatment was assessed in vivo in immunodeficient mice intracranially implanted with D425 cells. Results Compared to control, BT9 treatment led to a significant reduction in medulloblastoma cell growth (DAOY, 24hrs IC50: 3.6uM, 48hrs IC50: 2.3uM, 72hrs IC50: 2.1uM; D425 24hrs IC50: 3.4uM, 48hrs IC50: 2.2uM, 72hrs IC50: 2.1uM) and a significant increase in cell death (DAOY, 24hrs p=0.0004, 48hrs p<0.0001; D425, 24hrs p=0.0001, 48hrs p=0.02). In DAOY cells, 3uM BT9 delayed migration, and significantly decreased DAOY and D425 cells invasion (p < 0.0001). Our in vivo study, however, did not extend survival in xenograft mouse model of group3 medulloblastoma compared to vehicle-treated controls. Conclusions Our in vitro data showed BT9 antitumor efficacy in DAOY and D425 cell lines suggesting that BT9 may represent a promising targeted therapeutic in pediatric medulloblastoma. These data, however, need to be further validated in animal models.
Collapse
Affiliation(s)
- Zahra Motahari
- CHOC Neuroscience Institute, Children's Hospital of Orange County, Orange, CA, USA
- Department of Pediatrics, University of Irvine, CA, USA
| | - Javier J Lepe
- Department of Neurology, School of Medicine, University of Irvine, CA, USA
| | - Malia R Bautista
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, USA
| | - Clay Hoerig
- Department of Pediatric Oncology, Children's Hospital of Orange County, Orange, CA, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Ashley S Plant-Fox
- Department of Pediatric Oncology, Children's Hospital of Orange County, Orange, CA, USA
- Department of Pediatric Oncology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
- Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, USA
| | - Suresh N Magge
- CHOC Neuroscience Institute, Children's Hospital of Orange County, Orange, CA, USA
- Department of Neurosurgery, Children's Hospital of Orange County, Orange, CA, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Daniela A Bota
- Department of Neurology, School of Medicine, University of Irvine, CA, USA
| |
Collapse
|
3
|
Bogner EM, Daly AF, Gulde S, Karhu A, Irmler M, Beckers J, Mohr H, Beckers A, Pellegata NS. miR-34a is upregulated in AIP-mutated somatotropinomas and promotes octreotide resistance. Int J Cancer 2020; 147:3523-3538. [PMID: 32856736 DOI: 10.1002/ijc.33268] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/15/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
Pituitary adenomas (PAs) are intracranial tumors associated with significant morbidity due to hormonal dysregulation, mass effects and have a heavy treatment burden. Growth hormone (GH)-secreting PAs (somatotropinomas) cause acromegaly-gigantism. Genetic forms of somatotropinomas due to germline AIP mutations (AIPmut+) have an early onset and are aggressive and resistant to treatment with somatostatin analogs (SSAs), including octreotide. The molecular underpinnings of these clinical features remain unclear. We investigated the role of miRNA dysregulation in AIPmut+ vs AIPmut- PA samples by array analysis. miR-34a and miR-145 were highly expressed in AIPmut+ vs AIPmut- somatotropinomas. Ectopic expression of AIPmut (p.R271W) in Aip-/- mouse embryonic fibroblasts (MEFs) upregulated miR-34a and miR-145, establishing a causal link between AIPmut and miRNA expression. In PA cells (GH3), miR-34a overexpression promoted proliferation, clonogenicity, migration and suppressed apoptosis, whereas miR-145 moderately affected proliferation and apoptosis. Moreover, high miR-34a expression increased intracellular cAMP, a critical mitogenic factor in PAs. Crucially, high miR-34a expression significantly blunted octreotide-mediated GH inhibition and antiproliferative effects. miR-34a directly targets Gnai2 encoding Gαi2, a G protein subunit inhibiting cAMP production. Accordingly, Gαi2 levels were significantly lower in AIPmut+ vs AIPmut- PA. Taken together, somatotropinomas with AIP mutations overexpress miR-34a, which in turn downregulates Gαi2 expression, increases cAMP concentration and ultimately promotes cell growth. Upregulation of miR-34a also impairs the hormonal and antiproliferative response of PA cells to octreotide. Thus, miR-34a is a novel downstream target of mutant AIP that promotes a cellular phenotype mirroring the aggressive clinical features of AIPmut+ acromegaly.
Collapse
Affiliation(s)
- Eva-Maria Bogner
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany
| | - Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany
| | - Auli Karhu
- Department of Medical and Clinical Genetics & Genome-Scale Biology Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Technische Universität München, Chair of Experimental Genetics, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
4
|
Ovarian Cancer, Cancer Stem Cells and Current Treatment Strategies: A Potential Role of Magmas in the Current Treatment Methods. Cells 2020; 9:cells9030719. [PMID: 32183385 PMCID: PMC7140629 DOI: 10.3390/cells9030719] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Epithelial ovarian cancer (EOC) constitutes 90% of ovarian cancers (OC) and is the eighth most common cause of cancer-related death in women. The cancer histologically and genetically is very complex having a high degree of tumour heterogeneity. The pathogenic variability in OC causes significant impediments in effectively treating patients, resulting in a dismal prognosis. Disease progression is predominantly influenced by the peritoneal tumour microenvironment rather than properties of the tumor and is the major contributor to prognosis. Standard treatment of OC patients consists of debulking surgery, followed by chemotherapy, which in most cases end in recurrent chemoresistant disease. This review discusses the different origins of high-grade serous ovarian cancer (HGSOC), the major sub-type of EOC. Tumour heterogeneity, genetic/epigenetic changes, and cancer stem cells (CSC) in facilitating HGSOC progression and their contribution in the circumvention of therapy treatments are included. Several new treatment strategies are discussed including our preliminary proof of concept study describing the role of mitochondria-associated granulocyte macrophage colony-stimulating factor signaling protein (Magmas) in HGSOC and its unique potential role in chemotherapy-resistant disease.
Collapse
|
5
|
Srivastava S, Vishwanathan V, Birje A, Sinha D, D'Silva P. Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and senescence. Crit Rev Biochem Mol Biol 2020; 54:517-536. [PMID: 31997665 DOI: 10.1080/10409238.2020.1718062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Abhijit Birje
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Di K, Lomeli N, Bota DA, Das BC. Magmas inhibition as a potential treatment strategy in malignant glioma. J Neurooncol 2018; 141:267-276. [PMID: 30414099 DOI: 10.1007/s11060-018-03040-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/29/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE Magmas (mitochondria-associated protein involved in granulocyte-macrophage colony-stimulating factor signal transduction) is a nuclear gene that encodes the mitochondrial import inner membrane translocase subunit Tim16. Magmas is highly conserved, ubiquitously expressed in mammalian cells, and is essential for cell viability. Magmas expression levels are increased in prostate cancers and pituitary adenomas. Moreover, silencing Magmas by RNAi sensitizes pituitary adenoma cells to pro-apoptotic stimuli and induces a G0/G1 accumulation. The aim of this study was to examine whether inhibition of Magmas by small molecule inhibitors could be beneficial for the treatment of malignant gliomas. METHODS We evaluated the expression of Magmas in patient-derived glioblastoma tissue samples and xenograft models. We studied the feasibility of a small molecule Magmas inhibitor (BT#9) as a therapeutic agent in stable human glioma cell lines and high-grade patient derived glioma stem-like cells. RESULTS Magmas was overexpressed in tissue sections from glioma patients and xenografts. In vivo studies revealed that BT#9 could cross the blood-brain barrier in the animal model. Magmas inhibition by BT#9 in glioma cell lines significantly decreased cell proliferation, induced apoptosis along with vacuole formation, and blocked migration and invasion. In addition, BT#9 treatment decreased the respiratory function of glioma cells, supporting the role that Magmas serves as a reactive oxygen species regulator. CONCLUSIONS This is the first study on the role of Magmas in glioma. Our findings suggest that Magmas plays a key role in glioma cell survival and targeting Magmas by small molecule inhibitors may be a therapeutic strategy in gliomas.
Collapse
Affiliation(s)
- Kaijun Di
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Naomi Lomeli
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Daniela A Bota
- Department of Neurology, University of California Irvine, Irvine, CA, USA. .,Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA. .,Department of Neurological Surgery, University of California Irvine, Irvine, CA, USA. .,Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA. .,, 200 S. Manchester Ave., Suite 206, Orange, CA, 92868, USA.
| | - Bhaskar C Das
- Department of Medicine and Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Di Pasquale C, Gentilin E, Falletta S, Bellio M, Buratto M, Degli Uberti E, Chiara Zatelli M. PI3K/Akt/mTOR pathway involvement in regulating growth hormone secretion in a rat pituitary adenoma cell line. Endocrine 2018; 60:308-316. [PMID: 29080043 DOI: 10.1007/s12020-017-1432-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/18/2017] [Indexed: 01/07/2023]
Abstract
PURPOSE Insulin-like growth factor 1 (IGF1) controls growth hormone (GH) secretion via a negative feed-back loop that may disclose novel mechanisms possibly useful to control GH hyper-secretion. Our aim was to understand whether PI3K/Akt/mTOR pathway is involved in IGF1 negative feedback on GH secretion. METHODS Cell viability, GH secretion, Akt, and Erk 1/2 phosphorylation levels in the rat GH3 cell line were assessed under treatment with IGF1 and/or everolimus, an mTOR inhitior. RESULTS We found that IGF1 improves rat GH3 somatotroph cell viability via the PI3K/Akt/mTOR pathway and confirmed that IGF1 exerts a negative feedback on GH secretion by a transcriptional mechanism. We demonstrated that the negative IGF1 loop on GH secretion requires Akt activation that seems to play a pivotal role in the control of GH secretion. Furthermore, Akt activation is independent of PI3K and probably mediated by mTORC2. In addition, we found that Erk 1/2 is not involved in GH3 cell viability regulation, but may have a role in controlling GH secretion, independently of IGF1. CONCLUSION Our data confirm that mTOR inhibitors may be useful to reduce pituitary adenoma cell viability, while Erk 1/2 pathway may be considered as a useful therapeutic target to control GH secretion. Our results open the field for further studies searching for effective drugs to control GH hyper-secretion.
Collapse
Affiliation(s)
- Carmelina Di Pasquale
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Erica Gentilin
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Simona Falletta
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Mariaenrica Bellio
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Mattia Buratto
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Ettore Degli Uberti
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy
- Laboratorio in rete del Tecnopolo "Tecnologie delle terapie avanzate" (LTTA) of the University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy.
- Laboratorio in rete del Tecnopolo "Tecnologie delle terapie avanzate" (LTTA) of the University of Ferrara, Ferrara, Italy.
| |
Collapse
|
8
|
Abstract
MicroRNAs (miRNAs) are non-coding RNAs generated from endogenous hairpin-shaped transcripts that powerfully regulate gene expression at post-transcriptional level. Each miRNA is capable to regulate the expression levels of hundreds of transcripts and each mRNA may have more than one miRNA recognition sequence. There is emerging evidence that deregulation of miRNA expression leads to the alteration of pivotal physiological functions contributing to the development of diseases and neoplasms, including pituitary adenoma. This review is aimed at providing the up-to-date knowledge concerning deregulated miRNAs of pituitary tumors and their functions. In order to take stock, pituitary tumors have been sub-divided in different classes on the basis of tumor features (histotype, dimension, aggressiveness). The overview takes full consideration of the recent advances in miRNAs role as potential therapeutics and biomarkers.
Collapse
Affiliation(s)
- Erica Gentilin
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy
| | - Ettore Degli Uberti
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy.
| |
Collapse
|
9
|
Srivastava S, Sinha D, Saha PP, Marthala H, D'Silva P. Magmas functions as a ROS regulator and provides cytoprotection against oxidative stress-mediated damages. Cell Death Dis 2014; 5:e1394. [PMID: 25165880 PMCID: PMC4454327 DOI: 10.1038/cddis.2014.355] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/25/2014] [Accepted: 07/14/2014] [Indexed: 12/14/2022]
Abstract
Redox imbalance generates multiple cellular damages leading to oxidative stress-mediated pathological conditions such as neurodegenerative diseases and cancer progression. Therefore, maintenance of reactive oxygen species (ROS) homeostasis is most important that involves well-defined antioxidant machinery. In the present study, we have identified for the first time a component of mammalian protein translocation machinery Magmas to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues and cancer cells that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance toward oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of electron transport chain (ETC) complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as a ROS sensor was found to be independent of its role in protein import. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cell tolerance to oxidative stress even in yeast model organism. The cytoprotective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress-related diseases.
Collapse
Affiliation(s)
- S Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - D Sinha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - P P Saha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - H Marthala
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - P D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Zatelli MC, Gagliano T, Pelà M, Bianco S, Bertolasi V, Tagliati F, Guerrini R, degli Uberti E, Salvadori S, Trapella C. N-Carbamidoyl-4-((3-ethyl-2,4,4-trimethylcyclohexyl)methyl)benzamide Enhances Staurosporine Cytotoxic Effects Likely Inhibiting the Protective Action of Magmas toward Cell Apoptosis. J Med Chem 2014; 57:4606-14. [DOI: 10.1021/jm5000535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Maria Chiara Zatelli
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio in Rete del Tecnopolo Tecnologie delle Terapie
Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Teresa Gagliano
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Michela Pelà
- Department of Chemical and Pharmaceutical
Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Sara Bianco
- Department of Chemical and Pharmaceutical
Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Valerio Bertolasi
- Department of Chemical and Pharmaceutical
Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Federico Tagliati
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Remo Guerrini
- Laboratorio in Rete del Tecnopolo Tecnologie delle Terapie
Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Chemical and Pharmaceutical
Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Ettore degli Uberti
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio in Rete del Tecnopolo Tecnologie delle Terapie
Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Severo Salvadori
- Laboratorio in Rete del Tecnopolo Tecnologie delle Terapie
Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Chemical and Pharmaceutical
Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Claudio Trapella
- Laboratorio in Rete del Tecnopolo Tecnologie delle Terapie
Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Chemical and Pharmaceutical
Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| |
Collapse
|