1
|
Palmer MA, Benatzy Y, Brüne B. Murine Alox8 versus the human ALOX15B ortholog: differences and similarities. Pflugers Arch 2024; 476:1817-1832. [PMID: 38637408 PMCID: PMC11582214 DOI: 10.1007/s00424-024-02961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Human arachidonate 15-lipoxygenase type B is a lipoxygenase that catalyzes the peroxidation of arachidonic acid at carbon-15. The corresponding murine ortholog however has 8-lipoxygenase activity. Both enzymes oxygenate polyunsaturated fatty acids in S-chirality with singular reaction specificity, although they generate a different product pattern. Furthermore, while both enzymes utilize both esterified fatty acids and fatty acid hydro(pero)xides as substrates, they differ with respect to the orientation of the fatty acid in their substrate-binding pocket. While ALOX15B accepts the fatty acid "tail-first," Alox8 oxygenates the free fatty acid with its "head-first." These differences in substrate orientation and thus in regio- and stereospecificity are thought to be determined by distinct amino acid residues. Towards their biological function, both enzymes share a commonality in regulating cholesterol homeostasis in macrophages, and Alox8 knockdown is associated with reduced atherosclerosis in mice. Additional roles have been linked to lung inflammation along with tumor suppressor activity. This review focuses on the current knowledge of the enzymatic activity of human ALOX15B and murine Alox8, along with their association with diseases.
Collapse
Affiliation(s)
- Megan A Palmer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Yvonne Benatzy
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
2
|
Chai X, Wen L, Song Y, He X, Yue J, Wu J, Chen X, Cai Z, Qi Z. DEHP exposure elevated cardiovascular risk in obese mice by disturbing the arachidonic acid metabolism of gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162615. [PMID: 36878288 DOI: 10.1016/j.scitotenv.2023.162615] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Phthalate esters (PAEs) are one of the significant classes of emerging contaminants that are increasingly detected in environmental and human samples. Nevertheless, the current toxicity studies rarely report how PAEs affect the cardiovascular system, especially in obese individuals. In this study, diet-induced obese mice and corresponding normal mice were exposed to di(2-ethylhexyl) phthalate (DEHP) by oral gavage at environmentally relevant concentrations and key characteristics of cardiovascular risk were examined. The 16S rRNA and high-resolution mass spectrometry were used to investigate the alterations in the gut microbial profile and metabolic homeostasis. The results indicated that the cardiovascular system of fat individuals was more susceptible to DEHP exposure than mice in the lean group. 16S rRNA-based profiling and correlation analysis collectively suggested DEHP-induced gut microbial remodeling in fed a high-fat diet mice, represented by the abundance of the genus Faecalibaculum. Using metagenomic approaches, Faecalibaculum rodentium was identified as the top-ranked candidate bacterium. Additionally, metabolomics data revealed that DEHP exposure altered the gut metabolic homeostasis of arachidonic acid (AA), which is associated with adverse cardiovascular events. Finally, cultures of Faecalibaculum rodentium were treated with AA in vitro to verify the role of Faecalibaculum rodentium in altering AA metabolism. Our findings provide novel insights into DEHP exposure induced cardiovascular damage in obese individuals and suggest that AA could be used as a potential modulator of gut microbiota to prevent related diseases.
Collapse
Affiliation(s)
- Xuyang Chai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Luyao Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaochong He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jingxian Yue
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xin Chen
- Center for Reproductive Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528300, Guangdong, China
| | - Zongwei Cai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
3
|
Mantel M, Derkinderen P, Bach-Ngohou K, Neunlist M, Rolli-Derkinderen M. Crosstalk between omega-6 oxylipins and the enteric nervous system: Implications for gut disorders? Front Med (Lausanne) 2023; 10:1083351. [PMID: 37056732 PMCID: PMC10086145 DOI: 10.3389/fmed.2023.1083351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The enteric nervous system (ENS) continues to dazzle scientists with its ability to integrate signals, from the outside as well as from the host, to accurately regulate digestive functions. Composed of neurons and enteric glial cells, the ENS interplays with numerous neighboring cells through the reception and/or the production of several types of mediators. In particular, ENS can produce and release n-6 oxylipins. These lipid mediators, derived from arachidonic acid, play a major role in inflammatory and allergic processes, but can also regulate immune and nervous system functions. As such, the study of these n-6 oxylipins on the digestive functions, their cross talk with the ENS and their implication in pathophysiological processes is in full expansion and will be discussed in this review.
Collapse
Affiliation(s)
- Marine Mantel
- Nantes Université, Inserm, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Pascal Derkinderen
- CHU Nantes, Inserm, Nantes Université, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Kalyane Bach-Ngohou
- CHU Nantes, Inserm, Nantes Université, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Michel Neunlist
- Nantes Université, Inserm, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, Inserm, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
- *Correspondence: Malvyne Rolli-Derkinderen,
| |
Collapse
|
4
|
Essential Fatty Acids and Their Metabolites in the Pathobiology of Inflammation and Its Resolution. Biomolecules 2021; 11:biom11121873. [PMID: 34944517 PMCID: PMC8699107 DOI: 10.3390/biom11121873] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Arachidonic acid (AA) metabolism is critical in the initiation and resolution of inflammation. Prostaglandin E2 (PGE2) and leukotriene B4/D4/E4 (LTB4/LD4/LTE4), derived from AA, are involved in the initiation of inflammation and regulation of immune response, hematopoiesis, and M1 (pro-inflammatory) macrophage facilitation. Paradoxically, PGE2 suppresses interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production and triggers the production of lipoxin A4 (LXA4) from AA to initiate inflammation resolution process and augment regeneration of tissues. LXA4 suppresses PGE2 and LTs' synthesis and action and facilitates M2 macrophage generation to resolve inflammation. AA inactivates enveloped viruses including SARS-CoV-2. Macrophages, NK cells, T cells, and other immunocytes release AA and other bioactive lipids to produce their anti-microbial actions. AA, PGE2, and LXA4 have cytoprotective actions, regulate nitric oxide generation, and are critical to maintain cell shape and control cell motility and phagocytosis, and inflammation, immunity, and anti-microbial actions. Hence, it is proposed that AA plays a crucial role in the pathobiology of ischemia/reperfusion injury, sepsis, COVID-19, and other critical illnesses, implying that its (AA) administration may be of significant benefit in the prevention and amelioration of these diseases.
Collapse
|
5
|
Kubo Y, Sugiyama S, Takachu R, Tanaka M, Ikeya M, Sugiura T, Kobori K, Kobori M. Association between serum n-3 polyunsaturated fatty acids and quadriceps weakness immediately after total knee arthroplasty. PLoS One 2020; 15:e0228460. [PMID: 31995616 PMCID: PMC6988925 DOI: 10.1371/journal.pone.0228460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Quadriceps weakness (QW) following total knee arthroplasty (TKA) can be elicited by tourniquet-induced ischaemia reperfusion (IR), which causes a vigorous acute inflammatory response. Dietary n-3 polyunsaturated fatty acids (PUFA) are important determinants of organ and tissue protection from IR. This study aimed to examine the association between serum n-3 PUFA levels and QW, knee pain, and knee swelling immediately after TKA. Methods A total of 32 patients who underwent unilateral TKA participated in this prospective study. On Postoperative Day 1, serum n-3 PUFA (eicosapentaenoic acid and docosahexaenoic acid) levels were measured. Preoperatively and on Postoperative Day 4, quadriceps strength, knee pain during quadriceps testing, and knee circumference were measured. QW, knee pain, and knee swelling were defined as changes in quadriceps strength, knee pain during quadriceps testing, and knee circumference, respectively, between the preoperative to the postoperative measurement. Results Mean serum n-3 PUFA levels were 192 μg/mL (standard deviation, 58 μg/mL) on Postoperative Day 1. All measured variables changed significantly between the preoperative and the postoperative measurement time-points (P <0.01). Quadriceps strength decreased from 1.2 to 0.4 Nm/kg (QW = −65%). Knee pain during quadriceps testing increased from 1.1 to 6.0 (knee pain = 4.0). Knee circumference increased from 40 to 44 cm (knee swelling = 10%). Multivariate analysis showed that lower serum n-3 PUFA levels were independently associated with an increased QW after adjusting for the Kellgren-Lawrence grade and the tourniquet time (P = 0.04). No significant relationship was observed between serum n-3 PUFA levels and knee pain or knee swelling. Conclusion Higher serum n-3 PUFA are independently associated with a lower increase in the QW immediately after TKA.
Collapse
Affiliation(s)
- Yusuke Kubo
- Department of Rehabilitation, Kobori Orthopaedic Clinic, Nearaichou, Kita-ku, Hamamatsu City, Shizuoka, Japan
- * E-mail:
| | - Shuhei Sugiyama
- Department of Rehabilitation, Kobori Orthopaedic Clinic, Nearaichou, Kita-ku, Hamamatsu City, Shizuoka, Japan
| | - Rie Takachu
- Department of Rehabilitation, Kobori Orthopaedic Clinic, Nearaichou, Kita-ku, Hamamatsu City, Shizuoka, Japan
| | - Maki Tanaka
- Department of Rehabilitation Sciences, Seirei Christopher University, Mikataharachou, Kita-ku, Hamamatsu City, Shizuoka, Japan
| | - Masae Ikeya
- Department of Health and Nutrition Sciences, Tokoha University, Miyakodachou, Kita-ku, Hamamatsu City, Shizuoka, Japan
| | - Takeshi Sugiura
- Department of Rehabilitation, Kobori Orthopaedic Clinic, Nearaichou, Kita-ku, Hamamatsu City, Shizuoka, Japan
| | - Kaori Kobori
- Department of Rehabilitation, Kobori Orthopaedic Clinic, Nearaichou, Kita-ku, Hamamatsu City, Shizuoka, Japan
| | - Makoto Kobori
- Department of Rehabilitation, Kobori Orthopaedic Clinic, Nearaichou, Kita-ku, Hamamatsu City, Shizuoka, Japan
| |
Collapse
|
6
|
Shang P, Zhang Y, Ma D, Hao Y, Wang X, Xin M, Zhang Y, Zhu M, Feng J. Inflammation resolution and specialized pro-resolving lipid mediators in CNS diseases. Expert Opin Ther Targets 2019; 23:967-986. [PMID: 31711309 DOI: 10.1080/14728222.2019.1691525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Inflammation resolution induced by specialized pro-resolving lipid mediators (SPMs) is a new concept. The application of SPMs is a promising therapeutic strategy that can potentially supersede anti-inflammatory drugs. Most CNS diseases are associated with hyperreactive inflammatory damage. CNS inflammation causes irreversible neuronal loss and permanent functional impairments. Given the high mortality and morbidity rates, the investigation of therapeutic strategies to ameliorate inflammatory damage is necessary.Areas covered: In this review, we explore inflammation resolution in CNS disorders. We discuss the underlying mechanisms and dynamic changes of SPMs and their precursors in neurological diseases and examine how this can potentially be incorporated into the clinic. References were selected from PubMed; most were published between 2010 and 2019.Expert opinion: Inflammation resolution is a natural process that emerges after acute or chronic inflammation. The evidence that SPMs can effectively ameliorate hyperreactive inflammation, shorten resolution time and accelerate tissue regeneration in CNS disorders. Adjuvants and nanotechnology offer opportunities for SPM drug design; however, more preclinical studies are necessary to investigate basic, critical issues such as safety.
Collapse
Affiliation(s)
- Pei Shang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Di Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yulei Hao
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Meiying Xin
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yunhai Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Mingqin Zhu
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Norris PC, Skulas-Ray AC, Riley I, Richter CK, Kris-Etherton PM, Jensen GL, Serhan CN, Maddipati KR. Identification of specialized pro-resolving mediator clusters from healthy adults after intravenous low-dose endotoxin and omega-3 supplementation: a methodological validation. Sci Rep 2018; 8:18050. [PMID: 30575798 PMCID: PMC6303400 DOI: 10.1038/s41598-018-36679-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/25/2018] [Indexed: 12/31/2022] Open
Abstract
Specialized pro-resolving mediator(s) (SPMs) are produced from the endogenous ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and accelerate resolution of acute inflammation. We identified specific clusters of SPM in human plasma and serum using LC-MS/MS based lipid mediator (LM) metabololipidomics in two separate laboratories for inter-laboratory validation. The human plasma cluster consisted of resolvin (Rv)E1, RvD1, lipoxin (LX)B4, 18-HEPE, and 17-HDHA, and the human serum cluster consisted of RvE1, RvD1, AT-LXA4, 18-HEPE, and 17-HDHA. Human plasma and serum SPM clusters were increased after ω-3 supplementation (triglyceride dietary supplements or prescription ethyl esters) and low dose intravenous lipopolysaccharide (LPS) challenge. These results were corroborated by parallel determinations with the same coded samples in a second, separate laboratory using essentially identical metabololipidomic operational parameters. In these healthy subjects, two ω-3 supplementation protocols (Study A and Study B) temporally increased the SPM cluster throughout the endotoxin-challenge time course. Study A and Study B were randomized and Study B also had a crossover design with placebo and endotoxin challenge. Endotoxin challenge temporally regulated lipid mediator production in human serum, where pro-inflammatory eicosanoid (prostaglandins and thromboxane) concentrations peaked by 8 hours post-endotoxin and SPMs such as resolvins and lipoxins initially decreased by 2 h and were then elevated at 24 hours. In healthy adults given ω-3 supplementation, the plasma concentration of the SPM cluster (RvE1, RvD1, LXB4, 18-HEPE, and 17-HDHA) peaked at two hours post endotoxin challenge. These results from two separate laboratories with the same samples provide evidence for temporal production of specific pro-resolving mediators with ω-3 supplementation that together support the role of SPM in vivo in inflammation-resolution in humans.
Collapse
Affiliation(s)
- Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine and Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ann C Skulas-Ray
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Ian Riley
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine and Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Chesney K Richter
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gordon L Jensen
- Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine and Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Krishna Rao Maddipati
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
8
|
Liu X, Davis CM, Alkayed NJ. P450 Eicosanoids and Reactive Oxygen Species Interplay in Brain Injury and Neuroprotection. Antioxid Redox Signal 2018; 28:987-1007. [PMID: 28298143 PMCID: PMC5849284 DOI: 10.1089/ars.2017.7056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Eicosanoids are endogenous lipid mediators that play important roles in brain function and disease. Acute brain injury such as that which occurs in stroke and traumatic brain injury increases the formation of eicosanoids, which, in turn, exacerbate or diminish injury. In chronic neurodegenerative diseases such as Alzheimer's disease and vascular dementia (VD), eicosanoid synthetic and metabolizing enzymes are altered, disrupting the balance between neuroprotective and neurotoxic eicosanoids. Recent Advances: Human and experimental studies have established the opposing roles of hydroxy- and epoxyeicosanoids and their potential utility as diagnostic biomarkers and therapeutic targets in neural injury. Critical Issues: A gap in knowledge remains in understanding the cellular and molecular mechanisms underlying the neurovascular actions of specific eicosanoids, such as specific isomers of epoxyeicosatrienoic (EETs) and hydroxyeicosatetraenoic acids (HETEs). Future Directions: EETs and HETEs exert their actions on brain cells by targeting multiple mechanisms, which include surface G-protein coupled receptors. The identification of high-affinity receptors for EETs and HETEs and their cellular localization in the brain will be a breakthrough in our understanding of these eicosanoids as mediators of cell-cell communications and contributors to brain development, function, and disease. Antioxid. Redox Signal. 28, 987-1007.
Collapse
Affiliation(s)
- Xuehong Liu
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Catherine M Davis
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.,Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Nabil J Alkayed
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.,Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
9
|
Yamamoto Y, Koma H, Nishii S, Yagami T. Anti-heat Shock 70 kDa Protein Antibody Induced Neuronal Cell Death. Biol Pharm Bull 2017; 40:402-412. [PMID: 28381795 DOI: 10.1248/bpb.b16-00641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock protein 70 (Hsp70) is not only a molecular chaperone in cytosol, but also presents in synaptic plasma membranes. To detect plasmalemmal Hsp70 (pl-Hsp70), neurons were immunostained with anti-Hsp70 antibody without permeabilization and fixation. Dotted immunofluorescent signals at neuronal cell bodies and neurites indicated the localization of Hsp70 on the neuronal cell surface. To target only pl-Hsp70, but not cytosolic Hsp70, the anti-Hsp70 antibody was applied without permeabilization in the primary culture of rat cortical neurons. The antibody induced neuronal cell death in a concentration-dependent manner. The anti-Hsp70 antibody activated ubiquitin-proteasome pathway, but inactivated caspase-3. A lag time was required for the neurotoxicity of anti-Hsp70 antibody. Hydrogen peroxide was increased in the anti-Hsp70 antibody-treated neurons during the lag time. Catalase suppressed the anti-Hsp70 antibody-reduced cell viability via the plausible inhibition of hydrogen peroxide generation. One of down-streams of hydrogen peroxide exposure is activation of the mitogen-activated protein kinase (MAPK) signaling cascade. The neurotoxicity of anti-Hsp70 antibody was partially ascribed to c-Jun N-terminal kinase among MAPKs. In conclusion, the anti-Hsp70 antibody targeted pl-Hsp70 on the neuronal cell surface and induced neuronal cell death without complement. Furthermore, hydrogen peroxide appeared to mediate the neuronal cell death, which was accompanied with the enhancement of the ubiquitin-proteasome pathway and the suppression of caspase in a different fashion from the known cell death.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences,
Himeji Dokkyo University
| | | | | | | |
Collapse
|
10
|
Coutinho DS, Anjos-Valotta EA, do Nascimento CVMF, Pires ALA, Napimoga MH, Carvalho VF, Torres RC, E Silva PMR, Martins MA. 15-Deoxy-Delta-12,14-Prostaglandin J 2 Inhibits Lung Inflammation and Remodeling in Distinct Murine Models of Asthma. Front Immunol 2017; 8:740. [PMID: 28713373 PMCID: PMC5491902 DOI: 10.3389/fimmu.2017.00740] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) has been described as an anti-inflammatory lipid mediator in several in vitro and in vivo studies, but its effect on allergic pulmonary inflammation remains elusive. The aim of this study was to investigate the therapeutic potential of 15d-PGJ2 based on distinct murine models of allergic asthma triggered by either ovalbumin (OVA) or house dust mite extract (HDM). Characteristics of lung inflammation, airway hyper-reactivity (AHR), mucus exacerbation, and lung remodeling in sensitized A/J mice treated or not with 15d-PGJ2 were assessed. 15d-PGJ2 treatments were carried out systemically or topically given via subcutaneous injection or intranasal instillation, respectively. Analyses were carried out 24 h after the last allergen provocation. Irrespective of the route of administration, 15d-PGJ2 significantly inhibited the peribronchial accumulation of eosinophils and neutrophils, subepithelial fibrosis and also mucus exacerbation caused by either OVA or HDM challenge. The protective effect of 15d-PGJ2 occurred in parallel with inhibition of allergen-induced AHR and lung tissue production of pro-inflammatory cytokines, such as interleukin (IL)-5, IL-13, IL-17, and TNF-α. Finally, 15d-PGJ2 was found effective in inhibiting NF-κB phosphorylation upon HDM challenge as measured by Western blotting. In conclusion, our findings suggest that 15d-PGJ2 can reduce crucial features of asthma, including AHR, lung inflammation, and remodeling in distinct murine models of the disease. These effects are associated with a decrease in lung tissue generation of pro-inflammatory cytokines by a mechanism related to downregulation of NF-κB phosphorylation.
Collapse
Affiliation(s)
- Diego S Coutinho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Caio V M F do Nascimento
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lucia A Pires
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelo H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - Vinícius F Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rafael C Torres
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patrícia M R E Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marco A Martins
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Leung KS, Chan HF, Leung HH, Galano JM, Oger C, Durand T, Lee JCY. Short-time UVA exposure to human keratinocytes instigated polyunsaturated fatty acid without inducing lipid peroxidation. Free Radic Res 2017; 51:269-280. [DOI: 10.1080/10715762.2017.1300885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Hok Fung Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ho Hang Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
12
|
Coquenlorge S, Van Landeghem L, Jaulin J, Cenac N, Vergnolle N, Duchalais E, Neunlist M, Rolli-Derkinderen M. The arachidonic acid metabolite 11β-ProstaglandinF2α controls intestinal epithelial healing: deficiency in patients with Crohn's disease. Sci Rep 2016; 6:25203. [PMID: 27140063 PMCID: PMC4853710 DOI: 10.1038/srep25203] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
In healthy gut enteric glial cells (EGC) are essential to intestinal epithelial barrier (IEB) functions. In Crohn's Disease (CD), both EGC phenotype and IEB functions are altered, but putative involvement of EGC in CD pathogenesis remains unknown and study of human EGC are lacking. EGC isolated from CD and control patients showed similar expression of glial markers and EGC-derived soluble factors (IL6, TGF-β, proEGF, GSH) but CD EGC failed to increase IEB resistance and healing. Lipid profiling showed that CD EGC produced decreased amounts of 15-HETE, 18-HEPE, 15dPGJ2 and 11βPGF2α as compared to healthy EGC. They also had reduced expression of the L-PGDS and AKR1C3 enzymes. Produced by healthy EGC, the 11βPGF2 activated PPARγ receptor of intestinal epithelial cells to induce cell spreading and IEB wound repair. In addition to this novel healing mechanism our data show that CD EGC presented impaired ability to promote IEB functions through defect in L-PGDS-AKR1C3-11βPGF2α dependent pathway.
Collapse
Affiliation(s)
- Sabrina Coquenlorge
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Laurianne Van Landeghem
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Julie Jaulin
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Nicolas Cenac
- Centre de Pathophysiologie, CHU Purpan, Toulouse, France
- INSERM UMR-1043 CNRS UMR-5282, Toulouse, France
| | - Nathalie Vergnolle
- Centre de Pathophysiologie, CHU Purpan, Toulouse, France
- INSERM UMR-1043 CNRS UMR-5282, Toulouse, France
| | - Emilie Duchalais
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Michel Neunlist
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Malvyne Rolli-Derkinderen
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| |
Collapse
|
13
|
Zhao Q, Wu J, Hua Q, Lin Z, Ye L, Zhang W, Wu G, Du J, Xia J, Chu M, Hu X. Resolvin D1 mitigates energy metabolism disorder after ischemia-reperfusion of the rat lung. J Transl Med 2016; 14:81. [PMID: 27009328 PMCID: PMC4806414 DOI: 10.1186/s12967-016-0835-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/16/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Energy metabolism disorder is a critical process in lung ischemia-reperfusion injury (LIRI). This study was aimed to determine the effects of resolvin D1 (RvD1) on the energy metabolism in LIRI. METHODS Forty Sprague-Dawley rats were divided into the following groups: Sham group; untreated ischemia-reperfusion (IR) control; IR treated with normal saline (IR-NS); and IR treated with RvD1 (IR-RV) (100 μg/kg, iv). LIRI and energy metabolism disorder were determined in these rats. RESULTS The results revealed that the levels of interleukin (IL)-1β, tumor necrosis factor-α, IL-10, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, cytokine-induced neutrophil chemoattractant-1, injured alveoli rate, apoptosis index, pulmonary permeability index, malondialdehyde, ADP, and lactic acid were increased, whereas the levels of ATP, ATP/ADP, glycogen, Na(+)-K(+)-ATPase, superoxide dismutase, glutathione peroxidase activity, pulmonary surfactant associated protein-A, and oxygenation index were decreased in rats with LIRI. Except for IL-10, all these biomarkers of LIRI and its related energy metabolism disorder were significantly inhibited by RvD1 treatment. In addition, histological analysis via hematoxylin-eosin staining, and transmission electron microscopy confirmed that IR-induced structure damages of lung tissues were reduced by RvD1. CONCLUSION RvD1 improves the energy metabolism of LIRI disturbance, protects the mitochondrial structure and function, increases the ATP, glycogen content and Na(+)-K(+)-ATPase activity of lung tissue, balances the ratio of ATP/ADP and finally decreases the rate of apoptosis, resulting in the protection of IR-induced lung injury. The improved energy metabolism after LIRI may be related to the reduced inflammatory response, the balance of the oxidative/antioxidant and the pro-inflammatory/anti-inflammatory systems in rats.
Collapse
Affiliation(s)
- Qifeng Zhao
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Ji Wu
- Wuhan Medical & Healthcare Center for Woman and Children, 430015, Wuhan, People's Republic of China
| | - Qingwang Hua
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Zhiyong Lin
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Leping Ye
- The Department of Children's Respiration Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Weixi Zhang
- The Department of Children's Respiration Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Guowei Wu
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Jie Du
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Jie Xia
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Maoping Chu
- The Department of Children's Cardiovascular Medicine, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Xingti Hu
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China.
| |
Collapse
|
14
|
Pochard C, Coquenlorge S, Jaulin J, Cenac N, Vergnolle N, Meurette G, Freyssinet M, Neunlist M, Rolli-Derkinderen M. Defects in 15-HETE Production and Control of Epithelial Permeability by Human Enteric Glial Cells From Patients With Crohn's Disease. Gastroenterology 2016; 150:168-80. [PMID: 26433161 DOI: 10.1053/j.gastro.2015.09.038] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 08/25/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Enteric glial cells (EGCs) produce soluble mediators that regulate homeostasis and permeability of the intestinal epithelial barrier (IEB). We investigated the profile of polyunsaturated fatty acid (PUFA) metabolites produced by EGCs from rats and from patients with Crohn's disease (CD), compared with controls, along with the ability of one of these metabolites, 15-hydroxyeicosatetraenoic acid (15-HETE), to regulate the permeability of the IEB. METHODS We isolated EGCs from male Sprague-Dawley rats, intestinal resections of 6 patients with CD, and uninflamed healthy areas of intestinal tissue from 6 patients who underwent surgery for colorectal cancer (controls). EGC-conditioned media was analyzed by high-sensitivity liquid-chromatography tandem mass spectrometry to determine PUFA signatures. We used immunostaining to identify 15-HETE-producing enzymes in EGCs and tissues. The effects of human EGCs and 15-HETE on permeability and transepithelial electrical resistance of the IEB were measured using Caco-2 cells; effects on signal transduction proteins were measured with immunoblots. Levels of proteins were reduced in Caco-2 cells using short-hairpin RNAs or proteins were inhibited pharmacologically. Rats were given intraperitoneal injections of 15-HETE or an inhibitor of 15-lipoxygenase (the enzyme that produces 15-HETE); colons were collected and permeability was measured. RESULTS EGCs expressed 15-lipoxygenase-2 and produced high levels of 15-HETE, which increased IEB resistance and reduced IEB permeability. 15-HETE production was reduced in EGCs from patients with CD compared with controls. EGCs from patients with CD were unable to reduce the permeability of the IEB; the addition of 15-HETE restored permeability to levels of control tissues. Inhibiting 15-HETE production in rats increased the permeability of the IEB in colon tissues. We found that 15-HETE regulates IEB permeability by inhibiting an adenosine monophosphate-activated protein kinase and increasing expression of zonula occludens-1. CONCLUSIONS Enteric glial cells from patients with CD have reduced production of 15-HETE, which controls IEB permeability by inhibiting adenosine monophosphate-activated protein kinase and increasing expression of zonula occludens-1.
Collapse
Affiliation(s)
- Camille Pochard
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Sabrina Coquenlorge
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Julie Jaulin
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | | | | | - Guillaume Meurette
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Marie Freyssinet
- INSERM, UMR913, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Michel Neunlist
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France.
| | - Malvyne Rolli-Derkinderen
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France.
| |
Collapse
|
15
|
Federici Canova D, Pavlov AM, Norling LV, Gobbetti T, Brunelleschi S, Le Fauder P, Cenac N, Sukhorukov GB, Perretti M. Alpha-2-macroglobulin loaded microcapsules enhance human leukocyte functions and innate immune response. J Control Release 2015; 217:284-92. [PMID: 26385167 PMCID: PMC4649706 DOI: 10.1016/j.jconrel.2015.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 12/31/2022]
Abstract
Synthetic microstructures can be engineered to deliver bioactive compounds impacting on their pharmacokinetics and pharmacodynamics. Herein, we applied dextran-based layer-by-layer (LbL) microcapsules to deliver alpha-2-macroglobulin (α2MG), a protein with modulatory properties in inflammation. Extending recent observations made with dextran-microcapsules loaded with α2MG in experimental sepsis, we focused on the physical and chemical characteristics of these microstructures and determined their biology on rodent and human cells. We report an efficient encapsulation of α2MG into microcapsules, which enhanced i) human leukocyte recruitment to inflamed endothelium and ii) human macrophage phagocytosis: in both settings microcapsules were more effective than soluble α2MG or empty microcapsules (devoid of active protein). Translation of these findings revealed that intravenous administration of α2MG-microcapsules (but not empty microcapsules) promoted neutrophil migration into peritoneal exudates and augmented macrophage phagocytic functions, the latter response being associated with alteration of bioactive lipid mediators as assessed by mass spectrometry. The present study indicates that microencapsulation can be an effective strategy to harness the complex biology of α2MG with enhancing outcomes on fundamental processes of the innate immune response paving the way to potential future development in the control of sepsis.
Collapse
Affiliation(s)
- Donata Federici Canova
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Anton M Pavlov
- School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom; Saratov State University, Saratov, Russia
| | - Lucy V Norling
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | | | | | - Nicolas Cenac
- INSERM UMR1043, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Gleb B Sukhorukov
- School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
16
|
Stein K, Stoffels M, Lysson M, Schneiker B, Dewald O, Krönke G, Kalff JC, Wehner S. A role for 12/15-lipoxygenase-derived proresolving mediators in postoperative ileus: protectin DX-regulated neutrophil extravasation. J Leukoc Biol 2015; 99:231-9. [PMID: 26292977 DOI: 10.1189/jlb.3hi0515-189r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/12/2015] [Indexed: 12/11/2022] Open
Abstract
Resolution of inflammation is an active counter-regulatory mechanism involving polyunsaturated fatty acid-derived proresolving lipid mediators. Postoperative intestinal motility disturbances, clinically known as postoperative ileus, occur frequently after abdominal surgery and are mediated by a complex inflammation of the intestinal muscularis externa. Herein, we tested the hypothesis that proresolving lipid mediators are involved in the resolution of postoperative ileus. In a standardized experimental model of postoperative ileus, we detected strong expression of 12/15-lipoxygenase within the postoperative muscularis externa of C57BL/6 mice, predominately located within CX3CR1(+)/Ly6C(+) infiltrating monocytes rather than Ly6G(+) neutrophils. Mass spectrometry analyses demonstrated that a 12/15-lipoxygenase increase was accompanied by production of docosahexaenoic acid-derived lipid mediators, particularly protectin DX and resolvin D2, and their common precursor 17-hydroxy docosahexaenoic acid. Perioperative administration of protectin DX, but not resolvin D2 diminished blood-derived leukocyte infiltration into the surgically manipulated muscularis externa and improved the gastrointestinal motility. Flow cytometry analyses showed impaired Ly6G(+)/Ly6C(+) neutrophil extravasation after protectin DX treatment, whereas Ly6G(-)/Ly6C(+) monocyte numbers were not affected. 12/15-lipoxygenase-deficient mice, lacking endogenous protectin DX synthesis, demonstrated increased postoperative leukocyte levels. Preoperative intravenous administration of a docosahexaenoic acid-rich lipid emulsion reduced postoperative leukocyte infiltration in wild-type mice but failed in 12/15-lipoxygenase-deficient mice mice. Protectin DX application reduced leukocyte influx and rescued 12/15-lipoxygenase-deficient mice mice from postoperative ileus. In conclusion, our results show that 12/15-lipoxygenase mediates postoperative ileus resolution via production of proresolving docosahexaenoic acid-derived protectin DX. Perioperative, parenteral protectin DX or docosahexaenoic acid supplementation, as well as modulation of the 12/15-lipoxygenase pathway, may be instrumental in prevention of postoperative ileus.
Collapse
Affiliation(s)
- Kathy Stein
- Departments of *Surgery and Cardiac Surgery, University of Bonn, Bonn, Germany; and Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Melissa Stoffels
- Departments of *Surgery and Cardiac Surgery, University of Bonn, Bonn, Germany; and Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mariola Lysson
- Departments of *Surgery and Cardiac Surgery, University of Bonn, Bonn, Germany; and Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Bianca Schneiker
- Departments of *Surgery and Cardiac Surgery, University of Bonn, Bonn, Germany; and Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Dewald
- Departments of *Surgery and Cardiac Surgery, University of Bonn, Bonn, Germany; and Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gerhard Krönke
- Departments of *Surgery and Cardiac Surgery, University of Bonn, Bonn, Germany; and Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg C Kalff
- Departments of *Surgery and Cardiac Surgery, University of Bonn, Bonn, Germany; and Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Wehner
- Departments of *Surgery and Cardiac Surgery, University of Bonn, Bonn, Germany; and Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Gobbetti T, Ducheix S, le Faouder P, Perez T, Riols F, Boue J, Bertrand-Michel J, Dubourdeau M, Guillou H, Perretti M, Vergnolle N, Cenac N. Protective effects of n-6 fatty acids-enriched diet on intestinal ischaemia/reperfusion injury involve lipoxin A4 and its receptor. Br J Pharmacol 2014; 172:910-23. [PMID: 25296998 DOI: 10.1111/bph.12957] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/12/2014] [Accepted: 09/22/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Long-term intake of dietary fatty acids is known to predispose to chronic inflammation, but their effects on acute intestinal ischaemia/reperfusion (I/R) injury is unknown. The aim of this study was to determine the consequences of a diet rich in n-3 or n-6 polyunsaturated fatty acids (PUFA) on intestinal I/R-induced damage. EXPERIMENTAL APPROACH Mice were fed three different isocaloric diets: a balanced diet used as a control and two different PUFA-enriched diets, providing either high levels of n-3 or of n-6 PUFA. Intestinal injury was evaluated after intestinal I/R. PUFA metabolites were quantitated in intestinal tissues by LC-MS/MS. KEY RESULTS In control diet-fed mice, intestinal I/R caused inflammation and increased COX and lipoxygenase-derived metabolites compared with sham-operated animals. Lipoxin A4 (LxA4 ) was significantly and selectively increased after ischaemia. Animals fed a high n-3 diet did not display a different inflammatory profile following intestinal I/R compared with control diet-fed animals. In contrast, intestinal inflammation was decreased in the I/R group fed with high n-6 diet and level of LxA4 was increased post-ischaemia compared with control diet-fed mice. Blockade of the LxA4 receptor (Fpr2), prevented the anti-inflammatory effects associated with the n-6 rich diet. CONCLUSIONS AND IMPLICATIONS This study indicates that high levels of dietary n-6, but not n-3, PUFAs provides significant protection against intestinal I/R-induced damage and demonstrates that the endogenous production of LxA4 can be influenced by diet.
Collapse
Affiliation(s)
- T Gobbetti
- Inserm, U1043, Toulouse, France; CNRS, U5282, Toulouse, France; Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, Université Paul Sabatier, Toulouse, France; WHRI, Queen Mary University, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|