1
|
Kunzler M, Schlechter RO, Schreiber L, Remus-Emsermann MNP. Hitching a Ride in the Phyllosphere: Surfactant Production of Pseudomonas spp. Causes Co-swarming of Pantoea eucalypti 299R. MICROBIAL ECOLOGY 2024; 87:62. [PMID: 38683223 PMCID: PMC11058625 DOI: 10.1007/s00248-024-02381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Here, we demonstrate the beneficial effect of surfactant-producing pseudomonads on Pantoea eucalypti 299R. We conducted a series of experiments in environments of increasing complexity. P. eucalypti 299R (Pe299R), and Pseudomonas sp. FF1 (Pff1) or Pe299R and surfactant-production deficient Pseudomonas sp. FF1::ΔviscB (Pff1ΔviscB) were co-inoculated in broth, on swarming agar plates, and on plants. In broth, there were no differences in the growth dynamics of Pe299R when growing in the presence of Pff1 or Pff1ΔviscB. By contrast, on swarming agar plates, Pe299R was able to co-swarm with Pff1 which led to a significant increase in Pe299R biomass compared to Pe299R growing with Pff1ΔviscB or in monoculture. Finally in planta, and using the single-cell bioreporter for reproductive success (CUSPER), we found a temporally distinct beneficial effect of Pff1 on co-inoculated Pe299R subpopulations that did not occur in the presence of Pff1ΔviscB. We tested three additional surfactant-producing pseudomonads and their respective surfactant knockout mutants on PE299R on swarming agar showing similar results. This led us to propose a model for the positive effect of surfactant production during leaf colonization. Our results indicate that co-motility might be common during leaf colonization and adds yet another facet to the already manyfold roles of surfactants.
Collapse
Affiliation(s)
- Michael Kunzler
- Institute for Biology - Microbiology, Freie Universität Berlin, Königin-Luise Straße 12-16, 14195, Berlin, Germany
| | - Rudolf O Schlechter
- Institute for Biology - Microbiology, Freie Universität Berlin, Königin-Luise Straße 12-16, 14195, Berlin, Germany
| | - Lukas Schreiber
- Institute for Cellular and Molecular Botany, Bonn University, Kirschallee 1-3, 53115, Bonn, Germany
| | - Mitja N P Remus-Emsermann
- Institute for Biology - Microbiology, Freie Universität Berlin, Königin-Luise Straße 12-16, 14195, Berlin, Germany.
| |
Collapse
|
2
|
Shang H, Tan BZ, Dakwa V, D'Agnese E, Stanley RA, Sassi H, Lai YW, Deaker R, Bowman JP. Effect of pre-harvest sanitizer treatments on Listeria survival, sensory quality and bacterial community dynamics on leafy green vegetables grown under commercial conditions. Food Res Int 2023; 173:113341. [PMID: 37803650 DOI: 10.1016/j.foodres.2023.113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 10/08/2023]
Abstract
Leafy green vegetables (LGVs) have large surface areas and can be colonized by various microorganisms including pathogens. In this study, we investigated the effect of pre-harvest sanitizer treatments on the survival of inoculated proxy pathogen Listeria innocua ATCC 33090 and the natural microbial community of mizuna, rocket (arugula), red chard and spinach grown under commercial conditions. Electrolyzed water (e-water), peracetic acid (PAA), and 1-bromo-3-chloro-5-dimethylhydantoin (BCDMH) were tested against water controls. We also observed the subsequent sensorial changes of harvested, bagged LGV leaves over a period of 12 days within chill storage alongside the growth, diversity and structure of bacterial populations determined using 16S rRNA gene amplicon sequencing and total viable counts (TVC). Treatment with PAA resulted in the highest reductions of L. innocua (2.4-5.5 log units) compared to the other treatments (0.25-2.5 log units). On day 0 (24 h after sanitizer application), the TVC on sanitizer treated LGVs were significantly reduced compared to water controls, except for rocket. During storage at 4.5 (±0.5)°C sanitisers only hindered microbial growth on LGVs initially and did not influence final bacterial population levels, growth rates or changes in LGV sample colour, decay, odour and texture compared to water controls. Shelf-life was not extended nor was it reduced. The community structure on LGV types differed though a core set of bacterial amplicon sequence variants (ASV) were present across all samples. No significant differences were observed in bacterial diversity between sanitizer treatments, however sanitizer treated LGV samples had initially reduced diversity compared to water treated samples. The bacterial compositions observed at the end point of storage considerably differed from what was observed at initial point owing to the increase in abundance of specific bacterial taxa, mainly Pseudomonas spp., the abundance and growth responses differing between LGV types studied. This study provides a better understanding on the microbiology and sensory impact of pre-harvest applied sanitiser treatments on different LGVs destined for commercial food use.
Collapse
Affiliation(s)
- Hongshan Shang
- School of Life and Environmental Sciences, F22 - LEES Building, The University of Sydney, NSW 2006, Australia; Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Bi Zheng Tan
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Vongai Dakwa
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Erin D'Agnese
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Roger A Stanley
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Hannah Sassi
- School of Life and Environmental Sciences, F22 - LEES Building, The University of Sydney, NSW 2006, Australia
| | - Yu-Wen Lai
- School of Life and Environmental Sciences, F22 - LEES Building, The University of Sydney, NSW 2006, Australia
| | - Rosalind Deaker
- School of Life and Environmental Sciences, F22 - LEES Building, The University of Sydney, NSW 2006, Australia
| | - John P Bowman
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia.
| |
Collapse
|
3
|
Enespa, Chandra P. Tool and techniques study to plant microbiome current understanding and future needs: an overview. Commun Integr Biol 2022; 15:209-225. [PMID: 35967908 PMCID: PMC9367660 DOI: 10.1080/19420889.2022.2082736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Microorganisms are present in the universe and they play role in beneficial and harmful to human life, society, and environments. Plant microbiome is a broad term in which microbes are present in the rhizo, phyllo, or endophytic region and play several beneficial and harmful roles with the plant. To know of these microorganisms, it is essential to be able to isolate purification and identify them quickly under laboratory conditions. So, to improve the microbial study, several tools and techniques such as microscopy, rRNA, or rDNA sequencing, fingerprinting, probing, clone libraries, chips, and metagenomics have been developed. The major benefits of these techniques are the identification of microbial community through direct analysis as well as it can apply in situ. Without tools and techniques, we cannot understand the roles of microbiomes. This review explains the tools and their roles in the understanding of microbiomes and their ecological diversity in environments.
Collapse
Affiliation(s)
- Enespa
- Department of Plant Pathology, School of Agriculture, SMPDC, University of Lucknow, Lucknow, India
| | - Prem Chandra
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, India
| |
Collapse
|
4
|
Evans A, Slate AJ, Tobin M, Lynch S, Wilson Nieuwenhuis J, Verran J, Kelly P, Whitehead KA. Multifractal Analysis to Determine the Effect of Surface Topography on the Distribution, Density, Dispersion and Clustering of Differently Organised Coccal-Shaped Bacteria. Antibiotics (Basel) 2022; 11:551. [PMID: 35625195 PMCID: PMC9137600 DOI: 10.3390/antibiotics11050551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
The topographic features of surfaces are known to affect bacterial retention on a surface, but the precise mechanisms of this phenomenon are little understood. Four coccal-shaped bacteria, Staphylococcus sciuri, Streptococcus pyogenes, Micrococcus luteus, and Staphylococcus aureus, that organise in different cellular groupings (grape-like clusters, tetrad-arranging clusters, short chains, and diploid arrangement, respectively) were used. These differently grouped cells were used to determine how surface topography affected their distribution, density, dispersion, and clustering when retained on titanium surfaces with defined topographies. Titanium-coated surfaces that were smooth and had grooved features of 1.02 µm-wide, 0.21 µm-deep grooves, and 0.59 µm-wide, 0.17 µm-deep grooves were used. The average contact angle of the surfaces was 91°. All bacterial species were overall of a hydrophobic nature, although M. luteus was the least hydrophobic. It was demonstrated that the 1.02 µm-wide featured surface most affected Strep. pyogenes and S. sciuri, and hence the surfaces with the larger surface features most affected the cells with smaller dimensions. The 0.59 µm featured surface only affected the density of the bacteria, and it may be suggested that the surfaces with the smaller features reduced bacterial retention. These results demonstrate that the size of the topographical surface features affect the distribution, density, dispersion, and clustering of bacteria across surfaces, and this is related to the cellular organisation of the bacterial species. The results from this work inform how surface topographical and bacterial properties affect the distribution, density, dispersion, and clustering of bacterial retention.
Collapse
Affiliation(s)
- Adele Evans
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.E.); (J.V.); (P.K.)
| | - Anthony J. Slate
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | - Millie Tobin
- Department of Computing and Mathematics, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (M.T.); (S.L.)
| | - Stephen Lynch
- Department of Computing and Mathematics, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (M.T.); (S.L.)
| | - Joels Wilson Nieuwenhuis
- Microbiology at Interfaces, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| | - Joanna Verran
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.E.); (J.V.); (P.K.)
| | - Peter Kelly
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.E.); (J.V.); (P.K.)
| | - Kathryn A. Whitehead
- Microbiology at Interfaces, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| |
Collapse
|
5
|
Bogdanowski A, Banitz T, Muhsal LK, Kost C, Frank K. McComedy: A user-friendly tool for next-generation individual-based modeling of microbial consumer-resource systems. PLoS Comput Biol 2022; 18:e1009777. [PMID: 35073313 PMCID: PMC8830788 DOI: 10.1371/journal.pcbi.1009777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/10/2022] [Accepted: 12/20/2021] [Indexed: 01/30/2023] Open
Abstract
Individual-based modeling is widely applied to investigate the ecological mechanisms driving microbial community dynamics. In such models, the population or community dynamics emerge from the behavior and interplay of individual entities, which are simulated according to a predefined set of rules. If the rules that govern the behavior of individuals are based on generic and mechanistically sound principles, the models are referred to as next-generation individual-based models. These models perform particularly well in recapitulating actual ecological dynamics. However, implementation of such models is time-consuming and requires proficiency in programming or in using specific software, which likely hinders a broader application of this powerful method. Here we present McComedy, a modeling tool designed to facilitate the development of next-generation individual-based models of microbial consumer-resource systems. This tool allows flexibly combining pre-implemented building blocks that represent physical and biological processes. The ability of McComedy to capture the essential dynamics of microbial consumer-resource systems is demonstrated by reproducing and furthermore adding to the results of two distinct studies from the literature. With this article, we provide a versatile tool for developing next-generation individual-based models that can foster understanding of microbial ecology in both research and education. Microorganisms such as bacteria and fungi can be found in virtually any natural environment. To better understand the ecology of these microorganisms–which is important for several research fields including medicine, biotechnology, and conservation biology–researchers often use computer models to simulate and predict the behavior of microbial communities. Commonly, a particular technique called individual-based modeling is used to generate structurally realistic models of these communities by explicitly simulating each individual microorganism. Here we developed a tool called McComedy that helps researchers applying individual-based modeling efficiently without having to program low-level processes, thus allowing them to focus on their actual research questions. To test whether McComedy is not only convenient to use but also generates meaningful models, we used it to reproduce previously reported findings of two other research groups. Given that our results could well recapitulate and furthermore extend the original findings, we are confident that McComedy is a powerful and versatile tool that can help to address fundamental questions in microbial ecology.
Collapse
Affiliation(s)
- André Bogdanowski
- Osnabrück University, Department of Ecology, School of Biology/Chemistry, Osnabrück, Germany
- Helmholtz-Centre for Environmental Research – UFZ, Department of Ecological Modelling, Leipzig, Germany
| | - Thomas Banitz
- Helmholtz-Centre for Environmental Research – UFZ, Department of Ecological Modelling, Leipzig, Germany
| | - Linea Katharina Muhsal
- Osnabrück University, Department of Ecology, School of Biology/Chemistry, Osnabrück, Germany
| | - Christian Kost
- Osnabrück University, Department of Ecology, School of Biology/Chemistry, Osnabrück, Germany
| | - Karin Frank
- Helmholtz-Centre for Environmental Research – UFZ, Department of Ecological Modelling, Leipzig, Germany
- Osnabrück University, Institute for Environmental Systems Research, Osnabrück, Germany
- iDiv – German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Germany
- * E-mail:
| |
Collapse
|
6
|
Steinberg S, Grinberg M, Beitelman M, Peixoto J, Orevi T, Kashtan N. Two-way microscale interactions between immigrant bacteria and plant leaf microbiota as revealed by live imaging. ISME JOURNAL 2020; 15:409-420. [PMID: 32963344 DOI: 10.1038/s41396-020-00767-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
The phyllosphere - the aerial parts of plants - is an important microbial habitat that is home to diverse microbial communities. The spatial organization of bacterial cells on leaf surfaces is non-random, and correlates with leaf microscopic features. Yet, the role of microscale interactions between bacterial cells therein is not well understood. Here, we ask how interactions between immigrant bacteria and resident microbiota affect the spatial organization of the combined community. By means of live imaging in a simplified in vitro system, we studied the spatial organization, at the micrometer scale, of the biocontrol agent Pseudomonas fluorescens A506 and the plant pathogen P. syringae B728a when introduced to pear and bean leaf microbiota (the corresponding native plants of these strains). We found significant co-localization of immigrant and resident microbial cells at distances of a few micrometers, for both strains. Interestingly, this co-localization was in part due to preferential attachment of microbiota cells near newly formed P. fluorescens aggregates. Our results indicate that two-way immigrant bacteria - resident microbiota interactions affect the microscale spatial organization of leaf microbiota, and possibly that of other surface-related microbial communities.
Collapse
Affiliation(s)
- Shifra Steinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Maor Grinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Michael Beitelman
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Julianna Peixoto
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel.,Laboratory of Enzymology, Department of Cellular Biology, Biological Sciences Institute, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Tomer Orevi
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Nadav Kashtan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
7
|
Stone BWG, Jackson CR. Canopy position is a stronger determinant of bacterial community composition and diversity than environmental disturbance in the phyllosphere. FEMS Microbiol Ecol 2020; 95:5376490. [PMID: 30860575 DOI: 10.1093/femsec/fiz032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/10/2019] [Indexed: 01/20/2023] Open
Abstract
The effect of rain on the phyllosphere community has not been extensively explored, especially in the context of spatial variation on the impact of rain throughout the tree canopy. We characterized the response of the phyllosphere bacterial community removed from leaf surfaces of the Southern Magnolia (Magnolia grandiflora) to rain across different spatial locations of the canopy. We hypothesized that: (i) rain would lead to an initial decrease in phyllosphere bacterial diversity, followed by an increase in diversity on subsequent days, but that this effect would be minimized in the lower and interior portion of the canopy, and that (ii) community beta dispersion of phyllosphere microorganisms would be lower following rain, and similarly contingent on canopy position. We used targeted next-generation sequencing of the V4 region of the bacterial 16S rRNA gene to characterize bacterial composition. We found higher bacterial richness in interior canopy and distinct composition across canopy positions. Further, the effect of rain on beta dispersion was contingent on canopy position: rain lowered dispersion in the upper canopy but increased it in the lower and interior canopy. Our results demonstrate that canopy structure should be considered when looking at the impact of rain on the collective phyllosphere community.
Collapse
Affiliation(s)
- Bram W G Stone
- Department of Biology, University of Mississippi, Shoemaker Hall, University, MS 38677-1848, USA.,Center for Ecosystem Science and Society, Science Lab Facility, Northern Arizona University, Flagstaff, AZ 86011-5620, USA
| | - Colin R Jackson
- Department of Biology, University of Mississippi, Shoemaker Hall, University, MS 38677-1848, USA
| |
Collapse
|
8
|
Yadav AN, Singh J, Rastegari AA, Yadav N. Phyllospheric Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications. ACTA ACUST UNITED AC 2020. [PMCID: PMC7123684 DOI: 10.1007/978-3-030-38453-1_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The phyllosphere referred to the total aerial plant surfaces (above-ground portions), as habitat for microorganisms. Microorganisms establish compositionally complex communities on the leaf surface. The microbiome of phyllosphere is rich in diversity of bacteria, fungi, actinomycetes, cyanobacteria, and viruses. The diversity, dispersal, and community development on the leaf surface are based on the physiochemistry, environment, and also the immunity of the host plant. A colonization process is an important event where both the microbe and the host plant have been benefited. Microbes commonly established either epiphytic or endophytic mode of life cycle on phyllosphere environment, which helps the host plant and functional communication with the surrounding environment. To the scientific advancement, several molecular techniques like metagenomics and metaproteomics have been used to study and understand the physiology and functional relationship of microbes to the host and its environment. Based on the available information, this chapter describes the basic understanding of microbiome in leaf structure and physiology, microbial interactions, especially bacteria, fungi, and actinomycetes, and their adaptation in the phyllosphere environment. Further, the detailed information related to the importance of the microbiome in phyllosphere to the host plant and their environment has been analyzed. Besides, biopotentials of the phyllosphere microbiome have been reviewed.
Collapse
Affiliation(s)
- Ajar Nath Yadav
- Department of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab India
| | | | - Neelam Yadav
- Gopi Nath PG College, Veer Bahadur Singh Purvanchal University, Ghazipur, Uttar Pradesh India
| |
Collapse
|
9
|
Grinberg M, Orevi T, Kashtan N. Bacterial surface colonization, preferential attachment and fitness under periodic stress. PLoS Comput Biol 2019; 15:e1006815. [PMID: 30835727 PMCID: PMC6420035 DOI: 10.1371/journal.pcbi.1006815] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/15/2019] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Early bacterial surface colonization is not a random process wherein cells arbitrarily attach to surfaces and grow; but rather, attachment events, movement and cellular interactions induce non-random spatial organization. We have only begun to understand how the apparent self-organization affects the fitness of the population. A key factor contributing to fitness is the tradeoff between solitary-planktonic and aggregated surface-attached biofilm lifestyles. Though planktonic cells typically grow faster, bacteria in aggregates are more resistant to stress such as desiccation, antibiotics and predation. Here we ask if and to what extent informed surface-attachments improve fitness during early surface colonization under periodic stress conditions. We use an individual-based modeling approach to simulate foraging planktonic cells colonizing a surface under alternating wet-dry cycles. Such cycles are common in the largest terrestrial microbial habitats–soil, roots, and leaf surfaces–that are not constantly saturated with water and experience daily periods of desiccation stress. We compared different surface-attachment strategies, and analyzed the emerging spatio-temporal dynamics of surface colonization and population yield as a measure of fitness. We demonstrate that a simple strategy of preferential attachment (PA), biased to dense sites, carries a large fitness advantage over any random attachment across a broad range of environmental conditions–particularly under periodic stress. A vast portion of bacterial life on Earth takes place on surfaces. In many of these surfaces cells collectively organize into biofilms that are known to provide them protection from various environmental stresses. Early bacterial colonization of surfaces, prior to the development of mature biofilm, is a critical stage during which cells attempt to establish a sustainable population. It is not a random process wherein cells arbitrarily attach to surfaces and grow to form micro-colonies. Rather, surface-attachments, movement and cellular interactions take place to yield non-random organization. Using computer simulations, based on individual-based modeling, we demonstrate that simple attachment strategies, where planktonic cells preferentially attach to existing surface-attached aggregates, may confer fitness advantage over random attachment. The advantage of preferential attachment is particularly substantial under periodic stress–a common characteristic of many natural microbial habitats. This is due to a more efficient recruitment of planktonic cells that accelerates the formation of stress-protected aggregates.
Collapse
Affiliation(s)
- Maor Grinberg
- The department of Plant Pathology and Microbiology, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tomer Orevi
- The department of Plant Pathology and Microbiology, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nadav Kashtan
- The department of Plant Pathology and Microbiology, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail:
| |
Collapse
|
10
|
Kreft JU, Plugge CM, Prats C, Leveau JHJ, Zhang W, Hellweger FL. From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance of Individuality. Front Microbiol 2017; 8:2299. [PMID: 29230200 PMCID: PMC5711835 DOI: 10.3389/fmicb.2017.02299] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/07/2017] [Indexed: 01/04/2023] Open
Abstract
Models are important tools in microbial ecology. They can be used to advance understanding by helping to interpret observations and test hypotheses, and to predict the effects of ecosystem management actions or a different climate. Over the past decades, biological knowledge and ecosystem observations have advanced to the molecular and in particular gene level. However, microbial ecology models have changed less and a current challenge is to make them utilize the knowledge and observations at the genetic level. We review published models that explicitly consider genes and make predictions at the population or ecosystem level. The models can be grouped into three general approaches, i.e., metabolic flux, gene-centric and agent-based. We describe and contrast these approaches by applying them to a hypothetical ecosystem and discuss their strengths and weaknesses. An important distinguishing feature is how variation between individual cells (individuality) is handled. In microbial ecosystems, individual heterogeneity is generated by a number of mechanisms including stochastic interactions of molecules (e.g., gene expression), stochastic and deterministic cell division asymmetry, small-scale environmental heterogeneity, and differential transport in a heterogeneous environment. This heterogeneity can then be amplified and transferred to other cell properties by several mechanisms, including nutrient uptake, metabolism and growth, cell cycle asynchronicity and the effects of age and damage. For example, stochastic gene expression may lead to heterogeneity in nutrient uptake enzyme levels, which in turn results in heterogeneity in intracellular nutrient levels. Individuality can have important ecological consequences, including division of labor, bet hedging, aging and sub-optimality. Understanding the importance of individuality and the mechanism(s) underlying it for the specific microbial system and question investigated is essential for selecting the optimal modeling strategy.
Collapse
Affiliation(s)
- Jan-Ulrich Kreft
- Centre for Computational Biology, Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Clara Prats
- Department of Physics, School of Agricultural Engineering of Barcelona, Universitat Politècnica de Catalunya-BarcelonaTech, Castelldefels, Spain
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ferdi L Hellweger
- Civil and Environmental Engineering Department, Marine and Environmental Sciences Department, Bioengineering Department, Northeastern University, Boston, MA, United States
| |
Collapse
|
11
|
Vorholt JA, Vogel C, Carlström CI, Müller DB. Establishing Causality: Opportunities of Synthetic Communities for Plant Microbiome Research. Cell Host Microbe 2017; 22:142-155. [DOI: 10.1016/j.chom.2017.07.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/25/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022]
|
12
|
Abstract
The study of microorganisms that reside on plant leaf surfaces, or phyllosphere microbiology, greatly benefits from the availability of artificial surfaces that mimic in one or more ways the complexity of foliage as a microbial habitat. These leaf surface proxies range from very simple, such as nutrient agars that can reveal the metabolic versatility or antagonistic properties of leaf-associated microorganisms, to the very complex, such as silicon-based casts that replicate leaf surface topography down to nanometer resolution. In this review, we summarize the various uses of artificial surfaces in experimental phyllosphere microbiology and discuss how these have advanced our understanding of the biology of leaf-associated microorganisms and the habitat they live in. We also provide an outlook into future uses of artificial leaf surfaces, foretelling a greater role for microfluidics to introduce biological and chemical gradients into artificial leaf environments, stressing the importance of artificial surfaces to generate quantitative data that support computational models of microbial life on real leaves, and rethinking the leaf surface ('phyllosphere') as a habitat that features two intimately connected but very different compartments, i.e., the leaf surface landscape ('phylloplane') and the leaf surface waterscape ('phyllotelma').
Collapse
Affiliation(s)
- Hung K Doan
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, CA 95616
| |
Collapse
|
13
|
A mathematical model to investigate quorum sensing regulation and its heterogeneity in Pseudomonas syringae on leaves. ECOLOGICAL COMPLEXITY 2015. [DOI: 10.1016/j.ecocom.2014.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|