1
|
Protein conformational dynamics and phenotypic switching. Biophys Rev 2021; 13:1127-1138. [PMID: 35059032 PMCID: PMC8724335 DOI: 10.1007/s12551-021-00858-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure but exist as conformational ensembles. Because of their structural plasticity, they can interact with multiple partners. The protein interactions between IDPs and their partners form scale-free protein interaction networks (PINs) that facilitate information flow in the cell. Because of their plasticity, IDPs typically occupy hub positions in cellular PINs. Furthermore, their conformational dynamics and propensity for post-translational modifications contribute to "conformational" noise which is distinct from the well-recognized transcriptional noise. Therefore, upregulation of IDPs in response to a specific input, such as stress, contributes to increased noise and, hence, an increase in stochastic, "promiscuous" interactions. These interactions lead to activation of latent pathways or can induce "rewiring" of the PIN to yield an optimal output underscoring the critical role of IDPs in regulating information flow. We have used PAGE4, a highly intrinsically disordered stress-response protein as a paradigm. Employing a variety of experimental and computational techniques, we have elucidated the role of PAGE4 in phenotypic switching of prostate cancer cells at a systems level. These cumulative studies over the past decade provide a conceptual framework to better understand how IDP conformational dynamics and conformational noise might facilitate cellular decision-making.
Collapse
|
2
|
Ben Khalaf N, Al-Mashoor W, Saeed A, Raslan W, Bakheit H, Abdulhadi A, Marouani A, Taha S, Bakhiet M, Fathallah MD. Knocking down Israa, the Zmiz1 intron-nested gene, unveils interrelated T cell activation functions in mouse. Biochem Biophys Rep 2021; 27:101100. [PMID: 34409174 PMCID: PMC8361231 DOI: 10.1016/j.bbrep.2021.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/02/2022] Open
Abstract
We previously reported Israa (immune-system-released activating agent), a novel gene nested in intron 6 of the mouse Zmiz1 gene. Zmiz1 is involved in several functions such as fertility and T cell development and its knockout leads to non-viable embryos. We also reported ISRAA's expression in lymphoid organs, particularly in the thymus CD3+ T cells during all developmental stages. In addition, we showed that ISRAA is a binding partner of Fyn and Elf-1 and regulates the expression of T cell activation-related genes in vitro. In this paper, we report the generation and characterization of an Israa -/- constitutive knockout mouse. The histological study shows that Israa -/- mice exhibit thymus and spleen hyperplasia. Israa -/- derived T cells showed increased proliferation compared to the wild-type mice T cells. Moreover, gene expression analysis revealed a set of differentially expressed genes in the knockout and wild-type animals during thymus development (mostly genes of T cell activation pathways). Immunological phenotyping of the thymocytes and splenocytes of Israa -/- showed no difference with those of the wild-type. Moreover, we observed that knocking out the Zmiz1 intron embedded Israa gene does not affect mice fertility, thus does not disturb this Zmiz1 function. The characterization of the Israa -/- mouse confirms the role ISRAA plays in the expression regulation of genes involved in T cell activation established in vitro. Taken together, our findings point toward a potential functional interrelation between the intron nested Israa gene and the Zmiz1 host gene in regulating T cell activation. This constitutively Israa -/- mice can be a good model to study T cell activation and to investigate the relationship between host and intron-nested genes.
Collapse
Affiliation(s)
- Noureddine Ben Khalaf
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies. Arabian Gulf University. Manama, Bahrain
| | - Wedad Al-Mashoor
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies. Arabian Gulf University. Manama, Bahrain
| | - Azhar Saeed
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies. Arabian Gulf University. Manama, Bahrain
| | - Wassim Raslan
- Department of Pathology, Johns Hopkins Aramco Health Care, Dammam, Saudi Arabia
| | - Halla Bakheit
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - Ameera Abdulhadi
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - Ammar Marouani
- Animal Facility, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - Safa Taha
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - M Dahmani Fathallah
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies. Arabian Gulf University. Manama, Bahrain
| |
Collapse
|
3
|
Bozzato A, Romoli O, Polo D, Baggio F, Mazzotta GM, Triolo G, Myers MP, Sandrelli F. Arginine kinase interacts with 2MIT and is involved in Drosophila melanogaster short-term memory. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104118. [PMID: 33011181 DOI: 10.1016/j.jinsphys.2020.104118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Mushroom bodies are a higher order center for sensory integration, learning and memory of the insect brain. Memory is generally subdivided into different phases. In the model organism Drosophila melanogaster, mushroom bodies have been shown to play a central role in both short- and long-term memory. In D. melanogaster, the gene 2mit codes a transmembrane protein carrying an extracellular Leucin-rich-repeat domain, which is highly transcribed in the mushroom and ellipsoid bodies of the adult fly brain and has a role in the early phase of memory. Utilizing coimmunoprecipitation experiments and mass spectrometry analyses, we have shown that 2MIT interacts with Arginine kinase in adult fly heads. Arginine kinase belongs to the family of Phosphagen kinases and plays a fundamental role in energy homeostasis. Using the GAL4/UAS binary system, we demonstrated that a downregulation of Arginine kinase mainly driven in the mushroom bodies affects short-term memory of Drosophila adult flies, in a courtship conditioning paradigm. As 2mit c03963 hypomorphic mutants showed comparable results when analyzed with the same assay, these data suggest that 2MIT and Arginine kinase are both involved in the same memory phenotype, likely interacting at the level of mushroom bodies. 2MIT and Arginine kinase are conserved among insects, the implications of which, along with their potential roles in other insect taxa are also discussed.
Collapse
Affiliation(s)
- Andrea Bozzato
- Dipartimento di Biologia, Università di Padova, via Ugo Bassi 58/B, 35121 Padova, Italy
| | - Ottavia Romoli
- Dipartimento di Biologia, Università di Padova, via Ugo Bassi 58/B, 35121 Padova, Italy
| | - Denis Polo
- Dipartimento di Biologia, Università di Padova, via Ugo Bassi 58/B, 35121 Padova, Italy
| | - Francesca Baggio
- Dipartimento di Biologia, Università di Padova, via Ugo Bassi 58/B, 35121 Padova, Italy
| | - Gabriella M Mazzotta
- Dipartimento di Biologia, Università di Padova, via Ugo Bassi 58/B, 35121 Padova, Italy
| | - Gianluca Triolo
- Protein Networks Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34012 Trieste, Italy
| | - Michael P Myers
- Protein Networks Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34012 Trieste, Italy
| | - Federica Sandrelli
- Dipartimento di Biologia, Università di Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| |
Collapse
|
4
|
Bali N, Zinn K. Visualization of binding patterns for five Leucine-rich repeat proteins in the Drosophila embryo. MICROPUBLICATION BIOLOGY 2019; 2019. [PMID: 32550403 PMCID: PMC7252235 DOI: 10.17912/micropub.biology.000199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Namrata Bali
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| |
Collapse
|
5
|
Ben Khalaf N, Al-Mashoor W, Saeed A, Al-Mehatab D, Taha S, Bakhiet M, Fathallah MD. The mouse intron-nested gene, Israa, is expressed in the lymphoid organs and involved in T-cell activation and signaling. Mol Immunol 2019; 111:209-219. [PMID: 31096062 DOI: 10.1016/j.molimm.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/25/2019] [Accepted: 04/13/2019] [Indexed: 10/26/2022]
Abstract
We have previously reported Israa, immune-system-released activating agent, as a novel gene nested in intron 8 of the mouse Zmiz1 gene. We have also shown that Israa encodes for a novel FYN-binding protein and might be involved in the regulation of T-cell activation. In this report, we demonstrate that Israa gene product regulates the expression of a pool of genes involved in T-cell activation and signaling. Real time PCR and GFP knock-in expression analysis showed that Israa is transcribed and expressed in the spleen mainly by CD3+CD8+ cells as well as in the thymus by CD3+ (DP and DN), CD4+SP and CD8+SP cells at different developmental stages. We also showed that Israa is downregulated in T-cells following activation of T-cell receptor. Using yeast two-hybrid analysis, we identified ELF1, a transcription factor involved in T-cell regulation, as an ISRAA-binding partner. Transcriptomic analysis of an EL4 cell line overexpressing ISRAA revealed differential expression of several genes involved in T-cell signaling, activation and development. Among these genes, Prkcb, Mib2, Fos, Ndfip2, Cxxc5, B2m, Gata3 and Cd247 were upregulated whereas Itk, Socs3, Tigit, Ifng, Il2ra and FoxJ1 were downregulated. Our findings support the existence in mouse of a novel FYN-related T-cell regulation pathway involving the product of an intron-nested gene.
Collapse
Affiliation(s)
- Noureddine Ben Khalaf
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain
| | - Wedad Al-Mashoor
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain
| | - Azhar Saeed
- University of Michigan Medical School, MI, USA
| | - Dalal Al-Mehatab
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain
| | - Safa Taha
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - M Dahmani Fathallah
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
6
|
Kulkarni V, Kulkarni P. Intrinsically disordered proteins and phenotypic switching: Implications in cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:63-84. [PMID: 31521237 DOI: 10.1016/bs.pmbts.2019.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now well established that intrinsically disordered proteins (IDPs) that constitute a large part of the proteome across the three kingdoms, play critical roles in several biological processes including phenotypic switching. However, dysregulated expression of IDPs that engage in promiscuous interactions can lead to pathological states. In this chapter, using cancer as a paradigm, we discuss how IDP conformational dynamics and the resultant conformational noise can modulate phenotypic switching. Thus, contrary to the prevailing wisdom that phenotypic switching is highly deterministic (has a genetic underpinning) in cancer, emerging evidence suggests that non-genetic mechanisms, at least in part due to the conformational noise, may also be a confounding factor in phenotypic switching.
Collapse
Affiliation(s)
- Vivek Kulkarni
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States.
| |
Collapse
|
7
|
Afolabi BA, Adedara IA, Souza DO, Rocha JBT. Dietary co-exposure to methylmercury and monosodium glutamate disrupts cellular and behavioral responses in the lobster cockroach, Nauphoeta cinerea model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:70-77. [PMID: 30300794 DOI: 10.1016/j.etap.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The present study aims to investigate the effect of monosodium glutamate (MSG) both separately and combined with a low dose of methylmercury (MeHg) on behavioral and biochemical parameters in Nauphoeta cinerea (lobster cockroach). Cockroaches were fed with the basal diet alone, basal diet + 2% NaCl, basal diet + 2% MSG; basal diet + 0.125 mg/g MeHg, basal diet + 0.125 mg/g MeHg + 2% NaCl; and basal diet + 0.125 mg/g MeHg + 2% MSG for 21 days. Behavioral parameters such as distance traveled, immobility and turn angle were automatically measured using ANY-maze video tracking software (Stoelting, CO, USA). Biochemical end-points such as acetylcholinesterase (AChE), glutathione-S-transferase (GST), total thiol and TBARS were also evaluated. Results show that MeHg + NaCl, increased distance traveled while MeHg + MSG increased time immobile. AChE activity was significantly reduced in cockroaches across all the groups when compared to the control. There was no significant alteration in GST activity and total thiol levels. It could be that both NaCl and MSG potentiates the neurotoxic effect of MeHg in cockroaches.
Collapse
Affiliation(s)
- Blessing A Afolabi
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil; Department of Biochemistry, Bowen University Iwo, Osun State, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Diogo O Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
8
|
Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains. Transgenic Res 2018; 27:87-101. [PMID: 29435708 DOI: 10.1007/s11248-018-0059-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/19/2018] [Indexed: 02/08/2023]
Abstract
The domesticated silkworm, Bombyx mori, is a fundamental insect for silk industry. Silk is obtained from cocoons, protective envelopes produced during pupation and composed of single raw silk filaments secreted by the insect silk glands. Currently, silk is used as a textile fibre and to produce new materials for technical and biomedical applications. To enhance the use of both fabrics and silk-based materials, great efforts to obtain silk with antimicrobial properties have been made. In particular, a convincing approach is represented by the enrichment of the textile fibre with antimicrobial peptides, the main effectors of the innate immunity. To this aim, silkworm-based transgenic techniques appear to be cost-effective strategies to obtain cocoons in which antimicrobial peptides are integrated among the silk proteins. Recently, cocoons transgenic for a recombinant silk protein conjugated to the silkworm Cecropin B antimicrobial peptide were obtained and showed enhanced antibacterial properties (Li et al. in Mol Biol Rep 42:19-25, https://doi.org/10.1007/s11033-014-3735-z , 2015a). In this work we used the piggyBac-mediated germline transformation to generate several transgenic B. mori lines able to overexpress Cecropin B or Moricin antimicrobial peptides at the level of the silk gland. The derived cocoons were characterised by increased antimicrobial properties and the resulting silk fibre was able to inhibit the bacterial growth of the Gram-negative Escherichia coli. Our results suggest that the generation of silkworm overexpressing unconjugated antimicrobial peptides in the silk gland might represent an additional strategy to obtain antimicrobial peptide-enriched silk, for the production of new silk-based materials.
Collapse
|