2
|
Rubio L, Téllez L, Regalado M, Torrero C, Salas M. Effects of perinatal undernutrition on social transmission of food preference in adult male Wistar rats. Int J Dev Neurosci 2018; 71:105-110. [PMID: 30149118 DOI: 10.1016/j.ijdevneu.2018.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
Nutrition plays a fundamental role in learning and memory, and early experimental undernutrition interferes with brain memory processes. Social transmission of food preference (STFP) is a natural olfactory paired-associate learning test that has not been used to assess the effects of early undernutrition on memory consolidation. Male Wistar rats were randomly divided into two groups: control and early undernourished. The underfed rats received different percentages of a balanced diet during gestation. After birth, pups were underfed by alternating every 12 h between two lactating dams, one with ligated nipples. Weaning occurred on PD 25 followed by an ad lib diet until PD 90. Demonstrator rats were given powdered food mixed with cinnamon, followed by a 30-min interaction with an underfed observer. Thereafter, the observer had two choices of food: cinnamon or cocoa. During the food preference test, control and underfed OBS rats preferred the food containing cinnamon. Through social interaction, the UG OBS rats showed latency for head contacts and oral-nasal investigation was higher in the underfed rats; only head contacts and oral-nasal investigation frequency was lower; with the duration lower, but oral-nasal investigation duration was higher (p < 0.05). In the preference phase, the OBS underfed rat latencies for both stimuli were prolonged, the frequency lower only for cocoa, and the duration lower for cinnamon but higher for cocoa (p < 0.05). Findings suggested that early undernutrition interfered with the attentive social transmission to take a decision during the preference phase, but not with the short-term memory consolidation of social food preference.
Collapse
Affiliation(s)
- Lorena Rubio
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Laura Téllez
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Mirelta Regalado
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Carmen Torrero
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Manuel Salas
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
3
|
Oriá RB, Murray-Kolb LE, Scharf RJ, Pendergast LL, Lang DR, Kolling GL, Guerrant RL. Early-life enteric infections: relation between chronic systemic inflammation and poor cognition in children. Nutr Rev 2016; 74:374-86. [PMID: 27142301 DOI: 10.1093/nutrit/nuw008] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota undergoes active remodeling in the first 6 to 18 months of life, during which time the characteristics of the adult microbiota are developed. This process is strongly influenced by the early diet and enteric pathogens. Enteric infections and malnutrition early in life may favor microbiota dysbiosis and small intestinal bacterial overgrowth, resulting in intestinal barrier dysfunction and translocation of intestinal bacterial products, ultimately leading to low-grade, chronic, subclinical systemic inflammation. The leaky gut-derived low-grade systemic inflammation may have profound consequences on the gut-liver-brain axis, compromising normal growth, metabolism, and cognitive development. This review examines recent data suggesting that early-life enteric infections that lead to intestinal barrier disruption may shift the intestinal microbiota toward chronic systemic inflammation and subsequent impaired cognitive development.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA.
| | - Laura E Murray-Kolb
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca J Scharf
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Laura L Pendergast
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis R Lang
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Glynis L Kolling
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Richard L Guerrant
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
da Silva AAM, Oliveira MM, Cavalcante TCF, do Amaral Almeida LC, de Souza JA, da Silva MC, de Souza SL. Low protein diet during gestation and lactation increases food reward seeking but does not modify sucrose taste reactivity in adult female rats. Int J Dev Neurosci 2016; 49:50-9. [PMID: 26805766 DOI: 10.1016/j.ijdevneu.2016.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 12/25/2015] [Accepted: 01/12/2016] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Nutritional deficiencies during neural development may lead to irreversible changes, even after nutritional rehabilitation, promoting morphological and functional adaptations of structures involved with various behaviours including feeding behaviour. However, the ability of the exposure low protein diet during gestation and lactation to affect the hedonic component of food intake is still poorly understood, especially in females. METHODS Wistar rats were divided into two groups according to the diet offered to the dams during pregnancy and lactation: control female (CF; diet with 17% protein, n=7) and low protein female (LPF; diet with 8% protein, n=7). The following parameters were evaluated: (a) body weight during weaning, 30, 45, 60, 75, 90 days of life; (b) standard diet intake from 110 to 132 days of life; (c) fat diet and consumption of simple carbohydrates (HFHS) for 1h at 145 days of life; (d) incentive runway task 60 days after 82 days of life; (e) taste reactivity at 90 days of life; and (f) neuronal activation in the caudate putamen, amygdala, paraventricular nucleus of the hypothalamus under stimulus HFHS at 145 days of life. RESULTS The exposure, a low protein diet during gestation and lactation, decreased the body weight throughout the study period from weaning to 90 days of life. However, there was no significant change in the body weight of low protein females from 110 to 132 days of life compared with the control females. There was an increase in the rate of the search for reward and reduced the latency of the perception of bitter taste. The exposure, a low protein diet during gestation and lactation, also promoted hypophagy in adult females compared with control animals. The low protein female had increased HFHS diet consumption compared with the control. Undernutrition increased neuronal activation in response to HFHS diet consumption compared with female controls in the amygdala and in the caudate putamen. CONCLUSION Females subjected to the exposure, a low protein diet during gestation and lactation, exhibit hypophagy on a standard diet but a higher consumption of a diet rich in lipids and simple carbohydrates. And also were more motivated by the pursuit of reward and reduced latency of the bitter taste reactivity, and increased the number of immunoreactive cells c-fos protein activated in the caudate putamen, amygdala and paraventricular nucleus.
Collapse
Affiliation(s)
- Amanda Alves Marcelino da Silva
- Nursing College-Universidade de Pernambuco-Campus Petrolina-UPE, Recife, PE, Brazil; Postgraduate Neuropsychiatry and Behavioral Sciences, Universidade Federal Pernambuco-UFPE, Recife, PE, Brazil
| | | | - Taisy Cinthia Ferro Cavalcante
- Postgraduate Nutrition, Universidade Federal Pernambuco-UFPE, Recife, PE, Brazil; Nutrition College-Universidade de Pernambuco-Campus Petrolina-UPE, Recife, PE, Brazil
| | | | | | - Matilde Cesiana da Silva
- Nutrition College-Universidade Federal de Pernambuco, Centro Acadêmico de Vitória-UFPE-CAV, Vitória de Santo Antão, PE, Brazil
| | - Sandra Lopes de Souza
- Postgraduate Neuropsychiatry and Behavioral Sciences, Universidade Federal Pernambuco-UFPE, Recife, PE, Brazil; Department of Anatomy, Universidade Federal de Pernambuco-UFPE, Recife, PE, Brazil.
| |
Collapse
|
5
|
Naik AA, Patro IK, Patro N. Slow Physical Growth, Delayed Reflex Ontogeny, and Permanent Behavioral as Well as Cognitive Impairments in Rats Following Intra-generational Protein Malnutrition. Front Neurosci 2015; 9:446. [PMID: 26696810 PMCID: PMC4672086 DOI: 10.3389/fnins.2015.00446] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/09/2015] [Indexed: 01/04/2023] Open
Abstract
Environmental stressors including protein malnutrition (PMN) during pre-, neo- and post-natal age have been documented to affect cognitive development and cause increased susceptibility to neuropsychiatric disorders. Most studies have addressed either of the three windows and that does not emulate the clinical conditions of intra-uterine growth restriction (IUGR). Such data fail to provide a complete picture of the behavioral alterations in the F1 generation. The present study thus addresses the larger window from gestation to F1 generation, a new model of intra-generational PMN. Naive Sprague Dawley (SD) dams pre-gestationally switched to LP (8% protein) or HP (20% protein) diets for 45 days were bred and maintained throughout gestation on same diets. Pups born (HP/LP dams) were maintained on the respective diets post-weaningly. The present study aimed to show the sex specific differences in the neurobehavioral evolution and behavioral phenotype of the HP/LP F1 generation pups. A battery of neurodevelopmental reflex tests, behavioral (Open field and forelimb gripstrength test), and cognitive [Elevated plus maze (EPM) and Morris water maze (MWM)] assays were performed. A decelerated growth curve with significantly restricted body and brain weight, delays in apparition of neuro-reflexes and poor performance in the LP group rats was recorded. Intra-generational PMN induced poor habituation-with-time in novel environment exploration, low anxiety and hyperactive like profile in open field test in young and adult rats. The study revealed poor forelimb neuromuscular strength in LP F1 pups till adulthood. Group occupancy plots in MWM test revealed hyperactivity with poor learning, impaired memory retention and integration, thus modeling the signs of early onset Alzehemier phenotype. In addition, a gender specific effect of LP diet with severity in males and favoring female sex was also noticed.
Collapse
Affiliation(s)
- Aijaz A Naik
- School of Studies in Neuroscience, Jiwaji University Gwalior, India ; School of Studies in Zoology, Jiwaji University Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University Gwalior, India ; School of Studies in Zoology, Jiwaji University Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University Gwalior, India
| |
Collapse
|