1
|
Pormohammad A, Firrincieli A, Salazar-Alemán DA, Mohammadi M, Hansen D, Cappelletti M, Zannoni D, Zarei M, Turner RJ. Insights into the Synergistic Antibacterial Activity of Silver Nitrate with Potassium Tellurite against Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0062823. [PMID: 37409940 PMCID: PMC10433965 DOI: 10.1128/spectrum.00628-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
The constant, ever-increasing antibiotic resistance crisis leads to the announcement of "urgent, novel antibiotics needed" by the World Health Organization. Our previous works showed a promising synergistic antibacterial activity of silver nitrate with potassium tellurite out of thousands of other metal/metalloid-based antibacterial combinations. The silver-tellurite combined treatment not only is more effective than common antibiotics but also prevents bacterial recovery, decreases the risk of future resistance chance, and decreases the effective concentrations. We demonstrate that the silver-tellurite combination is effective against clinical isolates. Further, this study was conducted to address knowledge gaps in the available data on the antibacterial mechanism of both silver and tellurite, as well as to give insight into how the mixture provides synergism as a combination. Here, we defined the differentially expressed gene profile of Pseudomonas aeruginosa under silver, tellurite, and silver-tellurite combination stress using an RNA sequencing approach to examine the global transcriptional changes in the challenged cultures grown in simulated wound fluid. The study was complemented with metabolomics and biochemistry assays. Both metal ions mainly affected four cellular processes, including sulfur homeostasis, reactive oxygen species response, energy pathways, and the bacterial cell membrane (for silver). Using a Caenorhabditis elegans animal model we showed silver-tellurite has reduced toxicity over individual metal/metalloid salts and provides increased antioxidant properties to the host. This work demonstrates that the addition of tellurite would improve the efficacy of silver in biomedical applications. IMPORTANCE Metals and/or metalloids could represent antimicrobial alternatives for industrial and clinical applications (e.g., surface coatings, livestock, and topical infection control) because of their great properties, such as good stability and long half-life. Silver is the most common antimicrobial metal, but resistance prevalence is high, and it can be toxic to the host above a certain concentration. We found that a silver-tellurite composition has antibacterial synergistic effect and that the combination is beneficial to the host. So, the efficacy and application of silver could increase by adding tellurite in the recommended concentration(s). We used different methods to evaluate the mechanism for how this combination can be so incredibly synergistic, leading to efficacy against antibiotic- and silver-resistant isolates. Our two main findings are that (i) both silver and tellurite mostly target the same pathways and (ii) the coapplication of silver with tellurite tends not to target new pathways but targets the same pathways with an amplified change.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- CCrest Laboratories, Inc., Montreal, Quebec, Canada
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo, Italy
| | - Daniel A. Salazar-Alemán
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Mohammadi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mohammad Zarei
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Jánošíková L, Pálková L, Šalát D, Klepanec A, Soltys K. Response of Escherichia coli minimal ter operon to UVC and auto-aggregation: pilot study. PeerJ 2021; 9:e11197. [PMID: 34026346 PMCID: PMC8123226 DOI: 10.7717/peerj.11197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
Aim The study of minimal ter operon as a determinant of tellurium resistance (TeR) is important for the purpose of confirming the relationship of these genes to the pathogenicity of microorganisms. The ter operon is widespread among bacterial species and pathogens, implicated also in phage inhibition, oxidative stress and colicin resistance. So far, there is no experimental evidence for the role of the Escherichia coli (E. coli) minimal ter operon in ultraviolet C (UVC) resistance, biofilm formation and auto-aggregation. To identify connection with UVC resistance of the minimal ter operon, matched pairs of Ter-positive and -negative E. coli cells were stressed and differences in survival and whole genome sequence analysis were performed. This study was aimed also to identify differences in phenotype of cells induced by environmental stress. Methods In the current study, a minimal ter operon(terBCDEΔF) originating from the uropathogenic strain E. coli KL53 was used. Clonogenic assay was the method of choice to determine cell reproductive death after treatment with UVC irradiation at certain time intervals. Bacterial suspensions were irradiated with 254 nm UVC-light (germicidal lamp in biological safety cabinet) in vitro. UVC irradiance output was 2.5 mW/cm2 (calculated at the UVC device aperture) and plate-lamp distance of 60 cm. DNA damage analysis was performed using shotgun sequencing on Illumina MiSeq platform. Biofilm formation was measured by a crystal violet retention assay. Auto-aggregation assay was performed according to the Ghane, Babaeekhou & Ketabi (2020). Results A large fraction of Ter-positive E. coli cells survived treatment with 120-s UVC light (300 mJ/cm2) compared to matched Ter-negative cells; ∼5-fold higher resistance of Ter-positive cells to UVC dose (p = 0.0007). Moreover, UVC surviving Ter-positive cells showed smaller mutation rate as Ter-negative cells. The study demonstrated that a 1200-s exposure to UVC (3,000 mJ/cm2) was sufficient for 100% inhibition of growth for all the Ter-positive and -negative E. coli cells. The Ter-positive strain exhibited of 26% higher auto-aggregation activities and was able to inhibit biofilm formation over than Ter- negative strain (**** P < 0.0001). Conclusion Our study shows that Ter-positive cells display lower sensitivity to UVC radiation, corresponding to a presence in minimal ter operon. In addition, our study suggests that also auto-aggregation ability is related to minimal ter operon. The role of the minimal ter operon (terBCDEΔF) in resistance behavior of E. coli under environmental stress is evident.
Collapse
Affiliation(s)
- Lenka Jánošíková
- Faculty of Health Sciences, University of St. Cyril and Methodius in Trnava, Trnava, Slovak Republic
| | | | - Dušan Šalát
- Faculty of Health Sciences, University of St. Cyril and Methodius in Trnava, Trnava, Slovak Republic
| | - Andrej Klepanec
- Faculty of Health Sciences, University of St. Cyril and Methodius in Trnava, Trnava, Slovak Republic
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic.,Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Fan R, Bai X, Fu S, Xu Y, Sun H, Wang H, Xiong Y. Tellurite resistance profiles and performance of different chromogenic agars for detection of non-O157 Shiga toxin-producing Escherichia coli. Int J Food Microbiol 2017; 266:295-300. [PMID: 29274486 DOI: 10.1016/j.ijfoodmicro.2017.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/29/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are globally important food-borne pathogens. The isolation of non-O157 STEC is a significant public health challenge due to the dramatic diversity of their phenotypes and genotypes. In the present study, 476 non-O157 STEC strains representing 95 different O-serogroups were used to evaluate tellurite resistance and the performance of 12 different chromogenic agars. Of 476 strains, only 108 (22.7%) strains showed the minimal inhibitory concentration (MIC) values for potassium tellurite being higher than 4μg/ml, and 96 (20.2%) strains harbored intact ter genes cluster. The presence of ter genes was significantly correlated with tellurite resistance. Six commercial chromogenic agars (TBX, MAC, SMAC, Rainbow® Agar O157, CHROMagar™ ECC, and Fluorocult O157) supported the growth of all strains. However, CT-SMAC, CHROMagar™ O157, and CHROMagar™ STEC agars exhibited 12.2%, 31.1%, and 38.0% of growth inhibition, respectively. Furthermore, 4.6%, 33.2%, and 45.0% of strains were inhibited on RBA-USDA, RBA-NT, and BCM O157 agar media. Variations in tellurite resistance and colony appearance might result in discrepant performance of non-O157 STEC recovery from different chromogenic agars. Using inclusive agars or less selective agar in combination with highly selective agar should be suggested to recover most non-O157 STEC strains, which would increase the probability of recovering STECs from complex background microflora.
Collapse
Affiliation(s)
- Ruyue Fan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Shanshan Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yanmei Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Morales EH, Pinto CA, Luraschi R, Muñoz-Villagrán CM, Cornejo FA, Simpkins SW, Nelson J, Arenas FA, Piotrowski JS, Myers CL, Mori H, Vásquez CC. Accumulation of heme biosynthetic intermediates contributes to the antibacterial action of the metalloid tellurite. Nat Commun 2017; 8:15320. [PMID: 28492282 PMCID: PMC5437285 DOI: 10.1038/ncomms15320] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/21/2017] [Indexed: 01/08/2023] Open
Abstract
The metalloid tellurite is highly toxic to microorganisms. Several mechanisms of action have been proposed, including thiol depletion and generation of hydrogen peroxide and superoxide, but none of them can fully explain its toxicity. Here we use a combination of directed evolution and chemical and biochemical approaches to demonstrate that tellurite inhibits heme biosynthesis, leading to the accumulation of intermediates of this pathway and hydroxyl radical. Unexpectedly, the development of tellurite resistance is accompanied by increased susceptibility to hydrogen peroxide. Furthermore, we show that the heme precursor 5-aminolevulinic acid, which is used as an antimicrobial agent in photodynamic therapy, potentiates tellurite toxicity. Our results define a mechanism of tellurite toxicity and warrant further research on the potential use of the combination of tellurite and 5-aminolevulinic acid in antimicrobial therapy. The mechanisms of action of the antibacterial metalloid tellurite are unclear. Here, the authors show that tellurite induces an accumulation of hydroxyl radical and intermediates of heme biosynthesis in E. coli, and that the heme precursor 5-aminolevulinic acid potentiates tellurite toxicity.
Collapse
Affiliation(s)
- Eduardo H Morales
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Camilo A Pinto
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Roberto Luraschi
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | | | - Fabián A Cornejo
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Scott W Simpkins
- University of Minnesota-Twin Cities, Bioinformatics and Computational Biology, Minneapolis, Minnesota 55455, USA
| | - Justin Nelson
- University of Minnesota-Twin Cities, Bioinformatics and Computational Biology, Minneapolis, Minnesota 55455, USA
| | - Felipe A Arenas
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | | | - Chad L Myers
- University of Minnesota-Twin Cities, Bioinformatics and Computational Biology, Minneapolis, Minnesota 55455, USA.,University of Minnesota-Twin Cities, Department of Computer Science and Engineering, Minneapolis, Minnesota 55455, USA
| | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Claudio C Vásquez
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
5
|
Ferreira TG, Moura H, Barr JR, Pilotto Domingues RMC, Ferreira EDO. Ribotypes associated with Clostridium difficile outbreaks in Brazil display distinct surface protein profiles. Anaerobe 2017; 45:120-128. [PMID: 28435010 DOI: 10.1016/j.anaerobe.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/28/2017] [Accepted: 04/01/2017] [Indexed: 11/18/2022]
Abstract
Clostridium difficile is a spore-forming anaerobic intestinal pathogen that causes Clostridium difficile infection (CDI). C. difficile is the leading cause of toxin-mediated nosocomial antibiotic-associated diarrhea. The pathogenesis of CDI is attributed to two major virulence factors, TcdA and TcdB toxins, that cause the symptomatic infection. C. difficile also expresses a number of key proteins, including cell wall proteins (CWPs). S-layer proteins (SLPs) are CWPs that form a paracrystalline surface array that coats the surface of the bacterium. SLPs have a role in C. difficile binding to the gastrointestinal tract, but their importance in virulence need to be better elucidated. Here, we describe bottom-up proteomics analysis of surface-enriched proteins fractions obtained through glycine extraction of five C. difficile clinical isolates from Brazil using gel-based and gel-free approaches. We were able to identify approximately 250 proteins for each strain, among them SlpA, Cwp2, Cwp6, CwpV and Cwp84. Identified CWPs presented different amino acid coverage, which might suggest differences in post-translational modifications. Proteomic analysis of SLPs from ribotype 133, agent of C. difficile outbreaks in Brazil, revealed unique proteins and provided additional information towards in depth characterization of the strains causing CDI in Brazil.
Collapse
Affiliation(s)
- Thais Gonçalves Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil
| | - Hercules Moura
- Centers for Disease Control and Prevention - CDC, Division of Laboratory Sciences, Atlanta, GA, USA
| | - John R Barr
- Centers for Disease Control and Prevention - CDC, Division of Laboratory Sciences, Atlanta, GA, USA
| | - Regina M C Pilotto Domingues
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil.
| | - Eliane de Oliveira Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil; Universidade Federal do Rio de Janeiro - Polo Xerém, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Zhai Y, He Z, Kang Y, Yu H, Wang J, Du P, Zhang Z, Hu S, Gao Z. Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance and multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate. Plasmid 2016; 86:26-31. [PMID: 27101788 DOI: 10.1016/j.plasmid.2016.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 11/17/2022]
Abstract
The complete 284,628bp sequence of pH11, an IncHI2 plasmid, was determined through single-molecule, real-time (SMRT) sequencing. Harbored by a clinical Klebsiella pneumoniae strain H11, and isolated in Beijing, this plasmid contains multiple antibiotic resistance genes, including catA2, aac(6')-Ib, strB, strA, dfrA19, blaTEM-1, blaSHV-12, sul1, qacE delta 1, ereA, arr2, and aac3. The aac(6')-Ib is carried by a class I integron. Plasmid pH11 also carries several genes associated with resistance to heavy metals, such as tellurium, mercury, cobalt, zinc, nickel, copper, lead and cadmium. This plasmid exhibits numerous characteristics, including HipBA and RelBE toxin-antitoxin systems, two major transfer (Tra) regions closely related to those of Salmonella enterica serovar plasmid pRH-R27, a type II restriction modification system (EcoRII R-M system), several methyltransferases and methylases and genes encoding Hha and StpA. These characteristics suggest that pH11 may adapt to various hosts and environments. Multiple insertion sequence elements, transposases, recombinases, resolvases and integrases are scattered throughout pH11. The presence of these genes may indicate that horizontal gene transfer occurs frequently in pH11 and thus may facilitate the dissemination of antimicrobial resistance determinants. Our data suggest that pH11 is a chimera gradually assembled through the integration of different horizontally acquired DNA segments via transposition or homologous recombination.
Collapse
Affiliation(s)
- Yao Zhai
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Zilong He
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiying Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianfeng Wang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengcheng Du
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Zhao Zhang
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhancheng Gao
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
7
|
Turkovicova L, Smidak R, Jung G, Turna J, Lubec G, Aradska J. Proteomic analysis of the TerC interactome: Novel links to tellurite resistance and pathogenicity. J Proteomics 2016; 136:167-73. [PMID: 26778143 DOI: 10.1016/j.jprot.2016.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/02/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
The tellurite resistance gene operon (ter) is widely spread among bacterial species, particularly pathogenic species. The ter operon has been implicated in tellurite resistance, phage inhibition, colicine resistance, and pathogenicity. The TerC protein represents one of the key proteins in tellurite resistance and shows no significant homology to any protein of known function. So far, there is no experimental evidence for TerC interaction partners. In this study, proteomic-based methods, including blue native electrophoresis and co-immunoprecipitation combined with LC-MS/MS, have been used to identify TerC interaction partners and thus providing indirect evidence for tentative functions of TerC in Escherichia coli. An interactome has been constructed and robust physical interaction of integral membrane protein TerC with TerB, DctA, PspA, HslU, and RplK has been shown. The TerC-TerB complex appears to act as a central unit that may link different functional modules with biochemical activities of C4-dicarboxylate transport, inner membrane stress response (phage shock protein regulatory complex), ATPase/chaperone activity, and proteosynthesis. In previous reports, it was hypothesized that a transmembrane unit formed by TerC protein may interact with the TerD family, but herein neither TerD nor TerE proteins were identified as TerC complex components. We propose that TerD/TerE participates in tellurite resistance through TerC-independent action.
Collapse
Affiliation(s)
- L Turkovicova
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria; Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - R Smidak
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - G Jung
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - J Turna
- Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - G Lubec
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria.
| | - J Aradska
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Role of Tellurite Resistance Operon in Filamentous Growth of Yersinia pestis in Macrophages. PLoS One 2015; 10:e0141984. [PMID: 26536670 PMCID: PMC4633105 DOI: 10.1371/journal.pone.0141984] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Yersinia pestis initiates infection by parasitism of host macrophages. In response to macrophage infections, intracellular Y. pestis can assume a filamentous cellular morphology which may mediate resistance to host cell innate immune responses. We previously observed the expression of Y. pestis tellurite resistance proteins TerD and TerE from the terZABCDE operon during macrophage infections. Others have observed a filamentous response associated with expression of tellurite resistance operon in Escherichia coli exposed to tellurite. Therefore, in this study we examine the potential role of Y. pestis tellurite resistance operon in filamentous cellular morphology during macrophage infections. PRINCIPAL FINDINGS In vitro treatment of Y. pestis culture with sodium tellurite (Na2TeO3) caused the bacterial cells to assume a filamentous phenotype similar to the filamentous phenotype observed during macrophage infections. A deletion mutant for genes terZAB abolished the filamentous morphologic response to tellurite exposure or intracellular parasitism, but without affecting tellurite resistance. However, a terZABCDE deletion mutant abolished both filamentous morphologic response and tellurite resistance. Complementation of the terZABCDE deletion mutant with terCDE, but not terZAB, partially restored tellurite resistance. When the terZABCDE deletion mutant was complemented with terZAB or terCDE, Y. pestis exhibited filamentous morphology during macrophage infections as well as while these complemented genes were being expressed under an in vitro condition. Further in E. coli, expression of Y. pestis terZAB, but not terCDE, conferred a filamentous phenotype. CONCLUSIONS These findings support the role of Y. pestis terZAB mediation of the filamentous response phenotype; whereas, terCDE confers tellurite resistance. Although the beneficial role of filamentous morphological responses by Y. pestis during macrophage infections is yet to be fully defined, it may be a bacterial adaptive strategy to macrophage associated stresses.
Collapse
|
9
|
Santos LSD, Antunes CA, Santos CSD, Pereira JAA, Sabbadini PS, Luna MDGD, Azevedo V, Hirata Júnior R, Burkovski A, Asad LMBDO, Mattos-Guaraldi AL. Corynebacterium diphtheriae putative tellurite-resistance protein (CDCE8392_0813) contributes to the intracellular survival in human epithelial cells and lethality of Caenorhabditis elegans. Mem Inst Oswaldo Cruz 2015; 110:662-8. [PMID: 26107188 PMCID: PMC4569831 DOI: 10.1590/0074-02760140479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/15/2015] [Indexed: 11/29/2022] Open
Abstract
Corynebacterium diphtheriae, the aetiologic agent of diphtheria,
also represents a global medical challenge because of the existence of invasive
strains as causative agents of systemic infections. Although tellurite
(TeO32-) is toxic to most microorganisms, TeO32--resistant
bacteria, including C. diphtheriae, exist in
nature. The presence of TeO32--resistance (TeR)
determinants in pathogenic bacteria might provide selective advantages in the natural
environment. In the present study, we investigated the role of the putative
TeR determinant (CDCE8392_813gene) in the virulence
attributes of diphtheria bacilli. The disruption of CDCE8392_0813 gene expression in
the LDCIC-L1 mutant increased susceptibility to TeO32- and reactive oxygen
species (hydrogen peroxide), but not to other antimicrobial agents. The LDCIC-L1
mutant also showed a decrease in both the lethality of Caenorhabditis elegans
and the survival inside of human epithelial cells compared to wild-type
strain. Conversely, the haemagglutinating activity and adherence to and formation of
biofilms on different abiotic surfaces were not regulated through the CDCE8392_0813
gene. In conclusion, the CDCE8392_813 gene contributes to the TeR and
pathogenic potential of C. diphtheriae.
Collapse
Affiliation(s)
- Louisy Sanches Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Camila Azevedo Antunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR
| | - Cintia Silva Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - José Augusto Adler Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Priscila Soares Sabbadini
- Laboratório de Doenças Bacterianas, Centro de Ciências da Saúde, Centro Universitário do Maranhão, São Luís, MA, BR
| | - Maria das Graças de Luna
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR
| | - Raphael Hirata Júnior
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Andreas Burkovski
- Lehrstuhl fuer Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, DE
| | - Lídia Maria Buarque de Oliveira Asad
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Ana Luíza Mattos-Guaraldi
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| |
Collapse
|
10
|
Verhaegen B, De Reu K, Heyndrickx M, De Zutter L. Comparison of Six Chromogenic Agar Media for the Isolation of a Broad Variety of Non-O157 Shigatoxin-Producing Escherichia coli (STEC) Serogroups. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:6965-78. [PMID: 26090610 PMCID: PMC4483743 DOI: 10.3390/ijerph120606965] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/02/2015] [Accepted: 06/11/2015] [Indexed: 11/16/2022]
Abstract
The isolation of non-O157 STEC from food samples has proved to be challenging. The selection of a suitable selective isolation agar remains problematic. The purpose of this study was to qualitatively and quantitatively evaluate six chromogenic agar media for the isolation of STEC: Tryptone Bile X-glucuronide agar (TBX), Rainbow® Agar O157 (RB), Rapid E. coli O157:H7 (RE), Modified MacConkey Agar (mMac), CHROMagarTM STEC (Chr ST) and chromIDTM EHEC (Chr ID). During this study, 45 E. coli strains were used, including 39 STEC strains belonging to 16 different O serogroups and 6 non-STEC E. coli. All E. coli strains were able to grow on TBX and RB, whereas one STEC strain was unable to grow on Chr ID and a number of other STEC strains did not grow on mMac, CHROMagar STEC and Rapid E. coli O157:H7. However, only the latter three agars were selective enough to completely inhibit the growth of the non-STEC E. coli. Our conclusion was that paired use of a more selective agar such as CHROMagar STEC together with a less selective agar like TBX or Chr ID might be the best solution for isolating non-O157 STEC from food.
Collapse
Affiliation(s)
- Bavo Verhaegen
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium.
- Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Koen De Reu
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium.
| | - Marc Heyndrickx
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium.
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Lieven De Zutter
- Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
11
|
Furnholm TR, Tisa LS. The ins and outs of metal homeostasis by the root nodule actinobacterium Frankia. BMC Genomics 2014; 15:1092. [PMID: 25495525 PMCID: PMC4531530 DOI: 10.1186/1471-2164-15-1092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frankia are actinobacteria that form a symbiotic nitrogen-fixing association with actinorhizal plants, and play a significant role in actinorhizal plant colonization of metal contaminated areas. Many Frankia strains are known to be resistant to several toxic metals and metalloids including Pb(2+), Al(+3), SeO2, Cu(2+), AsO4, and Zn(2+). With the availability of eight Frankia genome databases, comparative genomics approaches employing phylogeny, amino acid composition analysis, and synteny were used to identify metal homeostasis mechanisms in eight Frankia strains. Characterized genes from the literature and a meta-analysis of 18 heavy metal gene microarray studies were used for comparison. RESULTS Unlike most bacteria, Frankia utilize all of the essential trace elements (Ni, Co, Cu, Se, Mo, B, Zn, Fe, and Mn) and have a comparatively high percentage of metalloproteins, particularly in the more metal resistant strains. Cation diffusion facilitators, being one of the few known metal resistance mechanisms found in the Frankia genomes, were strong candidates for general divalent metal resistance in all of the Frankia strains. Gene duplication and amino acid substitutions that enhanced the metal affinity of CopA and CopCD proteins may be responsible for the copper resistance found in some Frankia strains. CopA and a new potential metal transporter, DUF347, may be involved in the particularly high lead tolerance in Frankia. Selenite resistance involved an alternate sulfur importer (CysPUWA) that prevents sulfur starvation, and reductases to produce elemental selenium. The pattern of arsenate, but not arsenite, resistance was achieved by Frankia using the novel arsenite exporter (AqpS) previously identified in the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Based on the presence of multiple tellurite resistance factors, a new metal resistance (tellurite) was identified and confirmed in Frankia. CONCLUSIONS Each strain had a unique combination of metal import, binding, modification, and export genes that explain differences in patterns of metal resistance between strains. Frankia has achieved similar levels of metal and metalloid resistance as bacteria from highly metal-contaminated sites. From a bioremediation standpoint, it is important to understand mechanisms that allow the endosymbiont to survive and infect actinorhizal plants in metal contaminated soils.
Collapse
Affiliation(s)
- Teal R Furnholm
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
12
|
Anaganti N, Basu B, Gupta A, Joseph D, Apte SK. Depletion of reduction potential and key energy generation metabolic enzymes underlies tellurite toxicity inDeinococcus radiodurans. Proteomics 2014; 15:89-97. [DOI: 10.1002/pmic.201400113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/05/2014] [Accepted: 10/14/2014] [Indexed: 01/25/2023]
Affiliation(s)
| | - Bhakti Basu
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Alka Gupta
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Daisy Joseph
- Nuclear Physics Division; Bhabha Atomic Research Centre; Mumbai India
| | - Shree Kumar Apte
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| |
Collapse
|