1
|
Zheng Z, He B, Guo ML, Xie X, Huan L, Zhang B, Shao Z, Wang G. Overexpression of OHPs in Neopyropia yezoensis (Rhodophyta) reveals their possible physiological roles. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Fernández-Marín B, Roach T, Verhoeven A, García-Plazaola JI. Shedding light on the dark side of xanthophyll cycles. THE NEW PHYTOLOGIST 2021; 230:1336-1344. [PMID: 33452715 DOI: 10.1111/nph.17191] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Xanthophyll cycles are broadly important in photoprotection, and the reversible de-epoxidation of xanthophylls typically occurs in excess light conditions. However, as presented in this review, compiling evidence in a wide range of photosynthetic eukaryotes shows that xanthophyll de-epoxidation also occurs under diverse abiotic stress conditions in darkness. Light-driven photochemistry usually leads to the pH changes that activate de-epoxidases (e.g. violaxanthin de-epoxidase), but in darkness alternative electron transport pathways and luminal domains enriched in monogalactosyl diacyl glycerol (which enhance de-epoxidase activity) likely enable de-epoxidation. Another 'dark side' to sustaining xanthophyll de-epoxidation is inactivation and/or degradation of epoxidases (e.g. zeaxanthin epoxidase). There are obvious benefits of such activity regarding stress tolerance, and indeed this phenomenon has only been reported in stressful conditions. However, more research is required to unravel the mechanisms and understand the physiological roles of dark-induced formation of zeaxanthin. Notably, the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin in darkness is still a frequently ignored process, perhaps because it questions a previous paradigm. With that in mind, this review seeks to shed some light on the dark side of xanthophyll de-epoxidation, and point out areas for future work.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife, 38200, Spain
| | - Thomas Roach
- Department of Botany, University of Innsbruck and Center for Molecular Biosciences Innsbruck (CMBI), Sternwartestrasse 15, Innsbruck, 6020, Austria
| | - Amy Verhoeven
- Department of Biology, University of St Thomas, 2115 Summit Ave, St Paul, MN, 55105, USA
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| |
Collapse
|
3
|
Zheng Z, He B, Xie X, Wang G. Co-suppression in Pyropia yezoensis (Rhodophyta) Reveals the Role of PyLHCI in Light Harvesting and Generation Switch. JOURNAL OF PHYCOLOGY 2021; 57:160-171. [PMID: 32965671 DOI: 10.1111/jpy.13073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The red macroalga Pyropia yezoensis is an economically important seaweed widely cultured in Asian countries and is a model organism for molecular biological and commercial research. This species is unique in that it utilizes both phycobilisomes and transmembrane light-harvesting proteins as its antenna system. Here, one of the genes of P. yezoensis (PyLHCI) was selected for introduction into its genome to overexpress PyLHCI. However, the co-suppression phenomenon occurred. This is the first documentation of co-suppression in algae, in which it exhibits a different mechanism from that in higher plants. The transformant (T1) was demonstrated to have higher phycobilisomes and lower LHC binding pigments, resulting in a redder color, higher sensitivity to salt stress, smaller in size, and slower growth rate than the wildtype (WT). The photosynthetic performances of T1 and WT showed similar characteristics; however, P700 reduction was slower in T1. Most importantly, T1 could release a high percentage of carpospores in young blades to switch generation during its life cycle, which was rarely seen in WT. The co-suppression of PyLHCI revealed its key roles in light harvesting, stress resistance, and generation alternation (generation switch from gametophytes to sporophytes, and reproduction from asexual to sexual).
Collapse
Affiliation(s)
- Zhenbing Zheng
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Bangxiang He
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiujun Xie
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Abstract
The paper focuses on the selected plant lipid issues. Classification, nomenclature, and abundance of fatty acids was discussed. Then, classification, composition, role, and organization of lipids were displayed. The involvement of lipids in xantophyll cycle and glycerolipids synthesis (as the most abundant of all lipid classes) were also discussed. Moreover, in order to better understand the biomembranes remodeling, the model (artificial) membranes, mimicking the naturally occurring membranes are employed and the survey on their composition and application in different kind of research was performed. High level of lipids remodeling in the plant membranes under different environmental conditions, e.g., nutrient deficiency, temperature stress, salinity or drought was proved. The key advantage of lipid research was the conclusion that lipids could serve as the markers of plant physiological condition and the detailed knowledge on lipids chemistry will allow to modify their composition for industrial needs.
Collapse
Affiliation(s)
- Emilia Reszczyńska
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033, Lublin, Poland.
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033, Lublin, Poland
| |
Collapse
|
5
|
Eismann AI, Perpetuo Reis R, Ferreira da Silva A, Negrão Cavalcanti D. Ulva spp. carotenoids: Responses to environmental conditions. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101916] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Zheng Z, Gu W, Gao S, Wang G. Characterization of photosynthetic protein complexes in conchocelis and blades of Pyropia yezoensis (Rhodophyta). ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Xie X, Lu X, Wang L, He L, Wang G. High light intensity increases the concentrations of β-carotene and zeaxanthin in marine red macroalgae. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Zheng Z, Gao S, Wang G. High salt stress in the upper part of floating mats of Ulva prolifera, a species that causes green tides, enhances non-photochemical quenching. JOURNAL OF PHYCOLOGY 2019; 55:1041-1049. [PMID: 31062364 DOI: 10.1111/jpy.12881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Salt stress is a major abiotic stress factor that can induce many adverse effects on photosynthetic organisms. Plants and algae have developed several mechanisms that help them respond to adverse environments. Non-photochemical quenching (NPQ) is one of these mechanisms. The thalli of algae in the intertidal zone that are attached to rocks can be subjected to salt stress for a short period of time due to the rise and fall of the tide. Ulva prolifera causes green tides and can form floating mats when green tides occur and the upper part of the thalli is subjected to high salt stress for a long period of time. In this study, we compared the Ulva prolifera photosynthetic activities and NPQ kinetics when it is subjected to different salinities over various periods of time. Thalli exposed to a salinity of 90 for 4 d showed enhanced NPQ, and photosynthetic activities decreased from 60 min after exposure up to 4 d. This indicated that the induction of NPQ in Ulva prolifera under salt stress was closely related to the stressing extent and stressing time. The enhanced NPQ in the treated samples exposed for 4 d may explain why the upper layer of the floating mats formed by Ulva prolifera thalli were able to survive in the harsh environment. Further inhibitor experiments demonstrated that the enhanced NPQ was xanthophyll cycle and transthylakoid proton gradient-dependent. However, photosystem II subunit S and light-harvesting complex stress-related protein didn't over accumulate and may not be responsible for the enhanced NPQ.
Collapse
Affiliation(s)
- Zhenbing Zheng
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shan Gao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Zheng Z, Gao S, Wang G. Far red light induces the expression of LHCSR to trigger nonphotochemical quenching in the intertidal green macroalgae Ulva prolifera. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Gao S, Chi Z, Chen H, Zheng Z, Weng Y, Wang G. A Supercomplex, of Approximately 720 kDa and Composed of Both Photosystem Reaction Centers, Dissipates Excess Energy by PSI in Green Macroalgae Under Salt Stress. PLANT & CELL PHYSIOLOGY 2019; 60:166-175. [PMID: 30295873 DOI: 10.1093/pcp/pcy201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
The thylakoid membranes of plants play a critical role in electron transfer and energy fixation, and are highly dynamic. So far, studies on the thylakoid membranes have mainly focused on microalgae and higher plants, yet very little information is available on the macroalgal thylakoids. Here, we studied the structure and organization of the thylakoid membranes in Ulva prolifera, a representative species of the green macroalgae. We found that U. prolifera had few but long loosely stacked membranes which lack the conventional grana found in higher plants. However, the thylakoid membrane complexes demonstrate lateral heterogeneity. Moreover, we found a supercomplex composed of PSII, light-harvesting complex II (LHCII) and PSI from U. prolifera under salt stress. The supercomplex is approximately 720 kDa, and includes the two important photoprotection proteins, the PSII S subunit (PsbS) and the light-harvesting complex stress-related protein (LhcSR), as well as xanthophyll cycle pigments (violaxanthin, antheraxanthin and zeaxanthin). Time-resolved fluorescence analysis suggested that, in the supercomplex, excitation energy could efficiently be transferred from PSII to PSI, even when PSII was inhibited, a function which disappeared when the supercomplex was incubated in mild detergent. We suggest that the supercomplex might be an important mechanism to dissipate excess energy by PSI in green macroalgae under salt stress.
Collapse
Affiliation(s)
- Shan Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhen Chi
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhenbing Zheng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
11
|
Huang C, Xu H, Zhang D, Tan C, Pan Y, Wang S, Qian H, Ying Y, Gadd GM, Pan X. TEMPORARY REMOVAL: Effects of oxathiapiprolin on photosynthetic activity of Chlorella pyrenoidosa probed by chlorophyll fluorescence and thermoluminescence assays. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:161. [PMID: 29107241 DOI: 10.1016/j.pestbp.2017.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Chudong Huang
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hang Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Chengxia Tan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yayun Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuzhi Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang, Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Youmin Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD15EH, Scotland, UK
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
12
|
Leonelli L, Erickson E, Lyska D, Niyogi KK. Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:375-386. [PMID: 27407008 PMCID: PMC5516181 DOI: 10.1111/tpj.13268] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 05/21/2023]
Abstract
Plants must switch rapidly between light harvesting and photoprotection in response to environmental fluctuations in light intensity. This switch can lead to losses in absorbed energy usage, as photoprotective energy dissipation mechanisms can take minutes to hours to fully relax. One possible way to improve photosynthesis is to engineer these energy dissipation mechanisms (measured as non-photochemical quenching of chlorophyll a fluorescence, NPQ) to induce and relax more quickly, resulting in smaller losses under dynamic light conditions. Previous studies aimed at understanding the enzymes involved in the regulation of NPQ have relied primarily on labor-intensive and time-consuming generation of stable transgenic lines and mutant populations - approaches limited to organisms amenable to genetic manipulation and mapping. To enable rapid functional testing of NPQ-related genes from diverse organisms, we performed Agrobacterium tumefaciens-mediated transient expression assays in Nicotiana benthamiana to test if NPQ kinetics could be modified in fully expanded leaves. By expressing Arabidopsis thaliana genes known to be involved in NPQ, we confirmed the viability of this method for studying dynamic photosynthetic processes. Subsequently, we used naturally occurring variation in photosystem II subunit S, a modulator of NPQ in plants, to explore how differences in amino acid sequence affect NPQ capacity and kinetics. Finally, we functionally characterized four predicted carotenoid biosynthesis genes from the marine algae Nannochloropsis oceanica and Thalassiosira pseudonana and examined the effect of their expression on NPQ in N. benthamiana. This method offers a powerful alternative to traditional gene characterization methods by providing a fast and easy platform for assessing gene function in planta.
Collapse
Affiliation(s)
- Lauriebeth Leonelli
- Howard Hughes Medical InstituteDepartment of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720‐3102USA
| | - Erika Erickson
- Howard Hughes Medical InstituteDepartment of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720‐3102USA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Dagmar Lyska
- Howard Hughes Medical InstituteDepartment of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720‐3102USA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Krishna K. Niyogi
- Howard Hughes Medical InstituteDepartment of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720‐3102USA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
13
|
Andrade Júnior MCD, Souza Andrade J, Souza Costa SD. Biochemical Changes of Cubiu Fruits (<i>Solanum sessiliflorum</i> Dunal, Solanaceae) According to Different Tissue Portions and Ripening Stages. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/fns.2016.712111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|