1
|
Siddiqui DA, Lakkasetter Chandrashekar B, Natarajan SG, Palmer KL, Rodrigues DC. Development of a Coculture Model for Assessing Competing Host Mammalian Cell and Bacterial Attachment on Zirconia versus Titanium. ACS Biomater Sci Eng 2024; 10:6218-6229. [PMID: 39312708 DOI: 10.1021/acsbiomaterials.4c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objectives: Coculture models are limited by bacteria rapidly outcompeting host mammalian cells for nutrients in vitro, resulting in mammalian cell death. The goal of this study was to develop a coculture model enabling survival of mammalian cells and oral bacterial species to assess their competition for growth on dental implant materials. Methods: Two early colonizing oral bacterial species, Streptococcus mutans or Actinomyces naeslundii, were grown in coculture with primary human macrophages or human gingival fibroblasts for up to 7 days on tissue-culture treated polystyrene or polished titanium and zirconia disks. Chloramphenicol was supplemented in cell culture medium at bacteriostatic concentrations to maintain stable bacterial inoculum size. Planktonic and adherent bacterial growth was assessed via spot plating while mammalian cell growth and attachment were evaluated using colorimetric metabolic assay and confocal fluorescence microscopy, respectively. Results: Macrophages and fibroblasts proliferated in the presence of S. mutans and maintained viability above 70% during coculture for up to 7 days on tissue-culture treated polystyrene and polished titanium and zirconia. In contrast, both mammalian cell types exhibited decreasing proliferation and surface coverage on titanium and zirconia over time in coculture with A. naeslundii versus control. S. mutans and A. naeslundii were maintained within an order of magnitude of seeding inoculum sizes throughout coculture. Significance: Cell culture medium supplemented with antibiotics at bacteriostatic concentrations can suppress bacterial overgrowth and facilitate mammalian cell viability in coculture model systems. Within the study's limitations, oral bacteria and mammalian cell growth in coculture are comparable on polished titanium and zirconia surfaces.
Collapse
Affiliation(s)
- Danyal A Siddiqui
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | | | - Smriti G Natarajan
- Texas A&M University School of Dentistry, 3302 Gaston Avenue, Dallas, Texas 75246, United States
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Danieli C Rodrigues
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
2
|
Andalib E, Kashfi M, Mahmoudvand G, Rezaei E, Mahjoor M, Torki A, Afkhami H. Application of hypoxia-mesenchymal stem cells in treatment of anaerobic bacterial wound infection: wound healing and infection recovery. Front Microbiol 2023; 14:1251956. [PMID: 37869672 PMCID: PMC10586055 DOI: 10.3389/fmicb.2023.1251956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Mesenchymal stromal cells, commonly referred to as MSCs, are a type of multipotent stem cells that are typically extracted from adipose tissue and bone marrow. In the field of tissue engineering and regenerative medicine, MSCs and their exosomes have emerged as revolutionary tools. Researchers are now devoting greater attention to MSCs because of their ability to generate skin cells like fibroblasts and keratinocytes, as well as their distinctive potential to decrease inflammation and emit pro-angiogenic molecules at the site of wounds. More recent investigations revealed that MSCs can exert numerous direct and indirect antimicrobial effects that are immunologically mediated. Collectively, these antimicrobial properties can remove bacterial infections when the MSCs are delivered in a therapeutic setting. Regardless of the positive therapeutic potential of MSCs for a multitude of conditions, transplanted MSC cell retention continues to be a major challenge. Since MSCs are typically administered into naturally hypoxic tissues, understanding the impact of hypoxia on the functioning of MSCs is crucial. Hypoxia has been postulated to be among the factors determining the differentiation of MSCs, resulting in the production of inflammatory cytokines throughout the process of tissue regeneration and wound repair. This has opened new horizons in developing MSC-based systems as a potent therapeutic tool in oxygen-deprived regions, including anaerobic wound infection sites. This review sheds light on the role of hypoxia-MSCs in the treatment of anaerobic bacterial wound infection in terms of both their regenerative and antimicrobial activities.
Collapse
Affiliation(s)
- Elahe Andalib
- Department of Microbiology, School of Basic Sciences, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Elaheh Rezaei
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Torki
- Department of Medical Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Medical Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
3
|
Borozan I, Zaidi SH, Harrison TA, Phipps AI, Zheng J, Lee S, Trinh QM, Steinfelder RS, Adams J, Banbury BL, Berndt SI, Brezina S, Buchanan DD, Bullman S, Cao Y, Farris AB, Figueiredo JC, Giannakis M, Heisler LE, Hopper JL, Lin Y, Luo X, Nishihara R, Mardis ER, Papadopoulos N, Qu C, Reid EEG, Thibodeau SN, Harlid S, Um CY, Hsu L, Gsur A, Campbell PT, Gallinger S, Newcomb PA, Ogino S, Sun W, Hudson TJ, Ferretti V, Peters U. Molecular and Pathology Features of Colorectal Tumors and Patient Outcomes Are Associated with Fusobacterium nucleatum and Its Subspecies animalis. Cancer Epidemiol Biomarkers Prev 2022; 31:210-220. [PMID: 34737207 PMCID: PMC8755593 DOI: 10.1158/1055-9965.epi-21-0463] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/27/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) activates oncogenic signaling pathways and induces inflammation to promote colorectal carcinogenesis. METHODS We characterized F. nucleatum and its subspecies in colorectal tumors and examined associations with tumor characteristics and colorectal cancer-specific survival. We conducted deep sequencing of nusA, nusG, and bacterial 16s rRNA genes in tumors from 1,994 patients with colorectal cancer and assessed associations between F. nucleatum presence and clinical characteristics, colorectal cancer-specific mortality, and somatic mutations. RESULTS F. nucleatum, which was present in 10.3% of tumors, was detected in a higher proportion of right-sided and advanced-stage tumors, particularly subspecies animalis. Presence of F. nucleatum was associated with higher colorectal cancer-specific mortality (HR, 1.97; P = 0.0004). This association was restricted to nonhypermutated, microsatellite-stable tumors (HR, 2.13; P = 0.0002) and those who received chemotherapy [HR, 1.92; confidence interval (CI), 1.07-3.45; P = 0.029). Only F. nucleatum subspecies animalis, the main subspecies detected (65.8%), was associated with colorectal cancer-specific mortality (HR, 2.16; P = 0.0016), subspecies vincentii and nucleatum were not (HR, 1.07; P = 0.86). Additional adjustment for tumor stage suggests that the effect of F. nucleatum on mortality is partly driven by a stage shift. Presence of F. nucleatum was associated with microsatellite instable tumors, tumors with POLE exonuclease domain mutations, and ERBB3 mutations, and suggestively associated with TP53 mutations. CONCLUSIONS F. nucleatum, and particularly subspecies animalis, was associated with a higher colorectal cancer-specific mortality and specific somatic mutated genes. IMPACT Our findings identify the F. nucleatum subspecies animalis as negatively impacting colorectal cancer mortality, which may occur through a stage shift and its effect on chemoresistance.
Collapse
Affiliation(s)
- Ivan Borozan
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Jiayin Zheng
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Stephen Lee
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Jeremy Adams
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Familial Cancer Clinic, Genetic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St Louis, Missouri
| | - Alton B Farris
- Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - John L Hopper
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Xuemei Luo
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Emma E G Reid
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sophia Harlid
- Oncology, Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Caroline Y Um
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, University of Toronto, Toronto, Ontario, Canada
- General Surgery, Surgery and Critical Care Program, University Health Network Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Cancer Immunology Program, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
- Cancer Epidemiology Program, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Vincent Ferretti
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington.
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
4
|
Yu J, Chen S, Lei S, Li F, Wang Y, Shu X, Xu W, Tang X. The Effects of Porphyromonas gingivalis on Inflammatory and Immune Responses and Osteogenesis of Mesenchymal Stem Cells. Stem Cells Dev 2021; 30:1191-1201. [PMID: 34628938 DOI: 10.1089/scd.2021.0068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are increasingly used in tissue regeneration, not only because of their multilineage differentiation ability, but also because of their immunomodulatory function, which allows them to play a role in the inflammatory milieu, especially in periodontitis. Porphyromonas gingivalis (P. gingivalis) is an important pathogen associated with the progression of periodontitis. Heterogeneous MSC sources show differences in their inflammatory-immune responsiveness and osteogenesis capabilities when exposed to P. gingivalis and its virulence factors. This article reviews the promoted inflammatory and immune responses of periodontal ligament stem cells, which are potential pitfalls in bone regeneration. MSCs from other sources showed contradictory inflammatory and immune reactions in the few studies on this topic. We also summarize the mechanisms involved in the inflammatory, immune responses and osteogenic potential of MSCs exposed to P. gingivalis and its virulence factors to inform an improved utilization of MSCs in regenerative therapies for periodontitis.
Collapse
Affiliation(s)
- Jingjun Yu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Shuangshuang Chen
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Shuang Lei
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Fulong Li
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yan Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiufang Shu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wanlin Xu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiaolin Tang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
5
|
Navard SH, Rezvan H, Haddad MHF, Ali SA, Nourian A, Eslaminejad MB, Behmanesh MA. Therapeutic effects of mesenchymal stem cells on cutaneous leishmaniasis lesions caused by Leishmania major. J Glob Antimicrob Resist 2020; 23:243-250. [PMID: 32977079 DOI: 10.1016/j.jgar.2020.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Leishmania major (L. major) is a cutaneous leishmaniasis causative agent. Current chemotherapeutic methods are not totally effective in treatment of this disease. The immunomodulation and tissue repairing capability of mesenchymal stem cells (MSCs), ease of isolation, detection and in vitro culture, have encouraged biologists to use MSCs for cell therapy in different infections such as cutaneous leishmaniasis. METHODS BALB/c mice (6-8 weeks old) were infected with L. major then divided into four groups and treated with MSCs, Glucantime, Glucantime + MSCs, or PBS. Regression of lesions, potency of macrophages for phagocytosis, proliferation of immune cells against Leishmania soluble antigen, reduction of spleen parasite burden and healing of the lesions were evaluated on days 10, 20 and 30 of treatment. RESULTS The results indicated that the mice intralesionally injected with MSCs showed significant regression in the lesions produced by L. major by day 30. Proliferation of splenocytes stimulated with SLA (soluble leishmania antigen) in vitro in MSC-treated mice on day 20 was significantly higher than in the other groups. The potency of phagocytosis in macrophages of mice treated with MSCs was significantly higher by day 30 and healing of the lesions in this group of mice showed more progress on histopathological examinations. Spleen parasite burden showed significant reduction in the mice treated with Glucantime + MSCs by day 30. CONCLUSIONS The results showed that including MSCs in treatment of cutaneous leishmaniasis caused by L. major is a promising approach.
Collapse
Affiliation(s)
- Sahar Hamoon Navard
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Hossein Rezvan
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hossein Feiz Haddad
- Leishmaniasis Disease Registry Committee, Dezful University of Medical Sciences, Dezful, Iran; Infectious and Tropical Diseases Research Centre, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - S A Ali
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Alireza Nourian
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Amin Behmanesh
- Department of Histology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
6
|
Translocation of dead or alive bacteria from mucosa to joints and epiphyseal bone-marrow: facts and hypotheses. Joint Bone Spine 2020; 87:31-36. [DOI: 10.1016/j.jbspin.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
|
7
|
Broad-Spectrum Antibacterial Effects of Human Adipose-Derived Stromal Cells. Stem Cells Int 2019; 2019:5389629. [PMID: 31781241 PMCID: PMC6855043 DOI: 10.1155/2019/5389629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction Many pathological conditions may benefit from cell therapy using mesenchymal stromal cells, particularly from adipose tissue (ASCs). Cells may be grafted in an environment with a remnant polymicrobial component. The aim is to investigate the behavior of ASCs when brought in contact with a large panel of bacteria. Materials and Methods Carboxyfluorescein-labelled bacterial interaction with ASCs was followed by confocal time-lapse microscopy. Costaining with LAMP-1 was also analyzed. Viability of 4 gram-negative and 4 gram-positive bacterial strains after 6 h of coculture with ASCs was assessed by agar colony counting and by flow cytometry using SYTO-62®/propidium iodide (PI) for membrane permeabilization and DiOC6 for depolarization. A murine model of periodontitis was used to assess in vivo antibacterial capacities of ASCs. Results A significant increase of PI-positive events for all bacterial strains and an increase of the DiOC6 signal were obtained after contact with ASCs. The number of CFU was also significantly decreased for several bacterial strains. 0.4 μm transwell systems illustrated the necessary direct contact to induce maximal bacterial membrane damages. Some bacteria were observed into phagolysosomes, confirming macrophage-like properties of ASCs. In vivo, the bacterial load was significantly lower in the ASC-grafted side compared to the control. Conclusion Our results highlight for the first time a broad range of antibacterial actions of ASCs, by phagocytosis, secretion of oxygenated free radicals and antibacterial molecules. These data are in line with the development of new therapeutic strategies based on ASC transplantation, appropriated in immune-dysbiotic tissue context such as periodontitis or chronic wounds.
Collapse
|
8
|
O'Rourke F, Kempf VAJ. Interaction of bacteria and stem cells in health and disease. FEMS Microbiol Rev 2019; 43:162-180. [DOI: 10.1093/femsre/fuz003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fiona O'Rourke
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Interplay between P. gingivalis, F. nucleatum and A. actinomycetemcomitans in murine alveolar bone loss, arthritis onset and progression. Sci Rep 2018; 8:15129. [PMID: 30310087 PMCID: PMC6181973 DOI: 10.1038/s41598-018-33129-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence supports the association of periodontitis with rheumatoid arthritis. Even though a prominent role has been postulated for Porphyromonas gingivalis, many bacterial species contribute to the pathogenesis of periodontal disease. We therefore investigated the impact of Porphyromonas gingivalis as well as other major pathobionts on the development of both, periodontitis and arthritis in the mouse. Pathobionts used - either alone or in combination - were Porphyromonas gingivalis, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomintans. Periodontitis was induced via oral gavage in SKG, DBA/1 and F1 (DBA/1 × B10.Q) mice and collagen-induced arthritis was provoked via immunization and boost with bovine collagen type II. Alveolar bone loss was quantified via micro computed tomography, arthritis was evaluated macroscopically and histologically and serum antibodies were assessed. Among the strains tested, only F1 mice were susceptible to P. gingivalis induced periodontitis and showed significant alveolar bone loss. Bone loss was paralleled by antibody titers against P. gingivalis. Of note, mice inoculated with the mix of all three pathobionts showed less alveolar bone loss than mice inoculated with P. gingivalis alone. However, oral inoculation with either F. nucleatum or A. actinomycetemcomintans alone accelerated subsequent arthritis onset and progression. This is the first report of a triple oral inoculation of pathobionts combined with collagen-induced arthritis in the mouse. In this interplay and this particular genetic setting, F. nucleatum and A. actinomycetemcomitans exerted a protective impact on P. gingivalis induced alveolar bone loss. By themselves they did not induce periodontitis yet accelerated arthritis onset and progression.
Collapse
|
10
|
Kriebel K, Hieke C, Engelmann R, Potempa J, Müller-Hilke B, Lang H, Kreikemeyer B. Porphyromonas gingivalis Peptidyl Arginine Deiminase Can Modulate Neutrophil Activity via Infection of Human Dental Stem Cells. J Innate Immun 2018; 10:264-278. [PMID: 29860256 DOI: 10.1159/000489020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Periodontitis (PD) is a widespread chronic inflammatory disease in the human population. Porphyromonas gingivalis is associated with PD and can citrullinate host proteins via P. gingivalis peptidyl arginine deiminase (PPAD). Here, we hypothesized that infection of human dental follicle stem cells (hDFSCs) with P. gingivalis and subsequent interaction with neutrophils will alter the neutrophil phenotype. To test this hypothesis, we established and analyzed a triple-culture system of neutrophils and hDFSCs primed with P. gingivalis. Mitogen-activated pathway blocking reagents were applied to gain insight into stem cell signaling after infection. Naïve hDFSCs do not influence the neutrophil phenotype. However, infection of hDFSCs with P. gingivalis prolongs the survival of neutrophils and increases their migration. These phenotypic changes depend on direct cellular contacts and PPAD expression by P. gingivalis. Active JNK and ERK pathways in primed hDFSCs are essential for the phenotypic changes in neutrophils. Collectively, our results confirm that P. gingivalis modifies hDFSCs, thereby causing an immune imbalance.
Collapse
Affiliation(s)
- Katja Kriebel
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, Rostock, Germany
| | - Cathleen Hieke
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Robby Engelmann
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
| | - Jan Potempa
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Krakow, Poland.,University of Louisville School of Dentistry, Department of Oral Immunity and Infectious Diseases, Louisville, Kentucky, USA
| | | | - Hermann Lang
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
11
|
Shan J, Ramachandran A, Thanki AM, Vukusic FBI, Barylski J, Clokie MRJ. Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Sci Rep 2018; 8:5091. [PMID: 29572482 PMCID: PMC5865146 DOI: 10.1038/s41598-018-23418-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
Bacteriophage therapeutic development will clearly benefit from understanding the fundamental dynamics of in vivo phage-bacteria interactions. Such information can inform animal and human trials, and much can be ascertained from human cell-line work. We have developed a human cell-based system using Clostridium difficile, a pernicious hospital pathogen with limited treatment options, and the phage phiCDHS1 that effectively kills this bacterium in liquid culture. The human colon tumorigenic cell line HT-29 was used because it simulates the colon environment where C. difficile infection occurs. Studies on the dynamics of phage-bacteria interactions revealed novel facets of phage biology, showing that phage can reduce C. difficile numbers more effectively in the presence of HT-29 cells than in vitro. Both planktonic and adhered Clostridial cell numbers were successfully reduced. We hypothesise and demonstrate that this observation is due to strong phage adsorption to the HT-29 cells, which likely promotes phage-bacteria interactions. The data also showed that the phage phiCDHS1 was not toxic to HT-29 cells, and phage-mediated bacterial lysis did not cause toxin release and cytotoxic effects. The use of human cell lines to understand phage-bacterial dynamics offers valuable insights into phage biology in vivo, and can provide informative data for human trials.
Collapse
Affiliation(s)
- Jinyu Shan
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| | - Ananthi Ramachandran
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Anisha M Thanki
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Fatima B I Vukusic
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Martha R J Clokie
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
12
|
Kriebel K, Hieke C, Müller-Hilke B, Nakata M, Kreikemeyer B. Oral Biofilms from Symbiotic to Pathogenic Interactions and Associated Disease -Connection of Periodontitis and Rheumatic Arthritis by Peptidylarginine Deiminase. Front Microbiol 2018; 9:53. [PMID: 29441048 PMCID: PMC5797574 DOI: 10.3389/fmicb.2018.00053] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
A wide range of bacterial species are harbored in the oral cavity, with the resulting complex network of interactions between the microbiome and host contributing to physiological as well as pathological conditions at both local and systemic levels. Bacterial communities inhabit the oral cavity as primary niches in a symbiotic manner and form dental biofilm in a stepwise process. However, excessive formation of biofilm in combination with a corresponding deregulated immune response leads to intra-oral diseases, such as dental caries, gingivitis, and periodontitis. Moreover, oral commensal bacteria, which are classified as so-called “pathobionts” according to a now widely accepted terminology, were recently shown to be present in extra-oral lesions with distinct bacterial species found to be involved in the onset of various pathophysiological conditions, including cancer, atherosclerosis, chronic infective endocarditis, and rheumatoid arthritis. The present review focuses on oral pathobionts as commensal and healthy members of oral biofilms that can turn into initiators of disease. We will shed light on the processes involved in dental biofilm formation and also provide an overview of the interactions of P. gingivalis, as one of the most prominent oral pathobionts, with host cells, including epithelial cells, phagocytes, and dental stem cells present in dental tissues. Notably, a previously unknown interaction of P. gingivalis bacteria with human stem cells that has impact on human immune response is discussed. In addition to this very specific interaction, the present review summarizes current knowledge regarding the immunomodulatory effect of P. gingivalis and other oral pathobionts, members of the oral microbiome, that pave the way for systemic and chronic diseases, thereby showing a link between periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Katja Kriebel
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Cathleen Hieke
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | | | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
13
|
Guerra AD, Rose WE, Hematti P, Kao WJ. Minocycline modulates NFκB phosphorylation and enhances antimicrobial activity against Staphylococcus aureus in mesenchymal stromal/stem cells. Stem Cell Res Ther 2017; 8:171. [PMID: 28732530 PMCID: PMC5521110 DOI: 10.1186/s13287-017-0623-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/05/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties due to their anti-inflammatory, angiogenic, and even antibacterial properties. We have shown previously that minocycline enhances the wound healing phenotype of MSCs, and MSCs encapsulated in poly(ethylene glycol) and gelatin-based hydrogels with minocycline have antibacterial properties against Staphylococcus aureus (SA). Here, we investigated the signaling pathway that minocycline modulates in MSCs which results in their enhanced wound healing phenotype and determined whether preconditioning MSCs with minocycline has an effect on antimicrobial activity. We further investigated the in-vivo antimicrobial efficacy of MSC and antibiotic-loaded hydrogels in inoculated full-thickness cutaneous wounds. Methods Modulation of cell signaling pathways in MSCs with minocycline was analyzed via western blot, immunofluorescence, and ELISA. Antimicrobial efficacy of MSCs pretreated with minocycline was determined by direct and transwell coculture with SA. MSC viability after SA coculture was determined via a LIVE/DEAD® stain. Internalization of SA by MSCs pretreated with minocycline was determined via confocal imaging. All protein and cytokine analysis was done via ELISA. The in-vivo antimicrobial efficacy of MSC and antibiotic-loaded hydrogels was determined in Sprague–Dawley rats inoculated with SA. Two-way ANOVA for multiple comparisons was used with Bonferroni test assessment and an unpaired two-tailed Student’s t test was used to determine p values for all assays with multiple or two conditions, respectively. Results Minocycline leads to the phosphorylation of transcriptional nuclear factor-κB (NFκB), but not c-Jun NH2-terminal kinase (JNK) or mitogen-activated protein kinase (ERK). Inhibition of NFκB activation prevented the minocycline-induced increase in VEGF secretion. Preconditioning of MSCs with minocycline led to a reduced production of the antimicrobial peptide LL-37, but enhanced antimicrobial activity against SA via an increased production of IL-6 and SA internalization. MSC and antibiotic-loaded hydrogels reduced SA bioburden in inoculated wounds over 3 days and accelerated reepithelialization. Conclusions Minocycline modulates the NFκB pathway in MSCs that leads to an enhanced production of IL-6 and internalization of SA. This mechanism may have contributed to the in-vivo antibacterial efficacy of MSC and antibiotic-loaded hydrogels. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0623-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alberto Daniel Guerra
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 7123 Rennebohm Hall, Madison, WI, 53705, USA
| | - Warren E Rose
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 7123 Rennebohm Hall, Madison, WI, 53705, USA
| | - Peiman Hematti
- School of Medicine and Public Health, Department of Medicine, Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI, 53705, USA
| | - W John Kao
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 7123 Rennebohm Hall, Madison, WI, 53705, USA. .,College of Engineering, Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA. .,School of Medicine and Public Health, Department of Surgery, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI, 53705, USA. .,Present Address: 10/F Knowles Building, Pokfulam, Hong Kong.
| |
Collapse
|
14
|
Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia. Sci Rep 2016; 6:39096. [PMID: 27974831 PMCID: PMC5156907 DOI: 10.1038/srep39096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is characterized by inflammation associated with the colonization of different oral pathogens. We here aimed to investigate how bacteria and host cells shape their environment in order to limit inflammation and tissue damage in the presence of the pathogen. Human dental follicle stem cells (hDFSCs) were co-cultured with gram-negative P. intermedia and T. forsythia and were quantified for adherence and internalization as well as migration and interleukin secretion. To delineate hDFSC-specific effects, gingival epithelial cells (Ca9-22) were used as controls. Direct effects of hDFSCs on neutrophils (PMN) after interaction with bacteria were analyzed via chemotactic attraction, phagocytic activity and NET formation. We show that P. intermedia and T. forsythia adhere to and internalize into hDFSCs. This infection decreased the migratory capacity of the hDFSCs by 50%, did not disturb hDFSC differentiation potential and provoked an increase in IL-6 and IL-8 secretion while leaving IL-10 levels unaltered. These environmental modulations correlated with reduced PMN chemotaxis, phagocytic activity and NET formation. Our results suggest that P. intermedia and T. forsythia infected hDFSCs maintain their stem cell functionality, reduce PMN-induced tissue and bone degradation via suppression of PMN-activity, and at the same time allow for the survival of the oral pathogens.
Collapse
|
15
|
Wunsch CM, Lewis JP. Porphyromonas gingivalis as a Model Organism for Assessing Interaction of Anaerobic Bacteria with Host Cells. J Vis Exp 2015:e53408. [PMID: 26709454 DOI: 10.3791/53408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal-spatial visualization of bacteria. Methods used in this study can be applied to any cultivable anaerobe and any eukaryotic cell type.
Collapse
Affiliation(s)
| | - Janina P Lewis
- Philips Institute for Oral Health Research, Virginia Commonwealth University; Department of Microbiology and Immunology, Virginia Commonwealth University; Department of Biochemistry, Virginia Commonwealth University;
| |
Collapse
|
16
|
Mezey É, Nemeth K. Mesenchymal stem cells and infectious diseases: Smarter than drugs. Immunol Lett 2015; 168:208-14. [DOI: 10.1016/j.imlet.2015.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022]
|
17
|
Goto H, Ishihara Y, Kikuchi T, Izawa A, Ozeki N, Okabe E, Kamiya Y, Ozawa Y, Mizutani H, Yamamoto G, Mogi M, Nakata K, Maeda H, Noguchi T, Mitani A. Interleukin-1 Receptor Antagonist Has a Novel Function in the Regulation of Matrix Metalloproteinase-13 Expression. PLoS One 2015; 10:e0140942. [PMID: 26474296 PMCID: PMC4608771 DOI: 10.1371/journal.pone.0140942] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/30/2015] [Indexed: 11/18/2022] Open
Abstract
Interleukin-1 receptor antagonist (IL-1Ra) is an IL-1 family member, which binds to IL-1 receptors but does not induce any intracellular signaling. We addressed whether IL-1Ra has a novel function in regulation of the extracellular matrix or adhesion molecules. Polymerase chain reaction array analysis demonstrated a ~5-fold increase in matrix metalloproteinase 13 (MMP-13) mRNA expression of IL-1Ra siRNA-transfected Ca9-22 human oral squamous epithelial carcinoma cells compared with the control. In fact, MMP-13 mRNA and protein expression as well as its activity in IL-1Ra siRNA-transfected Ca9-22 cell lines were significantly higher than those in the control. IL-1Ra siRNA treatment resulted in strong elevation of MMP-13 expression, whereas addition of rhIL-1Ra (40 ng/ml) suppressed MMP-13 expression, suggesting that IL-1Ra had a specific effect on MMP-13 induction. IL-1Ra siRNA could potently suppress IL-1α. No significant difference was found between the MMP-13 mRNA expression of IL-1Ra siRNA-transfected cells and those treated with anti-IL-1α or anti-IL-1β antibodies. These results suggested that continuous supply of IL-1 had no effect on the induction of MMP-13 by IL-1Ra siRNA. Histopathological investigation of MMP-13 in periodontal tissue showed specific localization in the junctional epithelial cells of IL-1Ra knockout (KO) mice. Furthermore, infection with Aggregatibacter actinomycetemcomitans to establish an experimental periodontitis model resulted in predominant localization of MMP-13 along apical junctional epithelial cells. Laminin-5, which is degraded by MMP-13, was found in the internal basal lamina of wild-type mice, whereas the internal basal lamina of IL-1Ra KO mice did not show obvious laminin-5 localization. In particular, laminin-5 localization almost disappeared in the internal basal lamina of IL-1Ra KO mice infected with A. actinomycetemcomitans, suggesting that the suppression of IL-1Ra resulted in strong induction of MMP-13 that degraded laminin-5. In conclusion, IL-1Ra is associated with MMP-13 expression and has a novel function in such regulation without interference of the IL-1 signaling cascade.
Collapse
Affiliation(s)
- Hisashi Goto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yuichi Ishihara
- Department of Operative Dentistry, Endodontology, and Periodontology, School of Dentistry, Matsumoto Dental University, Nagano, Japan
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Ario Izawa
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Nobuaki Ozeki
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Eijiro Okabe
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yosuke Kamiya
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yusuke Ozawa
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Hiroki Mizutani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Genta Yamamoto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Makio Mogi
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Chikusa-ku, Nagoya, Japan
| | - Kazuhiko Nakata
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Hatsuhiko Maeda
- Department of Pathology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Japan
| | - Toshihide Noguchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
18
|
Chatzivasileiou K, Kriebel K, Steinhoff G, Kreikemeyer B, Lang H. Do oral bacteria alter the regenerative potential of stem cells? A concise review. J Cell Mol Med 2015; 19:2067-74. [PMID: 26058313 PMCID: PMC4568911 DOI: 10.1111/jcmm.12613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/15/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are widely recognized as critical players in tissue regeneration. New insights into stem cell biology provide evidence that MSCs may also contribute to host defence and inflammation. In case of tissue injury or inflammatory diseases, e.g. periodontitis, stem cells are mobilized towards the site of damage, thus coming in close proximity to bacteria and bacterial components. Specifically, in the oral cavity, complex ecosystems of commensal bacteria live in a mutually beneficial state with the host. However, the formation of polymicrobial biofilm communities with pathogenic properties may trigger an inadequate host inflammatory-immune response, leading to the disruption of tissue homoeostasis and development of disease. Because of their unique characteristics, MSCs are suggested as crucial regulators of tissue regeneration even under such harsh environmental conditions. The heterogeneous effects of bacteria on MSCs across studies imply the complexity underlying the interactions between stem cells and bacteria. Hence, a better understanding of stem cell behaviour at sites of inflammation appears to be a key strategy in developing new approaches for in situ tissue regeneration. Here, we review the literature on the effects of oral bacteria on cell proliferation, differentiation capacity and immunomodulation of dental-derived MSCs.
Collapse
Affiliation(s)
- Kyriaki Chatzivasileiou
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Katja Kriebel
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Gustav Steinhoff
- Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| |
Collapse
|
19
|
Biedermann A, Kriebel K, Kreikemeyer B, Lang H. Interactions of anaerobic bacteria with dental stem cells: an in vitro study. PLoS One 2014; 9:e110616. [PMID: 25369260 PMCID: PMC4219685 DOI: 10.1371/journal.pone.0110616] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In patients with periodontitis, it is highly likely that local (progenitor) cells encounter pathogenic bacteria. The purpose of this in vitro study was to elucidate how human dental follicle stem cells (hDFSC) react towards a direct challenge with anaerobic periodontal pathogens under their natural oxygen-free atmosphere. HDFSC were compared to human bone marrow mesenchymal stem cells (hBMSC) and differentiated primary human gingival fibroblasts (hGiF), as well as permanent gingival carcinoma cells (Ca9-22). METHODOLOGY/PRINCIPAL FINDINGS The different cell types were investigated in a co-culture system with Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). The viability of the cells and pathogens under anaerobic conditions, as well as interactions in terms of adherence and internalization, were examined. Additionally, the release of pro-inflammatory interleukin-8 (IL-8) and anti-inflammatory interleukin-10 (IL-10) was quantified via enzyme-linked immunosorbent assay. The bacteria adhered less efficiently to hDFSC compared to Ca9-22 (P. gingivalis: 0.18% adherence to hDFSC; 3.1% adherence to Ca9-22). Similar results were observed for host cell internalization (F. nucleatum: 0.002% internalization into hDFSC; 0.09% internalization into Ca9-22). Statistically significantly less IL-8 was secreted from hDFSC after stimulation with F. nucleatum and P. gingivalis in comparison with hGiF (F. nucleatum: 2080.0 pg/ml--hGiF; 19.7 pg/ml--hDFSC). The IL-10 response of the differentiated cells was found to be low in relation to their pro-inflammatory IL-8 response. CONCLUSIONS/SIGNIFICANCE The results indicate that dental stem cells are less prone to interactions with pathogenic bacteria than differentiated cells in an anaerobic environment. Moreover, during bacterial challenge, the stem cell immune response seems to be more towards an anti-inflammatory reaction. For a potential future therapeutic use of hDFSC, these findings support the idea of a save application.
Collapse
Affiliation(s)
- Anne Biedermann
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Katja Kriebel
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Med. Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
- * E-mail:
| |
Collapse
|