1
|
Overduin TS, Page AJ, Young RL, Gatford KL. Adaptations in Gastrointestinal Nutrient Absorption and its Determinants During Pregnancy in Monogastric Mammals: A Scoping Review. Nutr Rev 2025; 83:e1172-e1196. [PMID: 38926118 DOI: 10.1093/nutrit/nuae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
CONTEXT Pregnancy increases nutrient demand, but how nutrient uptake and its determinants adapt to facilitate this is unclear. OBJECTIVE This review aimed to identify and characterize evidence and evidence gaps regarding changes in gastrointestinal nutrient absorption and its determinants during pregnancy in monogastric mammals. DATA SOURCES A scoping review of peer-reviewed sources was conducted across PubMed, Scopus, Web of Science, Embase, and ProQuest (theses and dissertations) databases. DATA EXTRACTION Data extracted included species, pregnancy stages and outcomes. Where sufficient data for a given outcome was available, relative values were summarized graphically or in tables, to allow comparison across pregnancy stages and/or small intestine regions. Searches identified 26 855 sources, of which only 159 were eligible. Mechanistic studies were largely restricted to rodents, and most compared non- and late-pregnant groups, with fewer studies including early- or mid-pregnant groups. DATA ANALYSIS During pregnancy, there is some evidence for greater capacity for glucose uptake but unchanged amino acid uptake, and good evidence for increased uptake of calcium, iron, and zinc, and slower gastrointestinal passage of nutrients. The available evidence indicates that acute glucose uptake, gastric emptying, and the activities of sucrase, maltase, and lactase do not change during pregnancy. Gaps in the knowledge include the effects of pregnancy on uptake of specific amino acids, lipids, and most minerals and vitamins. CONCLUSION The results indicate that the gastrointestinal tract adapts during pregnancy to facilitate increased nutrient absorption. Additional data is required in order to assess the underlying mechanisms for and impacts on the absorption of many nutrients, as well as to determine the timing of these adaptations.
Collapse
Affiliation(s)
- Teunis Sebastian Overduin
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Amanda J Page
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Richard L Young
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kathryn L Gatford
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Cantacorps L, Coull BM, Falck J, Ritter K, Lippert RN. Gut-derived peptide hormone receptor expression in the developing mouse hypothalamus. PLoS One 2023; 18:e0290043. [PMID: 37590249 PMCID: PMC10434938 DOI: 10.1371/journal.pone.0290043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE In adult organisms, a number of receptors have been identified which modulate metabolic processes related to peptides derived from the intestinal tract. These receptors play significant roles in glucose homeostasis, food intake and energy balance. Here we assess these classical metabolic receptors and their expression as well as their potential role in early development of hypothalamic neuronal circuits. METHODS Chow-fed C57BL6/N female mice were mated and hypothalamic tissue was collected from offspring across postnatal development (postnatal day 7-21). Subsequent qPCR and Western Blot analyses were used to determine mRNA and protein changes in gut-derived peptide hormone receptors. Correlations to body weight, blood glucose and circulating leptin levels were analyzed. RESULTS We describe the gene expression and dynamic protein regulation of key gut-derived peptide hormone receptors in the early postnatal period of the mouse brain. Specifically, we show changes to Gastric inhibitory polypeptide receptor (GIPR), glucagon-like peptide 1 receptor (GLP1R), and cholecystokinin receptor 2 (CCK2R) in the developing hypothalamus. The changes to GIPR and InsR seem to be strongly negatively correlated with body weight. CONCLUSIONS This comprehensive analysis underscores the need to understand the roles of maternal-derived circulating gut hormones and their direct effect on offspring brain development.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Bethany M. Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Joanne Falck
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Katrin Ritter
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Rachel N. Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Burgos-Gamez X, Morales-Castillo P, Fernandez-Mejia C. Maternal adaptations of the pancreas and glucose homeostasis in lactation and after lactation. Mol Cell Endocrinol 2023; 559:111778. [PMID: 36162635 DOI: 10.1016/j.mce.2022.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
During lactation, the maternal physiology adapts to bear the nutritional requirements of the offspring. The exocrine and endocrine pancreas are central to nutrient handling, promoting digestion and metabolism. In concert with prolactin, insulin is a determinant factor for milk synthesis. The investigation of the pancreas during lactation has been scattered over several periods. The investigations that laid the foundation of lactating pancreatic physiology and glucose homeostasis were conducted in the decades of 1970-1980. With the development of molecular biology, newer studies have revealed the molecular mechanisms involved in the endocrine pancreas during breastfeeding. There has been a surge of information recently about unexpected changes in the pancreas at the end of the lactation period and after weaning. In this review, we aim to gather information on the changes in the pancreas and glucose homeostasis during and after lactation and discuss the outcomes derived from the current discoveries.
Collapse
Affiliation(s)
- Xadeni Burgos-Gamez
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico
| | - Paulina Morales-Castillo
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico
| | - Cristina Fernandez-Mejia
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico.
| |
Collapse
|
5
|
Picó C, Reis F, Egas C, Mathias P, Matafome P. Lactation as a programming window for metabolic syndrome. Eur J Clin Invest 2021; 51:e13482. [PMID: 33350459 DOI: 10.1111/eci.13482] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
The concept of developmental origins of health and disease (DOHaD) was initially supported by the low birth weight and higher risk of developing cardiovascular disease in adult life, caused by nutrition restriction during foetal development. However, other programming windows have been recognized in the last years, namely lactation, infancy, adolescence and even preconception. Although the concept has been developed in order to study the impact of foetal calorie restriction in adult life, it is now recognized that maternal overweight during programming windows is also harmful to the offspring. This article explores and summarizes the current knowledge about the impact of maternal obesity and obesogenic diets during lactation in the metabolic programming towards the development of metabolic syndrome in the adult life. The impact of maternal obesity and obesogenic diets in milk quality is discussed, including the alterations in specific micro and macronutrients, as well as the impact of such alterations in the development of metabolic syndrome-associated features in the newborn, such as insulin resistance and adiposity. Moreover, the impact of milk quality and formula feeding in infants' gut microbiota, immune system maturation and in the nutrient-sensing mechanisms, namely those related to gut hormones and leptin, are also discussed under the current knowledge.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma (Mallorca), Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma (Mallorca), Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma (Mallorca), Spain
| | - Flávio Reis
- Faculty of Medicine, Institute of Pharmacology & Experimental Therapeutics and Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Conceição Egas
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Center of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | | | - Paulo Matafome
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Faculty of Medicine, Institute of Physiology and Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| |
Collapse
|
6
|
Mohan S, McCloskey AG, McKillop AM, Flatt PR, Irwin N, Moffett RC. Development and characterisation of novel, enzymatically stable oxytocin analogues with beneficial antidiabetic effects in high fat fed mice. Biochim Biophys Acta Gen Subj 2020; 1865:129811. [PMID: 33309687 DOI: 10.1016/j.bbagen.2020.129811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is growing evidence to support beneficial effects of the hypothalamic synthesised hormone, oxytocin, on metabolism. However, the biological half-life of oxytocin is short and receptor activation profile unspecific. METHODS We have characterised peptide-based oxytocin analogues with structural modifications aimed at improving half-life and receptor specificity. Following extensive in vitro and in vivo characterisation, antidiabetic efficacy of lead peptides was examined in high fat fed (HFF) mice. RESULTS Following assessment of stability against enzymatic degradation, insulin secretory activity, receptor activation profile and in vivo bioactivity, analogues 2 N (Ac-C ˂YIQNC >PLG-NH2) and D7R ((d-C)YIQNCYLG-NH2) were selected as lead peptides. Twice daily injection of either peptide for 22 days reduced body weight, energy intake, plasma glucose and insulin and pancreatic glucagon content in HFF mice. In addition, both peptides reduced total- and LDL-cholesterol, with concomitant elevations of HDL-cholesterol, and D7R also decreased triglyceride levels. The two oxytocin analogues improved glucose tolerance and insulin responses to intraperitoneal, and particularly oral, glucose challenge on day 22. Both oxytocin analogues enhanced insulin sensitivity, reduced HOMA-IR and increased bone mineral density. In terms of pancreatic islet histology, D7R reversed high fat feeding induced elevations of islet and beta cell areas, which was associated with reductions in beta cell apoptosis. Islet insulin secretory responsiveness was improved by 2 N, and especially D7R, treatment. CONCLUSION Novel, enzymatically stable oxytocin analogues exert beneficial antidiabetic effects in HFF mice. GENERAL SIGNIFICANCE These observations emphasise the, yet untapped, therapeutic potential of long-acting oxytocin-based agents for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Shruti Mohan
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Andrew G McCloskey
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Aine M McKillop
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK.
| | | |
Collapse
|
7
|
Kruse M, Keyhani-Nejad F, Osterhoff MA, Pfeiffer AFH. Sexually dimorphic metabolic responses to exposure of a high fat diet during pregnancy, lactation and early adulthood in Gipr -/- mice. Peptides 2020; 125:170250. [PMID: 31917165 DOI: 10.1016/j.peptides.2019.170250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
Obesity has a multifactorial origin. It is known that alterations of the intra uterine milieu induce developmental programming effects leading to metabolic diseases in offspring. Obesity is diminished in mice lacking the glucose-dependent insulinotropic polypeptide receptor (Gipr-/-) when exposed to a high fat diet (HFD). We investigated whether Gipr-/- mice are still protected from obesity when additionally exposure to a HFD during pregnancy and lactation occurs. Male and female wild type (WT) and Gipr-/- offspring received either a control/ low fat diet or HFD during pregnancy and lactation and were then either left on this diet or placed on the opposite diet after weaning until 24 weeks of life. Female WT mice showed increased body weight and adiposity when exposed to a HFD during pregnancy and lactation and post-weaning compared to female WT that received the HFD after weaning only. This exacerbated effect of a HFD during pregnancy and lactation was abolished in female Gipr-/- mice. Male Gipr-/- mice were protected from obesity to a much lesser extent. Male Gipr-/- mice exposed to a HFD during pregnancy and lactation and after weaning exhibited significantly increased fed serum glucose compared to Gipr-/- mice exposed to a HFD after weaning only. In female Gipr-/- mice no differences in fed blood glucose were observed between these groups. Our data indicate that female Gipr-/- mice are more protected from obesity. This protection is preserved in female Gipr-/- mice when additional deleterious effects of a HFD occur during fetal development.
Collapse
Affiliation(s)
- Michael Kruse
- Department of Clinical Nutrition, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Farnaz Keyhani-Nejad
- Department of Clinical Nutrition, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Martin A Osterhoff
- Department of Clinical Nutrition, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Hindenburgdamm 30, 12200 Berlin, Germany; German Center for Diabetes Research, Germany.
| |
Collapse
|
8
|
Sarnobat D, Moffett RC, Gault VA, Tanday N, Reimann F, Gribble FM, Flatt PR, Irwin N. Effects of long-acting GIP, xenin and oxyntomodulin peptide analogues on alpha-cell transdifferentiation in insulin-deficient diabetic Glu CreERT2;ROSA26-eYFP mice. Peptides 2020; 125:170205. [PMID: 31738969 PMCID: PMC7212078 DOI: 10.1016/j.peptides.2019.170205] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023]
Abstract
Enzyme-resistant long-acting forms of the gut-derived peptide hormones, glucose-dependent insulinotropic polypeptide (GIP), xenin and oxyntomodulin (Oxm) have been generated, and exert beneficial effects on diabetes control and pancreatic islet architecture. The current study has employed alpha-cell lineage tracing in GluCreERT2;ROSA26-eYFP transgenic mice to investigate the extent to which these positive pancreatic effects are associated with alpha- to beta-cell transdifferentiation. Twice-daily administration of (D-Ala2)GIP, xenin-25[Lys13PAL] or (D-Ser2)-Oxm[Lys38PAL] for 10 days to streptozotocin (STZ)-induced diabetic mice did not affect body weight, food intake or blood glucose levels, but (D-Ser2)-Oxm[Lys38PAL] reduced (P < 0.05 to P < 0.001) fluid intake and circulating glucagon. (D-Ala2)GIP and (D-Ser2)-Oxm[Lys38PAL] also augmented (P < 0.05 and P < 0.01, respectively) pancreatic insulin content. Detrimental changes of pancreatic morphology induced by STZ in GluCreERT2;ROSA26-eYFP mice were partially reversed by all treatment interventions. This was associated with reduced (P < 0.05) apoptosis and increased (P < 0.05 to P < 0.01) proliferation of beta-cells, alongside opposing effects on alpha-cells, with (D-Ala2)GIP and (D-Ser2)-Oxm[Lys38PAL] being particularly effective in this regard. Alpha-cell lineage tracing revealed that induction of diabetes was accompanied by increased (P < 0.01) transdifferentiation of glucagon positive alpha-cells to insulin positive beta-cells. This islet cell transitioning process was augmented (P < 0.01 and P < 0.001, respectively) by (D-Ala2)GIP and (D-Ser2)-Oxm[Lys38PAL]. (D-Ser2)-Oxm[Lys38PAL] also significantly (P < 0.05) promoted loss of alpha-cell identity in favour of other endocrine islet cells. These data highlight intra-islet benefits of (D-Ala2)GIP, xenin-25[Lys13PAL] and (D-Ser2)-Oxm[Lys38PAL] in diabetes with beta-cell loss induced by STZ. The effects appear to be independent of glycaemic change, and associated with alpha- to beta-cell transdifferentiation for the GIP and Oxm analogues.
Collapse
Affiliation(s)
- Dipak Sarnobat
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Neil Tanday
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
9
|
Craig S, Perry R, Vyavahare S, Ng M, Gault V, Flatt P, Irwin N. A GIP/xenin hybrid in combination with exendin-4 improves metabolic status in db/db diabetic mice and promotes enduring antidiabetic benefits in high fat fed mice. Biochem Pharmacol 2020; 171:113723. [DOI: 10.1016/j.bcp.2019.113723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
|
10
|
Xavier JLP, Scomparin DX, Pontes CC, Ribeiro PR, Cordeiro MM, Marcondes JA, Mendonça FO, Silva MTD, Oliveira FBD, Franco GCN, Grassiolli S. Litter Size Reduction Induces Metabolic and Histological Adjustments in Dams throughout Lactation with Early Effects on Offspring. AN ACAD BRAS CIENC 2019; 91:e20170971. [PMID: 30916150 DOI: 10.1590/0001-3765201920170971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/07/2018] [Indexed: 01/08/2023] Open
Abstract
In the present study we analyzed morphological and metabolic alterations in dams nursing small litters and their consequences to offspring throughout lactation. Offspring sizes were adjusted to Small Litter (SL, 3 pups/ dam) and Normal Litter (NL, 9 pups/ dam). Body weight, food intake, white adipose tissue (WAT) content, histological analysis of the pancreas, mammary gland (MG) and brown adipose tissue (BAT) as well as, plasma parameters and milk composition were measured in dams and pups on the 7th, 14th and 21st days of lactation. In general, SL-dams presented higher body weight and retroperitoneal fat content, elevated fat infiltration in BAT, reduced islets size and hyperglycemia throughout lactation in relation to NL-dams (p<0.05). Moreover, MG from SL-dams had reduced alveoli development and high adipocytes content, resulting in milk with elevated energetic value and fat content in relation to NL-dams (p<0.05). Maternal states influenced offspring anthropometric conditions during lactation, offspring-SL displayed higher body weight and growth, hyperglycemia, augmented lipid deposition in BAT and elevated islet. Thus, maternal histological and metabolic changes are due to modifications to nursing small litters and reinforce the importance of preserving maternal health during lactation avoiding early programming effects on offspring preventing metabolic consequences later in life.
Collapse
Affiliation(s)
- João Lucas P Xavier
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Dionizia X Scomparin
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Catherine C Pontes
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Paulo Roberto Ribeiro
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Maiara M Cordeiro
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Jessica A Marcondes
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Felipe O Mendonça
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Makcine T da Silva
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Fabio B de Oliveira
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Gilson C N Franco
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Sabrina Grassiolli
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Jardim Universitário, 85819-110 Cascavel, PR, Brazil
| |
Collapse
|
11
|
Mohan S, Moffett RC, Thomas KG, Irwin N, Flatt PR. Vasopressin receptors in islets enhance glucose tolerance, pancreatic beta-cell secretory function, proliferation and survival. Biochimie 2019; 158:191-198. [DOI: 10.1016/j.biochi.2019.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
|
12
|
Abstract
OBJECTIVES Modulation of cholecystokinin (CCK) receptors has been shown to influence pancreatic endocrine function. METHODS We assessed the impact of the CCKA and CCKB receptor modulators, (pGlu-Gln)-CCK-8 and gastrin-17, respectively, on β-cell secretory function, proliferation and apoptosis and glucose tolerance, and investigating alterations of CCK and gastrin islet expression in diabetes. RESULTS Initially, the presence of CCK and gastrin, and expression of their receptors were evidenced in β-cell lines and mouse islets. (pGlu-Gln)-CCK-8 and gastrin-17 stimulated insulin secretion from BRIN-BD11 and 1.1B4 β-cells, associated with no effect on membrane potential or [Ca]i. Only (pGlu-Gln)-CCK-8 possessed insulin secretory actions in isolated islets. In agreement, (pGlu-Gln)-CCK-8 improved glucose disposal and glucose-induced insulin release in mice. In addition, (pGlu-Gln)-CCK-8 evoked clear satiety effects. Interestingly, islet colocalization of CCK with glucagon was elevated in streptozotocin- and hydrocortisone-induced diabetic mice, whereas gastrin coexpression in α cells was reduced. In contrast, gastrin colocalization within β-cells was higher in diabetic mice, while CCK coexpression with insulin was decreased in insulin-deficient mice. (pGlu-Gln)-CCK-8 and gastrin-17 also augmented human and rodent β-cell proliferation and offered protection against streptozotocin-induced β-cell cytotoxicity. CONCLUSIONS We highlight the direct involvement of CCKA and CCKB receptors in pancreatic β-cell function and survival.
Collapse
|
13
|
Mohan S, Khan D, Moffett RC, Irwin N, Flatt PR. Oxytocin is present in islets and plays a role in beta-cell function and survival. Peptides 2018; 100:260-268. [PMID: 29274352 DOI: 10.1016/j.peptides.2017.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 01/18/2023]
Abstract
Oxytocin is associated mainly with modulating reproductive function. However, studies suggest that oxytocin also plays a role in endocrine pancreatic function. In the present study, islet expression of oxytocin and its related receptor was confirmed in mouse islets as well as cultured rodent and human beta-cells. Oxytocin significantly stimulated glucose-induced insulin secretion from isolated mouse islets. Similar insulinotropic actions were also observed in rodent BRIN BD11 and human 1.1B4 beta-cells. Positive effects of oxytocin on insulin secretion were almost fully annulled by the oxytocin receptor antagonist, atosiban. In terms of mechanism of insulin secretory action, oxytocin had no effect on beta-cell membrane potential or cAMP generation, but did augment intracellular calcium concentrations. In vivo administration of oxytocin to mice significantly reduced overall blood glucose levels and increased plasma insulin concentrations in response to a glucose challenge. Oxytocin also had a modest, but significant, appetite suppressive effect. As expected, streptozotocin diabetic mice had marked loss of beta-cell area accompanied by increases in alpha-cell area, whilst hydrocortisone treatment increased beta-cell and overall islet areas. Both mouse models of diabetes presented with dramatically decreased percentage islet oxytocin co-localisation with insulin and increased co-localisation with glucagon. More detailed studies in cultured beta-cell lines revealed direct positive effects of oxytocin on beta-cell proliferation and protection against apoptosis. Together, these data highlight a potentially important role of islet-derived oxytocin and related receptor signalling pathways on the modulation of beta-cell function and survival.
Collapse
Affiliation(s)
- Shruti Mohan
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Dawood Khan
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
14
|
Khan D, Vasu S, Moffett RC, Gault VA, Flatt PR, Irwin N. Locally produced xenin and the neurotensinergic system in pancreatic islet function and β-cell survival. Biol Chem 2017; 399:79-92. [DOI: 10.1515/hsz-2017-0136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
AbstractModulation of neuropeptide receptors is important for pancreatic β-cell function. Here, islet distribution and effects of the neurotensin (NT) receptor modulators, xenin and NT, was examined. Xenin, but not NT, significantly improved glucose disposal and insulin secretion, in mice. However, both peptides stimulated insulin secretion from rodent β-cells at 5.6 mmglucose, with xenin having similar insulinotropic actions at 16.7 mmglucose. In contrast, NT inhibited glucose-induced insulin secretion. Similar observations were made in human 1.1B4 β-cells and isolated mouse islets. Interestingly, similar xenin levels were recorded in pancreatic and small intestinal tissue. Arginine and glucose stimulated xenin release from islets. Streptozotocin treatment decreased and hydrocortisone treatment increased β-cell mass in mice. Xenin co-localisation with glucagon was increased by streptozotocin, but unaltered in hydrocortisone mice. This corresponded to elevated plasma xenin levels in streptozotocin mice. In addition, co-localisation of xenin with insulin was increased by hydrocortisone, and decreased by streptozotocin. Furtherin vitroinvestigations revealed that xenin and NT protected β-cells against streptozotocin-induced cytotoxicity. Xenin augmented rodent and human β-cell proliferation, whereas NT displayed proliferative actions only in human β-cells. These data highlight the involvement of NT signalling pathways for the possible modulation of β-cell function.
Collapse
|
15
|
Khan D, Vasu S, Moffett RC, Irwin N, Flatt PR. Influence of neuropeptide Y and pancreatic polypeptide on islet function and beta-cell survival. Biochim Biophys Acta Gen Subj 2017; 1861:749-758. [PMID: 28069397 DOI: 10.1016/j.bbagen.2017.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND In the present study we assessed the impact of neuropeptide Y receptor (NPYR) modulators, neuropeptide Y (NPY) and pancreatic polypeptide (PP), on islet function and beta-cell survival. METHODS The effects of NPY and PP on beta-cell function were examined in BRIN BD11 and 1.1B4 beta-cells, as well as isolated mouse islets. Involvement of both peptides in pancreatic islet adaptations to streptozotocin and hydrocortisone, as well as effects on beta-cell proliferation and apoptosis was also evaluated. RESULTS Neither NPY nor PP affected in vivo glucose disposal or insulin secretion in mice. However, both peptides inhibited (p<0.05 to p<0.001) glucose stimulated insulin secretion from rat and human beta-cells. NPY exerted similar insulinostatic effects in isolated mouse islets. NPY and PP inhibited alanine-induced changes in BRIN BD11 cell membrane potential and (Ca2+)i. Streptozotocin treatment decreased and hydrocortisone treatment increased beta-cell mass in mice. In addition, streptozotocin, but not hydrocortisone, increased PP cell area. Streptozotocin also shifted the normal co-localisation of NPY with PP, towards more pronounced co-expression with somatostatin in delta-cells. Both streptozotocin and hydrocortisone increased pancreatic exocrine expression of NPY. More detailed in vitro investigations revealed that NPY, but not PP, augmented (p<0.01) BRIN BD11 beta-cell proliferation. In addition, both peptides exerted protective effects against streptozotocin-induced DNA damage in beta-cells. CONCLUSION These data emphasise the involvement of PP, and particularly NPY, in the regulation of beta-cell mass and function. GENERAL SIGNIFICANCE Modulation of PP and NPY signalling is suitable for further evaluation and possible clinical development for the treatment of diabetes.
Collapse
Affiliation(s)
- Dawood Khan
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Srividya Vasu
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK.
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
16
|
Khan D, Vasu S, Moffett RC, Irwin N, Flatt PR. Islet distribution of Peptide YY and its regulatory role in primary mouse islets and immortalised rodent and human beta-cell function and survival. Mol Cell Endocrinol 2016; 436:102-13. [PMID: 27465830 DOI: 10.1016/j.mce.2016.07.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022]
Abstract
Recent evidence suggests that the classic gut peptide, Peptide YY (PYY), could play a fundamental role in endocrine pancreatic function. In the present study expression of PYY and its NPY receptors on mouse islets and immortalised rodent and human beta-cells was examined together with the effects of both major circulating forms of PYY, namely PYY(1-36) and PYY(3-36), on beta-cell function, murine islet adaptions to insulin deficiency/resistance, as well as direct effects on cultured beta-cell proliferation and apoptosis. In vivo administration of PYY(3-36), but not PYY(1-36), markedly (p < 0.05) decreased food intake in overnight fasted mice. Neither form of PYY affected glucose disposal or insulin secretion following an i.p. glucose challenge. However, in vitro, PYY(1-36) and PYY(3-36) inhibited (p < 0.05 to p < 0.001) glucose, alanine and GLP-1 stimulated insulin secretion from immortalised rodent and human beta-cells, as well as isolated mouse islets, by impeding alterations in membrane potential, [Ca(2+)]i and elevations of cAMP. Mice treated with multiple low dose streptozotocin presented with severe (p < 0.01) loss of beta-cell mass accompanied by notable increases (p < 0.001) in alpha and PP cell numbers. In contrast, hydrocortisone-induced insulin resistance increased islet number (p < 0.01) and beta-cell mass (p < 0.001). PYY expression was consistently observed in alpha-, PP- and delta-, but not beta-cells. Streptozotocin decreased islet PYY co-localisation with PP (p < 0.05) and somatostatin (p < 0.001), whilst hydrocortisone increased PYY co-localisation with glucagon (p < 0.05) in mice. More detailed in vitro investigations revealed that both forms of PYY augmented (p < 0.05 to p < 0.01) immortalised human and rodent beta-cell proliferation and protected against streptozotocin-induced cytotoxicity, to a similar or superior extent as the well characterised beta-cell proliferative and anti-apoptotic agent GLP-1. Taken together, these data highlight the significance and potential offered by modulation of pancreatic islet NPY receptor signalling pathways for preservation of beta-cell mass in diabetes.
Collapse
Affiliation(s)
- Dawood Khan
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Srividya Vasu
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
17
|
O'Harte FPM, Ng MT, Lynch AM, Conlon JM, Flatt PR. Dogfish glucagon analogues counter hyperglycaemia and enhance both insulin secretion and action in diet-induced obese diabetic mice. Diabetes Obes Metab 2016; 18:1013-24. [PMID: 27357054 DOI: 10.1111/dom.12713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
AIMS To investigate the antidiabetic actions of three dogfish glucagon peptide analogues [known glucagon-like peptide-1 and glucagon receptor co-agonists] after chronic administration in diet-induced high-fat-diet-fed diabetic mice. MATERIALS AND METHODS National Institutes of Health Swiss mice were pre-conditioned to a high-fat diet (45% fat) for 100 days, and control mice were fed a normal diet (10% fat). Normal diet control and high-fat-fed control mice received twice-daily intraperitoneal (i.p.) saline injections, while the high-fat-fed treatment groups (n = 8) received twice-daily injections of exendin-4(1-39), [S2a]dogfish glucagon, [S2a]dogfish glucagon exendin-4(31-39) or [S2a]dogfish glucagon-Lys(30) -γ-glutamyl-PAL (25 nmol/kg body weight) for 51 days. RESULTS After dogfish glucagon analogue treatment, there was a rapid and sustained decrease in non-fasting blood glucose and an associated insulinotropic effect (analysis of variance, p < .05 to <.001) compared with saline-treated high-fat-fed controls. All peptide treatments significantly improved i.p. and oral glucose tolerance with concomitant increased insulin secretion compared with saline-treated high-fat-fed controls (p <.05 to <.001). After chronic treatment, no receptor desensitization was observed but insulin sensitivity was enhanced for all peptide-treated groups (p < .01 to <.001) except [S2a]dogfish glucagon. Both exendin-4 and [S2a]dogfish glucagon exendin-4(31-39) significantly reduced plasma triglyceride concentrations compared with those found in lean controls (p = .0105 and p = .0048, respectively). Pancreatic insulin content was not affected by peptide treatments but [S2a]dogfish glucagon and [S2a]dogfish glucagon exendin-4(31-39) decreased pancreatic glucagon by 28%-34% (p = .0221 and p = .0075, respectively). The percentage of β-cell area within islets was increased by exendin-4 and peptide analogue treatment groups compared with high-fat-fed controls and the β-cell area decreased (p < .05 to <.01). CONCLUSIONS Overall, dogfish glucagon co-agonist analogues had several beneficial metabolic effects, showing therapeutic potential for type 2 diabetes.
Collapse
Affiliation(s)
- F P M O'Harte
- School of Biomedical Sciences, Saad Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK.
| | - M T Ng
- School of Biomedical Sciences, Saad Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - A M Lynch
- School of Biomedical Sciences, Saad Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - J M Conlon
- School of Biomedical Sciences, Saad Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - P R Flatt
- School of Biomedical Sciences, Saad Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| |
Collapse
|
18
|
Cohick WS. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Effects of insulin on mammary gland differentiation during pregnancy and lactation1. J Anim Sci 2016; 94:1812-20. [DOI: 10.2527/jas.2015-0085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
19
|
Owolabi BO, Ojo OO, Srinivasan DK, Conlon JM, Flatt PR, Abdel-Wahab YHA. Glucoregulatory, endocrine and morphological effects of [P5K]hymenochirin-1B in mice with diet-induced glucose intolerance and insulin resistance. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:769-81. [DOI: 10.1007/s00210-016-1243-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/04/2016] [Indexed: 12/25/2022]
|
20
|
Irwin N, Pathak V, Flatt PR. A Novel CCK-8/GLP-1 Hybrid Peptide Exhibiting Prominent Insulinotropic, Glucose-Lowering, and Satiety Actions With Significant Therapeutic Potential in High-Fat-Fed Mice. Diabetes 2015; 64:2996-3009. [PMID: 25883113 DOI: 10.2337/db15-0220] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/08/2015] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) exert important complementary beneficial metabolic effects. This study assessed the biological actions and therapeutic utility of a novel (pGlu-Gln)-CCK-8/exendin-4 hybrid peptide compared with the stable GLP-1 and CCK mimetics exendin-4 and (pGlu-Gln)-CCK-8, respectively. All peptides significantly enhanced in vitro insulin secretion. Administration of the peptides, except (pGlu-Gln)-CCK-8 alone, in combination with glucose significantly lowered plasma glucose and increased plasma insulin in mice. All treatments elicited appetite-suppressive effects. Twice-daily administration of the novel (pGlu-Gln)-CCK-8/exendin-4 hybrid, (pGlu-Gln)-CCK-8 alone, or (pGlu-Gln)-CCK-8 in combination with exendin-4 for 21 days to high-fat-fed mice significantly decreased energy intake, body weight, and circulating plasma glucose. HbA1c was reduced in the (pGlu-Gln)-CCK-8/exendin-4 hybrid and combined parent peptide treatment groups. Glucose tolerance and insulin sensitivity also were improved by all treatment modalities. Interestingly, locomotor activity was decreased in the hybrid peptide group, and these mice also exhibited reductions in circulating triglyceride and cholesterol levels. Pancreatic islet number and area, as well β-cell area and insulinotropic responsiveness, were dramatically improved by all treatments. These studies highlight the clear potential of dual activation of GLP-1 and CCK1 receptors for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, U.K.
| | - Varun Pathak
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, U.K
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, U.K
| |
Collapse
|
21
|
Patterson S, de Kort M, Irwin N, Moffett RC, Dokter WHA, Bos ES, Miltenburg AMM, Flatt PR. Pharmacological characterization and antidiabetic activity of a long-acting glucagon-like peptide-1 analogue conjugated to an antithrombin III-binding pentasaccharide. Diabetes Obes Metab 2015; 17:760-70. [PMID: 25929155 DOI: 10.1111/dom.12483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/17/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
AIMS To examine the biological characteristics of a novel glucagon-like peptide-1 (GLP-1) conjugate, in which an antithrombin III (ATIII)-binding pentasaccharide is conjugated to d-Ala(8) GLP-1 using a tetraethylene glycol linker. METHODS We assessed GLP-1 receptor binding, cAMP generation and insulin secretory activity of the GLP-1 conjugate in vitro. Circulating half-life, glucose homeostatic and subchronic therapeutic effectiveness were then examined in vivo. RESULTS The half-life of the GLP-1 conjugate in mice was ∼11 h. In vitro insulin secretion from clonal β cells and islets was increased (p < 0.001) by the conjugate. The conjugate had half maximum effective concentration values of 1.3 × 10(-7) and 9.9 × 10(-8) M for displacement of (125) I-GLP-1 in competitive GLP-1 receptor binding and cAMP generation, respectively. Glucose tolerance in normal mice, immediately and 4 h after conjugate injection, resulted in significant (p < 0.001) improvements in blood glucose. These effects persisted for >48 h after administration. Daily treatment (21 days) of high-fat-fed and ob/ob mice with 25 nmol/kg conjugate resulted in significant improvement in glucose tolerance (p < 0.001) and reductions in glycated haemoglobin (HbA1c; p < 0.01) equivalent to or better than with exenatide or liraglutide. Treatment of C57BL/KsJ db/db mice for 15 days with 100 nmol/kg conjugate significantly (p < 0.001) reduced glucose and raised plasma insulin. Oral glucose tolerance was significantly (p < 0.001) improved and both 24-h glucose profile (p < 0.001) and HbA1c levels (p < 0.001) were reduced. Islet size (p < 0.001) and pancreatic insulin content were increased without change of islet cell proliferation or apoptosis. CONCLUSION These data show that d-Ala(8) GLP-1(Lys(37) ) pentasaccharide exerts significant antidiabetic actions and has a projected pharmacokinetic/pharmacodynamic profile that merits further evaluation in humans for a possible once-weekly dosing regimen.
Collapse
Affiliation(s)
- S Patterson
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | - N Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - R C Moffett
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | | | | | | | - P R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| |
Collapse
|
22
|
Irwin N, Patterson S, de Kort M, Moffett RC, Wisse JAJ, Dokter WHA, Bos ES, Miltenburg AMM, Flatt PR. Synthesis and Evaluation of a Series of Long-Acting Glucagon-Like Peptide-1 (GLP-1) Pentasaccharide Conjugates for the Treatment of Type 2 Diabetes. ChemMedChem 2015; 10:1424-34. [PMID: 26059252 DOI: 10.1002/cmdc.201500140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 12/25/2022]
Abstract
The present study details the development of a family of novel D-Ala(8) glucagon-like peptide-1 (GLP-1) peptide conjugates by site specific conjugation to an antithrombin III (ATIII) binding carrier pentasaccharide through tetraethylene glycol linkers. All conjugates were found to possess potent insulin-releasing activity. Peptides with short linkers (<25 atoms) conjugated at Lys(34) and Lys(37) displayed strong GLP-1 receptor (GLP-1-R) binding affinity. All D-Ala(8) GLP-1 conjugates exhibited prominent glucose-lowering action. Biological activity of the Lys(37) short-linker peptide was evident up to 72 h post-injection. In agreement, the pharmacokinetic profile of this conjugate (t1/2 , 11 h) was superior to that of the GLP-1-R agonist, exenatide. Once-daily injection of the Lys(37) short-linker peptide in ob/ob mice for 21 days significantly decreased food intake and improved HbA1c and glucose tolerance. Islet size was decreased, with no discernible change in islet number. The beneficial effects of the Lys(37) short-linker peptide were similar to or better than either exenatide or liraglutide, another GLP-1-R agonist. In conclusion, GLP-1 peptides conjugated to an ATIII binding carrier pentasaccharide have a substantially prolonged bioactive profile compatible for possible once-weekly treatment of type 2 diabetes in humans.
Collapse
Affiliation(s)
- Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, BT52 1SA Coleraine (UK).
| | - Steven Patterson
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, BT52 1SA Coleraine (UK).,Diabetes Research Group, School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, G4 0BA Glasgow (UK)
| | | | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, BT52 1SA Coleraine (UK)
| | | | | | - Ebo S Bos
- MSD, Kloosterstraat 6, 5349 AB Oss, (The Netherlands)
| | | | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, BT52 1SA Coleraine (UK)
| |
Collapse
|
23
|
Okame R, Nakahara K, Murakami N. Plasma amino acid profiles at various reproductive stages in female rats. J Vet Med Sci 2015; 77:815-21. [PMID: 25787929 PMCID: PMC4527503 DOI: 10.1292/jvms.15-0095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We measured the plasma levels of amino acids at various reproductive stages in female
rats, including the estrous cycle, pregnancy and lactation, and compared the resulting
amino acid profiles using two- or three-dimensional figures. These figures revealed that
the amino acid profiles of pregnant and lactating dams differed considerably from those
during the estrous cycle or in male rats. The plasma levels of individual amino acids were
almost the same between proestrus, estrus, metestrus and diestrus, and their profiles did
not differ significantly. However, the amino acid profiles changed during pregnancy and
lactation in dams. The plasma Ser level decreased significantly in mid and late pregnancy,
whereas Tyr, Gly and His decreased significantly in the late and end stages of pregnancy,
and Trp and Lys significantly decreased and increased at the end of pregnancy,
respectively. Much larger changes in amino acid profiles were observed during lactation,
when the levels of many amino acids increased significantly, and none showed a significant
decrease. Plasma Pro, Ser and Gly levels increased continuously from day 1 until day 15 of
lactation, whereas Asn and Met increased significantly from days 1 and 5 respectively
until the end of lactation. These results suggest that the profiles of plasma amino acids
show characteristic changes according to reproductive stage and that it may be necessary
to consider such differences when performing amino acid-based diagnosis.
Collapse
Affiliation(s)
- Rieko Okame
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | | | |
Collapse
|
24
|
Moffett RC, Patterson S, Irwin N, Flatt PR. Positive effects of GLP-1 receptor activation with liraglutide on pancreatic islet morphology and metabolic control in C57BL/KsJ db/db mice with degenerative diabetes. Diabetes Metab Res Rev 2015; 31:248-55. [PMID: 25256010 DOI: 10.1002/dmrr.2608] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Stable glucagon-like peptide-1 (GLP-1) mimetics, such as the GLP-1 analogue liraglutide, are approved for treatment of type 2 diabetes. GLP-1 has a spectrum of anti-diabetic effects that are of possible utility in the treatment of more severe forms of diabetes. METHODS The present study has evaluated the effect of once daily liraglutide injection (25 nmol/kg bw) for 15 days on metabolic control, islet architecture, and islet morphology in C57BL/KsJ db/db mice. RESULTS Liraglutide had no appreciable effects on body weight, food intake, and non-fasting glucose and insulin concentrations. However, HbA1c was significantly (p < 0.001) decreased, and oral glucose tolerance improved in liraglutide treated db/db mice. Pancreatic insulin content was increased (p < 0.05) compared with saline controls, and the ratio of pancreatic insulin to glucagon in liraglutide mice was similar to lean mice. Although liraglutide did not alter islet number or area, the proportion of beta cells per islet was significantly increased (p < 0.05) and alpha cells decreased (p < 0.05), with normalization of islet architecture. In harmony with this, cell proliferation was significantly (p < 0.001) augmented and apoptosis reduced (p < 0.001) in liraglutide treated mice. Expression of pancreatic islet glucose-dependent insulinotropic polypeptide immunoreactivity was observed in lean control and, particularly, liraglutide treated db/db mice, whereas control db/db mice exhibited little glucose-dependent insulinotropic polypeptide staining. CONCLUSION These data reveal that stable GLP-1 analogues exert important beneficial effects on pancreatic islet architecture and beta-cell turnover, indicating that they may be useful in the treatment of severe forms of diabetes with islet degeneration.
Collapse
|
25
|
Adaptive human CDKAL1 variants underlie hormonal response variations at the enteroinsular axis. PLoS One 2014; 9:e105410. [PMID: 25222615 PMCID: PMC4164438 DOI: 10.1371/journal.pone.0105410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/22/2014] [Indexed: 11/19/2022] Open
Abstract
Recent analyses have identified positively selected loci that explain differences in immune responses, body forms, and adaptations to extreme climates, but variants that describe adaptations in energy-balance regulation remain underexplored. To identify variants that confer adaptations in energy-balance regulation, we explored the evolutionary history and functional associations of candidate variants in 207 genes. We screened single nucleotide polymorphisms in genes that had been associated with energy-balance regulation for unusual genetic patterns in human populations, followed by studying associations among selected variants and serum levels of GIP, insulin, and C-peptide in pregnant women after an oral glucose tolerance test. Our analysis indicated that 5′ variants in CDKAL1, CYB5R4, GAD2, and PPARG are marked with statistically significant signals of gene–environment interactions. Importantly, studies of serum hormone levels showed that variants in CDKAL1 are associated with glucose-induced GIP and insulin responses (p<0.05). On the other hand, a GAD2 variant exhibited a significant association with glucose-induced C-peptide response. In addition, simulation analysis indicated that a type 2 diabetes risk variant in CDKAL1 (rs7754840) was selected in East Asians ∼6,900 years ago. Taken together, these data indicated that variants in CDKAL1 and GAD2 were targets of prior environmental selection. Because the selection of the CDKAL1 variant overlapped with the selection of a cluster of GIP variants in the same population ∼11,800 to 2,000 years ago, we speculate that these regulatory genes at the human enteroinsular axis could be highly responsive to environmental selection in recent human history.
Collapse
|