1
|
Zhang X, Zhou R, Teng L, Chen H, Li M, Wang L, Zhran M, Cao F. Genotypic variation in grain cadmium concentration in wheat: Insights into soil pollution, agronomic characteristics, and rhizosphere microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122792. [PMID: 37879552 DOI: 10.1016/j.envpol.2023.122792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Soil cadmium (Cd) pollution poses a serious threat to both the productivity and quality of wheat. This study aimed to investigate the genotypic variation in grain Cd concentration in wheat through field and pot experiments. Among 273 wheat genotypes, a significant genotypic difference was found in grain Cd concentration, ranging from 0.01 to 0.14 mg kg-1. Two contrasting genotypes, X321 (a low grain Cd accumulator) and X128 (a high grain Cd accumulator), were selected for pot experiments. X321 exhibited a 17.9% greater reduction in yield and a 10.2% lower shoot-to-grain Cd translocation rate than X128 under Cd treatment. Grain Cd content showed a positive correlation with soil available Cd content and a negative correlation with Cu content. Soil catalase activity significantly decreased in X128 under Cd stress, whereas no difference was found in X321. The grains of X321 exhibited a more compact spatial distribution of starch grains and protein matrix than those of X128. Moreover, the size of A-type starch in X128 was larger than in X321. Meanwhile, X128 contained much B-type starch, with some surface pits observed on A-type granules under Cd stress. Cd treatment increased the abundance of rhizosphere microorganism communities, with Ellin6067 and Ramlibacter being enriched in X128 under Cd treatment, which might facilitate Cd uptake. The accumulation of Cd in grains demonstrated a strong positive correlation with the rhizosphere bacterial diversity (correlation coefficient = 0.78). These findings provide new insights into the basis of grain Cd accumulation in wheat and have potential implications for developing new verities with low Cd accumulation to ensure food safety and minimize human exposure.
Collapse
Affiliation(s)
- Xueqing Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
| | - Runxin Zhou
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
| | - Lidong Teng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
| | - Huabin Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
| | - Meng Li
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
| | - Li Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
| | - Mostafa Zhran
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, 11787, Cairo, Egypt.
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Ferreira MM, Santos AS, Santos AS, Zugaib M, Pirovani CP. Plant Serpins: Potential Inhibitors of Serine and Cysteine Proteases with Multiple Functions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3619. [PMID: 37896082 PMCID: PMC10609998 DOI: 10.3390/plants12203619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 10/29/2023]
Abstract
Plant serpins are a superfamily of protein inhibitors that have been continuously studied in different species and have great biotechnological potential. However, despite ongoing studies with these inhibitors, the biological role of this family in the plant kingdom has not yet been fully clarified. In order to obtain new insights into the potential of plant serpins, this study presents the first systematic review of the topic, whose main objective was to scrutinize the published literature to increase knowledge about this superfamily. Using keywords and the eligibility criteria defined in the protocol, we selected studies from the Scopus, PubMed, and Web of Science databases. According to the eligible studies, serpins inhibit different serine and non-serine proteases from plants, animals, and pathogens, and their expression is affected by biotic and abiotic stresses. Moreover, serpins like AtSerpin1, OSP-LRS, MtSer6, AtSRP4, AtSRP5, and MtPiI4, act in resistance and are involved in stress-induced cell death in the plant. Also, the system biology analysis demonstrates that serpins are related to proteolysis control, cell regulation, pollen development, catabolism, and protein dephosphorylation. The information systematized here contributes to the design of new studies of plant serpins, especially those aimed at exploring their biotechnological potential.
Collapse
Affiliation(s)
- Monaliza Macêdo Ferreira
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | - Ariana Silva Santos
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | | | - Maria Zugaib
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | - Carlos Priminho Pirovani
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| |
Collapse
|
3
|
He S, Lian X, Zhang B, Liu X, Yu J, Gao Y, Zhang Q, Sun H. Nano silicon dioxide reduces cadmium uptake, regulates nutritional homeostasis and antioxidative enzyme system in barley seedlings (Hordeum vulgare L.) under cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67552-67564. [PMID: 37115454 DOI: 10.1007/s11356-023-27130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/16/2023] [Indexed: 05/25/2023]
Abstract
Cadmium (Cd) toxicity is one of the most severe environmental threats inhibiting crop growth and productivity. Strategies to mitigate the adverse effects of Cd stress on plants are under scrutiny. Nano silicon dioxide (nSiO2) is an emerging material and could protect plants against abiotic stress. Can nSiO2 alleviate Cd toxicity in barley, and the possible mechanisms are poorly understood. A hydroponic experiment was conducted to study the mitigation effects of nSiO2 on Cd toxicity in barley seedlings. The results showed that the application of nSiO2 (5, 10, 20, and 40 mg/L) increased barley plant growth and chlorophyll and protein content, improving photosynthesis, compared with Cd-treated alone. Specifically, 5-40 mg/L nSiO2 addition increased net photosynthetic rate (Pn) by 17.1, 38.0, 30.3, and - 9.7%, respectively, relative to the Cd treatment alone. Furthermore, exogenous nSiO2 reduced Cd concentration and balanced mineral nutrient uptake. The application of 5-40 mg/L nSiO2 decreased Cd concentration in barley leaves by 17.5, 25.4, 16.7, and 5.8%, respectively, relative to the Cd treatment alone. Moreover, exogenous nSiO2 lowered malondialdehyde (MDA) content by 13.6-35.0% in roots, and by 13.5-27.2% in leaves, respectively, compared with Cd-treated alone. Besides, nSiO2 altered antioxidant enzyme activities and alleviated detrimental effects on Cd-treated plants, attaining maximal values at 10 mg/L nSiO2. These findings revealed that exogenous nSiO2 application may be a viable option for addressing Cd toxicity of barley plants.
Collapse
Affiliation(s)
- Songjie He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
- School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Xin Lian
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Bo Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Xianjun Liu
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Jia Yu
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Yifan Gao
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Qingmei Zhang
- School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Hongyan Sun
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China.
| |
Collapse
|
4
|
Niu L, Li C, Wang W, Zhang J, Scali M, Li W, Liu H, Tai F, Hu X, Wu X. Cadmium tolerance and hyperaccumulation in plants - A proteomic perspective of phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114882. [PMID: 37037105 DOI: 10.1016/j.ecoenv.2023.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is a major environmental pollutant and poses a risk of transfer into the food chain through contaminated plants. Mechanisms underlying Cd tolerance and hyperaccumulation in plants are not fully understood. Proteomics-based approaches facilitate an in-depth understanding of plant responses to Cd stress at the systemic level by identifying Cd-inducible differentially abundant proteins (DAPs). In this review, we summarize studies related to proteomic changes associated with Cd-tolerance mechanisms in Cd-tolerant crops and Cd-hyperaccumulating plants, especially the similarities and differences across plant species. The enhanced DAPs identified through proteomic studies can be potential targets for developing Cd-hyperaccumulators to remediate Cd-contaminated environments and Cd-tolerant crops with low Cd content in the edible organs. This is of great significance for ensuring the food security of an exponentially growing global population. Finally, we discuss the methodological drawbacks in current proteomic studies and propose that better protocols and advanced techniques should be utilized to further strengthen the reliability and applicability of future Cd-stress-related studies in plants. This review provides insights into the improvement of phytoremediation efficiency and an in-depth study of the molecular mechanisms of Cd enrichment in plants.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chunyang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
5
|
Marques DN, Nogueira ML, Gaziola SA, Batagin-Piotto KD, Freitas NC, Alcantara BK, Paiva LV, Mason C, Piotto FA, Azevedo RA. New insights into cadmium tolerance and accumulation in tomato: Dissecting root and shoot responses using cross-genotype grafting. ENVIRONMENTAL RESEARCH 2023; 216:114577. [PMID: 36252830 DOI: 10.1016/j.envres.2022.114577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is one of the most threatening soil and water contaminants in agricultural settings. In previous studies, we observed that Cd affects the metabolism and physiology of tomato (Solanum lycopersicum) plants even after short-term exposure. The objective of this research was to use cross-genotype grafting to distinguish between root- and shoot-mediated responses of tomato genotypes with contrasting Cd tolerance at the early stages of Cd exposure. This study provides the first report of organ-specific contributions in two tomato genotypes with contrasting Cd tolerance: Solanum lycopersicum cv. Calabash Rouge and Solanum lycopersicum cv. Pusa Ruby (which have been classified and further characterized as sensitive (S) and tolerant (T) to Cd, respectively). Scion S was grafted onto rootstock S (S/S) and rootstock T (S/T), and scion T was grafted onto rootstock T (T/T) and rootstock S (T/S). A 35 μM cadmium chloride (CdCl2) treatment was used for stress induction in a hydroponic system. Both shoot and root contributions to Cd responses were observed, and they varied in a genotype- and/or organ-dependent manner for nutrient concentrations, oxidative stress parameters, antioxidant enzymes, and transporters gene expression. The findings overall provide evidence for the dominant role of the tolerant rootstock system in conferring reduced Cd uptake and accumulation. The lowest leaf Cd concentrations were observed in T/T (215.11 μg g-1 DW) and S/T (235.61 μg g-1 DW). Cadmium-induced decreases in leaf dry weight were observed only in T/S (-8.20%) and S/S (-13.89%), which also were the only graft combinations that showed decreases in chlorophyll content (-3.93% in T/S and -4.05% in S/S). Furthermore, the results show that reciprocal grafting is a fruitful approach for gaining insights into the organ-specific modulation of Cd tolerance and accumulation during the early stages of Cd exposure.
Collapse
Affiliation(s)
- Deyvid Novaes Marques
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil.
| | - Marina Lima Nogueira
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | - Salete Aparecida Gaziola
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | | | - Natália Chagas Freitas
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | | | - Luciano Vilela Paiva
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | - Chase Mason
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Fernando Angelo Piotto
- Department of Crop Science, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | - Ricardo Antunes Azevedo
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| |
Collapse
|
6
|
Al-Masri MS, Arabi MIE, Al-Daoude A, Khalily H, Amin Y, Shoaib A, Al-Khateeb Y, Al-Masri W, Khalill I, Aboud O. Comparison of transfers for natural radionuclides (238U, 234Th, 226Ra, 210Pb & 210Po) from five different soils to four different barley genotypes. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Lin K, Williams DV, Zeng M, Ahmed IM, Dai H, Cao F, Wu F. Identification of low grain cadmium accumulation genotypes and its physiological mechanism in maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20721-20730. [PMID: 34741735 DOI: 10.1007/s11356-021-16991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Soil cadmium (Cd) contamination poses adverse impacts on crop yield and quality. Maize is a widely cultivated cereal throughout the world. In this study, field and hydroponic experiments were conducted to investigate the genotypic difference in Cd accumulation and tolerance in maize. There were significant genotypic differences in grain Cd concentrations among 95 genotypes. From these 95 genotypes, L42 which showed a higher grain Cd concentration and L63 which showed a lower grain Cd concentration was selected for further study. Under Cd stress, L63 showed much less reduction in plant growth than L42 compared with the control. Seedlings of L63 recorded higher Cd concentration in roots, but lower in shoots L42, indicating that the low grain Cd concentration in L63 is mainly due to the low rate of transportation of Cd from roots to shoots. Most Cd accumulated in epidermis and xylem vessels of L63, while the green fluorescent was found across almost the entire cross-section of root in L42. Obvious ultrastructural damage was observed in L42 under Cd stress, especially in mesophyll cells, while L63 was less affected. These findings could contribute to developing low Cd accumulation and high tolerance maize cultivars.
Collapse
Affiliation(s)
- Kaina Lin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Darron V Williams
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Meng Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Imrul Mosaddek Ahmed
- Plant Physiology Division, Bangladesh Agricultural Research Institute, Gazipur, 1701, Bangladesh
| | - Huaxin Dai
- Key Laboratory of Eco-Environment & Tobacco Leaf Quality, CNTC, Zhengzhou, 450001, People's Republic of China.
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
8
|
Abstract
Cadmium (Cd) is an element that is nonessential and extremely toxic to both plants and human beings. Soil contaminated with Cd has adverse impacts on crop yields and threatens human health via the food chain. Cultivation of low-Cd cultivars has been of particular interest and is one of the most cost-effective and promising approaches to minimize human dietary intake of Cd. Low-Cd crop cultivars should meet particular criteria, including acceptable yield and quality, and their edible parts should have Cd concentrations below maximum permissible concentrations for safe consumption, even when grown in Cd-contaminated soil. Several low-Cd cereal cultivars and genotypes have been developed worldwide through cultivar screening and conventional breeding. Molecular markers are powerful in facilitating the selection of low-Cd cereal cultivars. Modern molecular breeding technologies may have great potential in breeding programs for the development of low-Cd cultivars, especially when coupled with conventional breeding. In this review, we provide a synthesis of low-Cd cereal breeding.
Collapse
Affiliation(s)
- Qin Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fei-Bo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Khan KY, Ali B, Stoffella PJ, Cui X, Yang X, Guo Y. Study amino acid contents, plant growth variables and cell ultrastructural changes induced by cadmium stress between two contrasting cadmium accumulating cultivars of Brassica rapa ssp. chinensis L. (pak choi). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110748. [PMID: 32470678 DOI: 10.1016/j.ecoenv.2020.110748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is an inauspicious abiotic traction that not only influences crop productivity and its growth parameters, but also has adverse effects on human health if these crops are consumed. Among crops, leafy vegetables which are the good source of mineral and vitamins accumulate more Cd than other vegetables. It is thus important to study photosynthetic variables, amino acid composition, and ultrastructural localization of Cd differences in response to Cd accumulation between two low and high Cd accumulating Brassica rapa ssp. chinensis L. (pak choi) cultivars, differing in Cd accumulation ability. Elevated Cd concentrations significantly lowered plant growth rate, biomass, leaf gas exchange and concentrations of amino acids collated to respective controls of both cultivars. Electron microscopy indicated that the impact of high Cd level on ultrastructure of leaf cells was associated to affecting cell functionalities, i.e. irregular cell wall, withdrawal of cell membrane, and chloroplast structure which has negative impact on photosynthetic activities, thus causing considerable plant growth suppression. Damage in root cells were observed in the form of enlargement of vacuole. The energy dispersive micro X-ray spectroscopy of both cultivars leaves indicated that cellular structure exhibited exudates of Cd-dense material. Ultrastructural damages and phytotoxicity were more pronounced in high accumulator cultivar as compared to the low accumulator cultivar. These findings are useful in determining the mechanisms of differential Cd-tolerance among cultivars with different Cd tolerance abilities at cellular level.
Collapse
Affiliation(s)
- Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Barkat Ali
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Agricultural Research Centre, Islamabad, Pakistan
| | - Peter Joseph Stoffella
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida, 34945, United States
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, 214122, China; University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
10
|
Sun H, Wang X, Li H, Bi J, Yu J, Liu X, Zhou H, Rong Z. Selenium modulates cadmium-induced ultrastructural and metabolic changes in cucumber seedlings. RSC Adv 2020; 10:17892-17905. [PMID: 35515607 PMCID: PMC9053616 DOI: 10.1039/d0ra02866e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Intensive insight into the potential mechanisms of Se-induced Cd tolerance in cucumber seedlings is essential for further improvement of vegetable crop cultivation and breeding to obtain high yields and quality in Cd-contaminated soil. To reveal the ultrastructural and metabolic differences in Se-induced Cd tolerance, we examined the ultrastructures of chloroplasts and root cells and characterised 155 differentially expressed metabolites under Cd and/or Se stress using gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Exogenous Se greatly relieved Cd-caused injuries to the ultrastructures of cucumber leaves and roots; for example, the shapes of chloroplasts treated with Cd + Se improved or even began to return to normal, the nuclei of root cells began to regenerate better and the chromatin was well-distributed compared with plants treated with Cd alone. Metabolite profiling revealed several intermediates of glycolysis and the tricarboxylic acid (TCA) cycle; also, some amino acids were up-accumulated in Cd + Se-treated cucumber seedlings and down-accumulated in Cd-treated cucumber seedlings, such as pyruvic acid, galactose, lactose, glutaric acid and alanine in leaves, glucose-6-phosphate and serine in roots, and lactic acid and glycine in both leaves and roots. These metabolites may play dominant roles in developing Se-mediated Cd tolerance. Moreover, a high level of sugars and polyols, amino acids and organic acids were up-accumulated in Cd-treated plants. Meanwhile, our data suggest that high accumulation of fructose, α-ketoglutaric acid, shikimic acid, fumaric acid and succinic acid in roots is a Cd-specific response, indicating that these metabolites are vital for cucumbers to develop Cd resistance. This study extends the current understanding of the mechanisms of Se in abating Cd contamination in cucumber and demonstrates that metabolomics profiling provides a more comprehensive view of the response of plants to heavy metals. Intensive insight into the potential mechanisms of Se-induced Cd tolerance in cucumber seedlings is essential for further improvement of vegetable crop cultivation and breeding to obtain high yields and quality in Cd-contaminated soil.![]()
Collapse
Affiliation(s)
- Hongyan Sun
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| | - Xiaoyun Wang
- Institute of Soil and Water Conservation, Shanxi Agricultural University Taiyuan 030045 P. R. China
| | - Huimin Li
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| | - Jiahui Bi
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| | - Jia Yu
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| | - Xianjun Liu
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| | - Huanxin Zhou
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| | - Zhijiang Rong
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| |
Collapse
|
11
|
Regulation of nitrogen availability results in changes in grain protein content and grain storage subproteomes in barley (Hordeum vulgare L.). PLoS One 2019; 14:e0223831. [PMID: 31618253 PMCID: PMC6795425 DOI: 10.1371/journal.pone.0223831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/28/2019] [Indexed: 11/19/2022] Open
Abstract
Barley grain protein content (GPC) is an important quality factor that determines grain end-use value. The synthesis and accumulation of grain protein is highly dependent on the availability of nitrogen fertilizer, and it is important to understand the underlying control mechanisms of this. In the current study, the GPC and protein composition of mature grain seeds from Yangsimai 3 and Naso Nijo barley cultivars were analyzed. Grain storage subproteomes (albumin, glubulin, hordein and glutelin) were compared in the cultivars grown in both low and high nitrogen level conditions. The GPC of mature grain was significantly higher in Yangsimai 3 than Naso Nijo following nitrogen treatment. Albumin, hordein and glutelin content were increased in Yangsimai, while only hordein content was increased in Naso Nijo. Large-scale analysis of the grain storage subproteome revealed 152 differentially expressed protein spots on 2-DE gels with a pH range of 3-10. Among these, 42 and 66 protein spots were successfully identified by tandem mass spectrometry in Yangsimai 3 and Naso Nijo grown in low and high nitrogen conditions. The identified proteins were further grouped into thirteen categories according to their biological functions. This detailed analysis of grain subproteomes provides information on how barley GPC may be controlled by nitrogen supply.
Collapse
|
12
|
Guo B, Luan H, Lin S, Lv C, Zhang X, Xu R. Comparative Proteomic Analysis of Two Barley Cultivars (Hordeum vulgare L.) with Contrasting Grain Protein Content. FRONTIERS IN PLANT SCIENCE 2016; 7:542. [PMID: 27200019 PMCID: PMC4843811 DOI: 10.3389/fpls.2016.00542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/05/2016] [Indexed: 05/24/2023]
Abstract
Grain protein contents (GPCs) of barley seeds are significantly different between feed and malting barley cultivars. However, there is still no insight into the proteomic analysis of seed proteins between feed and malting barley cultivars. Also, the genetic control of barley GPC is still unclear. GPCs were measured between mature grains of Yangsimai 3 and Naso Nijo. A proteome profiling of differentially expressed protein was established by using a combination of 2-DE and tandem mass spectrometry. In total, 502 reproducible protein spots in barley seed proteome were detected with a pH range of 4-7 and 6-11, among these 41 protein spots (8.17%) were detected differentially expressed between Yangsimai 3 and Naso Nijo. Thirty-four protein spots corresponding to 23 different proteins were identified, which were grouped into eight categories, including stress, protein degradation and post-translational modification, development, cell, signaling, glycolysis, starch metabolism, and other functions. Among the identified proteins, enolase (spot 274) and small subunit of ADP-glucose pyrophosphorylase (spot 271) are exclusively expressed in barley Yangsimai 3, which may be involved in regulating seed protein expression. In addition, malting quality is characterized by an accumulation of serpin protein, Alpha-amylase/trypsin inhibitor CMb and Alpha-amylase inhibitor BDAI-1. Most noticeably, globulin, an important storage protein in barley seed, undergoes post-translational processing in both cultivars, and also displays different expression patterns.
Collapse
Affiliation(s)
- Baojian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| | - Haiye Luan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
- JiangSu Coastal Area Institute of Agricultural SciencesYancheng, China
| | - Shen Lin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| | - Chao Lv
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| | - Xinzhong Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| | - Rugen Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| |
Collapse
|
13
|
Sun H, Chen ZH, Chen F, Xie L, Zhang G, Vincze E, Wu F. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains. BMC PLANT BIOLOGY 2015; 15:259. [PMID: 26503017 PMCID: PMC4623906 DOI: 10.1186/s12870-015-0648-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/20/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Understanding the mechanism of low Cd accumulation in crops is crucial for sustainable safe food production in Cd-contaminated soils. RESULTS Confocal microscopy, atomic absorption spectrometry, gas exchange and chlorophyll fluorescence analyses revealed a distinct difference in Cd accumulation and tolerance between the two contrasting barley genotypes: W6nk2 (a low-grain-Cd-accumulating and Cd-sensitive genotype) and Zhenong8 (a high-grain-Cd-accumulating and tolerant genotype). A DNA microarray analysis detected large-scale changes of gene expression in response to Cd stress with a substantial difference between the two genotypes. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd accumulation. Quantitative RT-PCR confirmed our microarray data. Furthermore, suppression of the zinc transporter genes HvZIP3 and HvZIP8 by RNAi silencing showed increased Cd accumulation and reduced Zn and Mn concentrations in barley grains. Thus, HvZIP3 and HvZIP8 could be candidate genes related to low-grain-Cd-accumulation. CONCLUSION Novel transporter genes such as HvZIP3 and HvZIP8 were identified as being associated with low-grain-Cd-accumulation. In addition to advancing academic knowledge, our findings may also result in potential economic benefits for molecular breeding of low Cd accumulating barley and other crops.
Collapse
Affiliation(s)
- Hongyan Sun
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China.
| | - Zhong-Hua Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China.
| | - Fei Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China.
| | - Lupeng Xie
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China.
| | - Eva Vincze
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Chakraborty S, Salekdeh GH, Yang P, Woo SH, Chin CF, Gehring C, Haynes PA, Mirzaei M, Komatsu S. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives. J Proteome Res 2015; 14:2723-44. [DOI: 10.1021/acs.jproteome.5b00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Pingfang Yang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Sun Hee Woo
- Chungbuk National University, Cheongju 362-763, Korea
| | - Chiew Foan Chin
- University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia
| | - Chris Gehring
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | - Setsuko Komatsu
- National Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|