1
|
Yang Q, Li X. Pan-cancer analysis of ADAR1 with its prognostic relevance in low-grade glioma. Immunobiology 2024; 229:152855. [PMID: 39340957 DOI: 10.1016/j.imbio.2024.152855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
ADAR1, known as the primary enzyme for adenosine-to-inosine RNA editing, has recently been implicated in cancer development through both RNA editing-dependent and -independent pathways. These discoveries suggest that ADAR1's functions may extend beyond our current understanding. A pan-cancer analysis offers a unique opportunity to identify both common and distinct mechanisms across various cancers, thereby advancing personalized medicine. Low-grade glioma (LGG), characterized by a diverse group of tumor cells, presents a challenge in risk stratification, leading to significant variations in treatment approaches. Recently discovered molecular alterations in LGG have helped to refine the stratification of of these tumors and offered novel targets for predicting likely outcomes. This study aims to provide a detailed analysis of ADAR mRNA across multiple cancers, emphasizing its prognostic significance in LGG. We observed inconsistent mRNA and consistent protein expression patterns of ADAR1/ADAR in pan-cancer analyses that across tumor types. ADAR mRNA expression did not always correlate with ADAR1 protein expression. Nevertheless, the transcript levels correlated significantly with genetic alterations, tumor mutation burden, microsatellite instability, overall survival, recurrence-free survival, immune marker presence, immune infiltration, and the survival of patients undergoing immunotherapy in select cancers. Furthermore, ADAR and its top 50 associated genes were primarily involved in mRNA-related events, as identified through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Utilizing the Cox proportional hazards model, we developed a 3-gene signature (ADAR, HNRNPK, and SMG7), which effectively stratified patients into high- and low-risk groups, with high-risk patients exhibiting poorer overall survival, higher tumor grades, and a greater number of non-codeletions. Overall, this signature was inversely related to immune infiltration across cancers. Transcription factor SPI1 and miR-206, potential upstream regulators of the signature genes, were closely linked to patient survival in LGG. The promoter regions of these genes were hypermethylated, further associating them with patient outcomes. Additionally, these genes displayed consistent drug susceptibility patterns. In conclusion, our findings reveal multiple aspects of ADAR1's role in cancer and underscore its prognostic value in LGG, offering insights into potential therapeutic targets and strategies.
Collapse
Affiliation(s)
- Qin Yang
- Puai Medical College, Shaoyang University, Shaoyang, Hunan, China.
| | - Xin Li
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Li B, Wen M, Gao F, Wang Y, Wei G, Duan Y. Regulation of HNRNP family by post-translational modifications in cancer. Cell Death Discov 2024; 10:427. [PMID: 39366930 PMCID: PMC11452504 DOI: 10.1038/s41420-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (HNRNPs) represent a large family of RNA-binding proteins consisting of more than 20 members and have attracted great attention with their distinctive roles in cancer progression by regulating RNA splicing, transcription, and translation. Nevertheless, the cancer-specific modulation of HNRNPs has not been fully elucidated. The research of LC-MS/MS technology has documented that HNRNPs were widely and significantly targeted by different post-translational modifications (PTMs), which have emerged as core regulators in shaping protein functions and are involved in multiple physiological processes. Accumulating studies have highlighted that several PTMs are involved in the mechanisms of HNRNPs regulation in cancer and may be suitable therapeutic targets. In this review, we summarize the existing evidence describing how PTMs modulate HNRNPs functions on gene regulation and the involvement of their dysregulation in cancer, which will help shed insights on their clinical impacts as well as possible therapeutic tools targeting PTMs on HNRNPs.
Collapse
Affiliation(s)
- Bohao Li
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxin Wen
- Department of Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Gao
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangwei Wei
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yangmiao Duan
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Inoue T, Bao X, Kageyama T, Sugino Y, Sekito S, Miyachi S, Sasaki T, Getzenberg R. Purine-Rich Element Binding Protein Alpha, a Nuclear Matrix Protein, Has a Role in Prostate Cancer Progression. Int J Mol Sci 2024; 25:6911. [PMID: 39000020 PMCID: PMC11241608 DOI: 10.3390/ijms25136911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Solid tumors as well as leukemias and lymphomas show striking changes in nuclear structure including nuclear size and shape, the number and size of nucleoli, and chromatin texture. These alterations have been used in cancer diagnosis and might be related to the altered functional properties of cancer cells. The nuclear matrix (NM) represents the structural composition of the nucleus and consists of nuclear lamins and pore complexes, an internal ribonucleic protein network, and residual nucleoli. In the nuclear microenvironment, the NM is associated with multi-protein complexes, such as basal transcription factors, signaling proteins, histone-modifying factors, and chromatin remodeling machinery directly or indirectly through scaffolding proteins. Therefore, alterations in the composition of NM could result in altered DNA topology and changes in the interaction of various genes, which could then participate in a cascade of the cancer process. Using an androgen-sensitive prostate cancer cell line, LNCaP, and its androgen-independent derivative, LN96, conventional 2D-proteomic analysis of the NM proteins revealed that purine-rich element binding protein alpha (PURα) was detected in the NM proteins and differentially expressed between the cell lines. In this article, we will review the potential role of the molecule in prostate cancer.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Xin Bao
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Takumi Kageyama
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Yusuke Sugino
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Sho Sekito
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Shiori Miyachi
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Robert Getzenberg
- Dr. Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
4
|
Chen Y, Zhou T, Liao Z, Gao W, Wu J, Zhang S, Li Y, Liu H, Zhou H, Xu C, Su P. Hnrnpk is essential for embryonic limb bud development as a transcription activator and a collaborator of insulator protein Ctcf. Cell Death Differ 2023; 30:2293-2308. [PMID: 37608075 PMCID: PMC10589297 DOI: 10.1038/s41418-023-01207-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Proper development of the limb bud relies on the concordance of various signals, but its molecular mechanisms have not yet been fully illustrated. Here we report that heterogeneous nuclear ribonucleoprotein K (hnRNPK) is essential for limb bud development. Its ablation in the limb bud results in limbless forelimbs and severe deformities of the hindlimbs. In terms of mechanism, hnRNPK functions as a transcription activator for the vital genes involved in the three regulatory axes of limb bud development. Simultaneously, for the first time we elucidate that hnRNPK binds to and coordinates with the insulator protein CCCTC binding factor (CTCF) to maintain a three-dimensional chromatin architecture. Ablation of hnRNPK weakens the binding strength of CTCF to topologically associating domain (TAD) boundaries, then leading to the loose TADs, and decreased interactions between promoters and enhancers, and further decreased transcription of developmental genes. Our study establishes a fundamental and novel role of hnRNPK in regulating limb bud development.
Collapse
Affiliation(s)
- Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenjie Gao
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Jinna Wu
- Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Shun Zhang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongyong Li
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hang Zhou
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Caixia Xu
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
PIM1 phosphorylation of the androgen receptor and 14-3-3 ζ regulates gene transcription in prostate cancer. Commun Biol 2021; 4:1221. [PMID: 34697370 PMCID: PMC8546101 DOI: 10.1038/s42003-021-02723-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
PIM1 is a serine/threonine kinase over-expressed in prostate cancer. We have previously shown that PIM1 phosphorylates the androgen receptor (AR), the primary therapeutic target in prostate cancer, at serine 213 (pS213), which alters expression of select AR target genes. Therefore, we sought to investigate the mechanism whereby PIM1 phosphorylation of AR alters its transcriptional activity. We previously identified the AR co-activator, 14-3-3 ζ, as an endogenous PIM1 substrate in LNCaP cells. Here, we show that PIM1 phosphorylation of AR and 14-3-3 ζ coordinates their interaction, and that they extensively occupy the same sites on chromatin in an AR-dependent manner. Their occupancy at a number of genes involved in cell migration and invasion results in a PIM1-dependent increase in the expression of these genes. We also use rapid immunoprecipitation and mass spectrometry of endogenous proteins on chromatin (RIME), to find that select AR co-regulators, such as hnRNPK and TRIM28, interact with both AR and 14-3-3 ζ in PIM1 over-expressing cells. We conclude that PIM1 phosphorylation of AR and 14-3-3 ζ coordinates their interaction, which in turn recruits additional co-regulatory proteins to alter AR transcriptional activity.
Collapse
|
6
|
Multifocal Signal Modulation Therapy by Celecoxib: A Strategy for Managing Castration-Resistant Prostate Cancer. Int J Mol Sci 2019; 20:ijms20236091. [PMID: 31816863 PMCID: PMC6929142 DOI: 10.3390/ijms20236091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a significant health concern throughout the world. Standard therapy for advanced disease consists of anti-androgens, however, almost all prostate tumors become castration resistant (CRPC). Progression from androgen-sensitive PCa to CRPC is promoted by inflammatory signaling through cyclooxygenase-2 (COX-2) expression and ErbB family receptors/AKT activation, compensating androgen receptor inactivity. METHODS Making use of CRPC cell lines, we investigated the effects of the anti-inflammatory drug celecoxib. Biochemical data obtained using immunoblotting, enzyme-linked immunosorbent assay (ELISA), invasion, and xenografts were further integrated by bioinformatic analyses. RESULTS Celecoxib reduced cell growth and induced apoptosis through AKT blockade, cleavage of poly (ADP-ribose) polymerase-1 (PARP-1), and proteasomal degradation of the anti-apoptotic protein Mcl-1. Epidermal growth factor receptor (EGFR), ErbB2, and ErbB3 degradation, and heterogeneous nuclear ribonucleoprotein K (hnRNP K) downregulation, further amplified the inhibition of androgen signaling. Celecoxib reduced the invasive phenotype of CRPC cells by modulating NF-κB activity and reduced tumor growth in mice xenografts when administered in association with the anti-EGFR receptor antibody cetuximab. Bioinformatic analyses on human prostate cancer datasets support the relevance of these pathways in PCa progression. CONCLUSIONS Signaling nodes at the intersection of pathways implicated in PCa progression are simultaneously modulated by celecoxib treatment. In combination therapies with cetuximab, celecoxib could represent a novel therapeutic strategy to curb signal transduction during CRPC progression.
Collapse
|
7
|
Wang Z, Qiu H, He J, Liu L, Xue W, Fox A, Tickner J, Xu J. The emerging roles of hnRNPK. J Cell Physiol 2019; 235:1995-2008. [PMID: 31538344 DOI: 10.1002/jcp.29186] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an DNA/RNA-binding protein and regulates a wide range of biological processes and disease pathogenesis. It contains 3 K-homologous (KH) domains, which are conserved in other RNA-binding proteins, mediate nucleic acid binding activity, and function as an enhancer or repressor of gene transcription. Phosphorylation of the protein alters its regulatory function, which also enables the protein to serve as a docking platform for the signal transduction proteins. In terms of the function of hnRNPK, it is central to many cellular events, including long noncoding RNA (lncRNA) regulation, cancer development and bone homoeostasis. Many studies have identified hnRNPK as an oncogene, where it is overexpressed in cancer tissues compared with the nonneoplastic tissues and its expression level is related to the prognosis of different types of host malignancies. However, hnRNPK has also been identified as a tumour suppressor, as it is important for the activation of the p53/p21 pathway. Recently, the protein is also found to be exclusively related to the regulation of paraspeckles and lncRNAs such as Neat1, Lncenc1 and Xist. Interestingly, hnRNPK has been found to associate with the Kabuki-like syndrome and Au-Kline syndrome with prominent skeletal abnormalities. In vitro study revealed that the hnRNPK protein is essential for the formation of osteoclast, in line with its importance in the skeletal system.
Collapse
Affiliation(s)
- Ziyi Wang
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Heng Qiu
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jianbo He
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Langxia Liu
- Key laboratory of functional protein research of Guangdong higher education institutes, Institute of life and health engineering, Jinan University, Guangzhou, China
| | - Wei Xue
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Archa Fox
- School of Human Sciences and Molecular Sciences, The University of Western Australia and Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Cui X, Pertile R, Eyles DW. The vitamin D receptor (VDR) binds to the nuclear matrix via its hinge domain: A potential mechanism for the reduction in VDR mediated transcription in mitotic cells. Mol Cell Endocrinol 2018; 472:18-25. [PMID: 29183808 DOI: 10.1016/j.mce.2017.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022]
Abstract
Vitamin D is best known for its regulation of calcium homeostasis. Vitamin D exerts its genomic actions via the vitamin D receptor (VDR). As a member of the superfamily of nuclear receptors (NR), the VDR is primarily located within the nucleus of non-dividing cells. We show here that the VDR relocates from the nucleus into the cytoplasm across all stages of cell division in CHO cells. Furthermore, we show that the VDR is transcriptionally inert during cell division. In addition, 1α, 25 dihydroxyvitamin D (1,25(OH)2D3) promotes VDR binding to the nuclear matrix. Finally, we assessed the structural nature of VDR binding to the nuclear matrix. Mutation of the hinge domain reduced VDR's ability to bind to the nuclear matrix and to initiate transcription in response to 1,25(OH)2D3. Taken together, our data suggest that the association between the VDR and the nuclear matrix accounts for the apparent cytosolic distribution as the matrix disperses within the cytoplasm when cells divide. This may also explain the dramatic reduction in VDR mediated transcription during cell division. Our data also confirm that similar to other NRs, the hinge domain of the VDR is responsible for this association.
Collapse
Affiliation(s)
- Xiaoying Cui
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia
| | - Renata Pertile
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia
| | - Darryl W Eyles
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia; Queensland Centre for Mental Health Research, Wacol, Qld 4076, Australia.
| |
Collapse
|
9
|
Capaia M, Granata I, Guarracino M, Petretto A, Inglese E, Cattrini C, Ferrari N, Boccardo F, Barboro P. A hnRNP K⁻AR-Related Signature Reflects Progression toward Castration-Resistant Prostate Cancer. Int J Mol Sci 2018; 19:ijms19071920. [PMID: 29966326 PMCID: PMC6073607 DOI: 10.3390/ijms19071920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
The major challenge in castration-resistant prostate cancer (CRPC) remains the ability to predict the clinical responses to improve patient selection for appropriate treatments. The finding that androgen deprivation therapy (ADT) induces alterations in the androgen receptor (AR) transcriptional program by AR coregulators activity in a context-dependent manner, offers the opportunity for identifying signatures discriminating different clinical states of prostate cancer (PCa) progression. Gel electrophoretic analyses combined with western blot showed that, in androgen-dependent PCa and CRPC in vitro models, the subcellular distribution of spliced and serine-phosphorylated heterogeneous nuclear ribonucleoprotein K (hnRNP K) isoforms can be associated with different AR activities. Using mass spectrometry and bioinformatic analyses, we showed that the protein sets of androgen-dependent (LNCaP) and ADT-resistant cell lines (PDB and MDB) co-immunoprecipitated with hnRNP K varied depending on the cell type, unravelling a dynamic relationship between hnRNP K and AR during PCa progression to CRPC. By comparing the interactome of LNCaP, PDB, and MDB cell lines, we identified 51 proteins differentially interacting with hnRNP K, among which KLK3, SORD, SPON2, IMPDH2, ACTN4, ATP1B1, HSPB1, and KHDRBS1 were associated with AR and differentially expressed in normal and tumor human prostate tissues. This hnRNP K–AR-related signature, associated with androgen sensitivity and PCa progression, may help clinicians to better manage patients with CRPC.
Collapse
Affiliation(s)
- Matteo Capaia
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Ilaria Granata
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Mario Guarracino
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147 Genova, Italy.
| | - Elvira Inglese
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147 Genova, Italy.
| | - Carlo Cattrini
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genova, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Nicoletta Ferrari
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Francesco Boccardo
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genova, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Paola Barboro
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
10
|
Jung EJ, Chung KH, Kim CW. Identification of simvastatin-regulated targets associated with JNK activation in DU145 human prostate cancer cell death signaling. BMB Rep 2018; 50:466-471. [PMID: 28803608 PMCID: PMC5625694 DOI: 10.5483/bmbrep.2017.50.9.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
The results of this study show that c-Jun N-terminal kinase (JNK) activation was associated with the enhancement of docetaxel-induced cytotoxicity by simvastatin in DU145 human prostate cancer cells. To better understand the basic molecular mechanisms, we investigated simvastatin-regulated targets during simvastatin-induced cell death in DU145 cells using two-dimensional (2D) proteomic analysis. Thus, vimentin, Ras-related protein Rab-1B (RAB1B), cytoplasmic hydroxymethylglutaryl-CoA synthase (cHMGCS), thioredoxin domain-containing protein 5 (TXNDC5), heterogeneous nuclear ribonucleoprotein K (hnRNP K), N-myc downstream-regulated gene 1 (NDRG1), and isopentenyl-diphosphate Delta-isomerase 1 (IDI1) protein spots were identified as simvastatin-regulated targets involved in DU145 cell death signaling pathways. Moreover, the JNK inhibitor SP600125 significantly inhibited the upregulation of NDRG1 and IDI protein levels by combination treatment of docetaxel and simvastatin. These results suggest that NDRG1 and IDI could at least play an important role in DU145 cell death signaling as simvastatin-regulated targets associated with JNK activation.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Biochemistry, Gyeongsang National University School of Medicine, and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Ky Hyun Chung
- Department of Urology, Gyeongsang National University Hospital, and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Choong Won Kim
- Department of Biochemistry, Gyeongsang National University School of Medicine, and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
11
|
Ferrari N, Granata I, Capaia M, Piccirillo M, Guarracino MR, Venè R, Brizzolara A, Petretto A, Inglese E, Morini M, Astigiano S, Amaro AA, Boccardo F, Balbi C, Barboro P. Adaptive phenotype drives resistance to androgen deprivation therapy in prostate cancer. Cell Commun Signal 2017; 15:51. [PMID: 29216878 PMCID: PMC5721601 DOI: 10.1186/s12964-017-0206-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Abstract
Background Prostate cancer (PCa), the second most common cancer affecting men worldwide, shows a broad spectrum of biological and clinical behaviour representing the epiphenomenon of an extreme heterogeneity. Androgen deprivation therapy is the mainstay of treatment for advanced forms but after few years the majority of patients progress to castration-resistant prostate cancer (CRPC), a lethal form that poses considerable therapeutic challenges. Methods Western blotting, immunocytochemistry, invasion and reporter assays, and in vivo studies were performed to characterize androgen resistant sublines phenotype in comparison to the parental cell line LNCaP. RNA microarray, mass spectrometry, integrative transcriptomic and proteomic differential analysis coupled with GeneOntology and multivariate analyses were applied to identify deregulated genes and proteins involved in CRPC evolution. Results Treating the androgen-responsive LNCaP cell line for over a year with 10 μM bicalutamide both in the presence and absence of 0.1 nM 5-α-dihydrotestosterone (DHT) we obtained two cell sublines, designated PDB and MDB respectively, presenting several analogies with CRPC. Molecular and functional analyses of PDB and MDB, compared to the parental cell line, showed that both resistant cell lines were PSA low/negative with comparable levels of nuclear androgen receptor devoid of activity due to altered phosphorylation; cell growth and survival were dependent on AKT and p38MAPK activation and PARP-1 overexpression; their malignant phenotype increased both in vitro and in vivo. Performing bioinformatic analyses we highlighted biological processes related to environmental and stress adaptation supporting cell survival and growth. We identified 15 proteins that could direct androgen-resistance acquisition. Eleven out of these 15 proteins were closely related to biological processes involved in PCa progression. Conclusions Our models suggest that environmental factors and epigenetic modulation can activate processes of phenotypic adaptation driving drug-resistance. The identified key proteins of these adaptive phenotypes could be eligible targets for innovative therapies as well as molecules of prognostic and predictive value. Electronic supplementary material The online version of this article (10.1186/s12964-017-0206-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicoletta Ferrari
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Ilaria Granata
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Matteo Capaia
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Marina Piccirillo
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Mario Rosario Guarracino
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Roberta Venè
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Antonella Brizzolara
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147, Genoa, Italy
| | - Elvira Inglese
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147, Genoa, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147, Genoa, Italy
| | - Simonetta Astigiano
- Immunology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Adriana Agnese Amaro
- Molecular Pathology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Francesco Boccardo
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy.,Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genova, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Cecilia Balbi
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Paola Barboro
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
12
|
The ErbB family and androgen receptor signaling are targets of Celecoxib in prostate cancer. Cancer Lett 2017; 400:9-17. [PMID: 28450158 DOI: 10.1016/j.canlet.2017.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/06/2017] [Accepted: 04/14/2017] [Indexed: 01/23/2023]
|
13
|
Liu J, Jiang G, Yang A, Yang G, Yang W, Fang Y. Molecular mechanism of prostate cancer cell apoptosis induced by busulfan via adjustment of androgen receptor phosphatization. Am J Transl Res 2016; 8:4881-4891. [PMID: 27904688 PMCID: PMC5126330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To probe killing effect of busulfan to prostate cancer cell without androgen and the influence of androgen receptor phosphatization and analyze its molecular mechanism. METHODS prostate cancer cell line 22RV1, LAPC4 and LNCaP treated with busulfan under androgen-free condition underwent CCK-8 examination to probe killing ability of the medicine. Flow cytometry was used to check the influence of busulfan on apoptosis rate of prostate cancer cell line LAPC4. Expression level of androgen receptor (AR), Src and Ack1 and change in phosphatization of AR after busulfan treatment were measured by RT-PCR and Western blotting. Finally, influence o proliferation ability and apoptosis of LAPC4 were measured using EGF-busulfan co-processing. RESULTS Significant dose-dependency was observed as killing ability rises with higher busulfan concentration (p<0.05). Significant improvement in prostate cancer cell inhibition ability of busulfan was also observed with prolonging of time (p<0.05). Then we discovered, as indicated by flow cytometry, that busulfan inhibits prostate cancer cell LAPC4 proliferation by strengthening its apoptosis (p<0.05), which showed significant dose- and time-dependency. Detection of AR expression and phosphatization level showed no significant influence on mRNA and protein expression level of AR made by busulfan. However, decline of phosphatization level at AR Y534 site was positively related to busulfan treatment time. Busulfan was found to be inhibitory to Src kinase induced by EGF and level of resulting AR phosphatization in our further probe into the mechanism of busulfan influence on phosphatization level at AR Y534 site. Nude mice experiment indicated that busulfan was inhibitory to protein expression of AR downstream target gene prostate specific antigen (PSA) and human tissue kallikrein2 (hk-2), thus inhibited in vivo tumorigenic ability of prostate cancer cells. CONCLUSION Busulfan was significantly inhibitory to prostate cancer cell proliferation by inhibiting phosphatization of Src kinase at AR Y534 site.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, Zhejiang Xiaoshan HospitalHangzhou, Zhejiang 311201, China
| | - Guojun Jiang
- Department of Pharmacy, Zhejiang Xiaoshan HospitalHangzhou, Zhejiang 311201, China
| | - Aiping Yang
- Department of Clinical Laboratory, Zhejiang Xiaoshan HospitalHangzhou, Zhejiang 311201, China
| | - Guohui Yang
- Department of Clinical Laboratory, Zhejiang Xiaoshan HospitalHangzhou, Zhejiang 311201, China
| | - Wenjuan Yang
- Department of Clinical Laboratory, Zhejiang Xiaoshan HospitalHangzhou, Zhejiang 311201, China
| | - Yi Fang
- Department of Urology, Zhejiang Xiaoshan HospitalHangzhou, Zhejiang 311201, China
| |
Collapse
|
14
|
Lu J, Gao FH. Role and molecular mechanism of heterogeneous nuclear ribonucleoprotein K in tumor development and progression. Biomed Rep 2016; 4:657-663. [PMID: 27284403 DOI: 10.3892/br.2016.642] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a member of the hnRNP family, which exists in the nucleus and the cytoplasm simultaneously. It is a multifunctional protein that can participate in a variety of regulatory progressions of gene expression and signal transduction, such as chromatin remodeling, transcription, RNA alternative splicing and translation. hnRNP K not only directly binds to the kinases, but also recruits the associated factors regarding transcription, splicing and translation to control gene expression, and therefore, it serves as a docking platform for integrating transduction pathways to nucleic acid-directed processes. Numerous studies also show that abnormal expression of hnRNP K is closely associated with the tumor formation. This protein is overexpressed in numerous types of cancer and its aberrant cytoplasmic localization is also associated with a worse prognosis for patients. These results consistently indicate that hnRNP K has a key role in cancer progression. To understand the hnRNP K pathophysiological process in tumor disease, the previous research results regarding the association between hnRNP K and tumors were reviewed.
Collapse
Affiliation(s)
- Jing Lu
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Feng-Hou Gao
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
15
|
Farooqi AA, Sarkar FH. Overview on the complexity of androgen receptor-targeted therapy for prostate cancer. Cancer Cell Int 2015; 15:7. [PMID: 25705125 PMCID: PMC4336517 DOI: 10.1186/s12935-014-0153-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022] Open
Abstract
In the past decades, the field of prostate cancer (PCa) biology has developed exponentially and paralleled with that has been the growing interest in translation of laboratory findings into clinical practice. Based on overwhelming evidence of high impact research findings which support the underlying cause of insufficient drug efficacy in patients progressing on standard androgen deprivation therapy (ADT) is due to persistent activation of the androgen receptor (AR) signaling axis. Therefore, newer agents must be discovered especially because newer ADT such as abiraterone and enzalutamide are becoming ineffective due to rapid development of resistance to these agents. High-throughput technologies are generating massive and highly dimensional genetic variation data that has helped in developing a better understanding of the dynamic repertoire of AR and AR variants. Full length AR protein and its variants modulate a sophisticated regulatory system to orchestrate cellular responses. We partition this multicomponent review into subsections addressing the underlying mechanisms of resistance to recent therapeutics, positive and negative regulators of AR signaling cascade, and how SUMOylation modulates AR induced transcriptional activity. Experimentally verified findings obtained from cell culture and preclinical studies focusing on the potential of natural agents in inhibiting mRNA/protein levels of AR, nuclear accumulation and enhanced nuclear export of AR are also discussed. We also provide spotlight on molecular basis of enzalutamide resistance with an overview of the strategies opted to overcome such resistance. AR variants are comprehensively described and different mechanisms that regulate AR variant expression are also discussed. Reconceptualization of phenotype- and genotype-driven studies have convincingly revealed that drug induced resistance is a major stumbling block in standardization of therapy. Therefore, we summarize succinctly the knowledge of drug resistance especially to ADT and potential avenues to overcome such resistance for improving the treatment outcome of PCa patients.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- />Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, 35 Km Ferozepur Road, Lahore, Pakistan
| | - Fazlul H Sarkar
- />Departments of Pathology and Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC, 4100 JohnR Street, Detroit, MI 48201 USA
| |
Collapse
|
16
|
Pandha H. Highlights from the field of biomarkers in prostate cancer. [corrected]. Biomark Med 2014; 8:917-9. [PMID: 25307545 DOI: 10.2217/bmm.14.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Barboro P, Ferrari N, Balbi C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression. Cancer Lett 2014; 352:152-9. [DOI: 10.1016/j.canlet.2014.06.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 12/18/2022]
|
18
|
Novel role of hnRNP-A2/B1 in modulating aryl hydrocarbon receptor ligand sensitivity. Arch Toxicol 2014; 89:2027-38. [PMID: 25224401 DOI: 10.1007/s00204-014-1352-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is responsible for susceptibility to its ligand-dependent responses. However, the effect of non-AHR factors is less clear. To explore the non-AHR factors, we used two mouse strains with different AHR genetic variants, namely C3H/lpr and MRL/lpr strains with Ala and Val as the 375th amino acid residue, respectively. To assess the contribution of AHR alone, COS-7 cells transiently expressing AHR from each strain were treated with 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and xenobiotic-responsive element (XRE)-driven reporter gene activities were measured. FICZ-EC50 values for the C3H/lpr and MRL/lpr AHR-mediated transactivation were 0.023 and 0.046 nM, respectively, indicating a similar susceptibility in both AHR genotypes. In contrast, C3H/lpr AHR was fourfold more sensitive to TCDD than MRL/lpr AHR. By a pull-down assay using a XRE-containing PCR product as bait and the hepatic nuclear extracts of both FICZ-treated mouse strains, we identified two interacting proteins as heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP-A2) and its splicing variant (hnRNP-A2b). Immunoprecipitation assays demonstrated the AHR interaction with hnRNP-A2/B1. When hnRNP-A2 was co-expressed with the MRL/lpr or C3H/lpr AHR in COS-7, FICZ treatment decreased EC50 to about threefold in both AHR genotypes, compared with EC50 in AHR alone. Similarly, hnRNP-A2b co-expression also lowered the FICZ-EC50 values. In TCDD-treated COS-7, responses depended on the AHR genotype; while no change in TCDD-EC50 was observed for C3H/lpr AHR when hnRNP-A2 was co-expressed, the value was reduced to nearly tenfold for MRL/lpr AHR. Co-transfection with hnRNP-A2b attenuated the AHR sensitivity to TCDD. In conclusion, the hnRNP-A2/B1 interacting with AHR may be a modulator of the AHR ligand sensitivity.
Collapse
|
19
|
BARBORO PAOLA, SALVI SANDRA, RUBAGOTTI ALESSANDRA, BOCCARDO SIMONA, SPINA BRUNO, TRUINI MAURO, CARMIGNANI GIORGIO, INTROINI CARLO, FERRARI NICOLETTA, BOCCARDO FRANCESCO, BALBI CECILIA. Prostate cancer: Prognostic significance of the association of heterogeneous nuclear ribonucleoprotein K and androgen receptor expression. Int J Oncol 2014; 44:1589-98. [DOI: 10.3892/ijo.2014.2345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/23/2014] [Indexed: 11/05/2022] Open
|