1
|
Zhang J, Zhao R, Lin S, Yang D, Lu S, Liu Z, Gao Y, Zhang Y, Hou B, Xi C, Liu J, Bing J, Pang E, Lin K, Zeng S. Comparison of genes involved in brain development: insights into the organization and evolution of the telencephalic pallium. Sci Rep 2024; 14:6102. [PMID: 38480729 PMCID: PMC10937912 DOI: 10.1038/s41598-024-51964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/11/2024] [Indexed: 03/17/2024] Open
Abstract
The mechanisms underlying the organization and evolution of the telencephalic pallium are not yet clear.. To address this issue, we first performed comparative analysis of genes critical for the development of the pallium (Emx1/2 and Pax6) and subpallium (Dlx2 and Nkx1/2) among 500 vertebrate species. We found that these genes have no obvious variations in chromosomal duplication/loss, gene locus synteny or Darwinian selection. However, there is an additional fragment of approximately 20 amino acids in mammalian Emx1 and a poly-(Ala)6-7 in Emx2. Lentiviruses expressing mouse or chick Emx2 (m-Emx2 or c-Emx2 Lv) were injected into the ventricle of the chick telencephalon at embryonic Day 3 (E3), and the embryos were allowed to develop to E12-14 or to posthatchling. After transfection with m-Emx2 Lv, the cells expressing Reelin, Vimentin or GABA increased, and neurogenesis of calbindin cells changed towards the mammalian inside-out pattern in the dorsal pallium and mesopallium. In addition, a behavior test for posthatched chicks indicated that the passive avoidance ratio increased significantly. The study suggests that the acquisition of an additional fragment in mammalian Emx2 is associated with the organization and evolution of the mammalian pallium.
Collapse
Affiliation(s)
- Jiangyan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Rui Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Shiying Lin
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Dong Yang
- Beijing Key Laboratory of Genetic Engineering Drugs and Biological Technology, Beijing Normal University, Beijing, China
| | - Shan Lu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Zenan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Yuanyuan Gao
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Yiyun Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Bing Hou
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Bing
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Erli Pang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kui Lin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Shaoju Zeng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
2
|
Lu B. Evolutionary Insights into the Relationship of Frogs, Salamanders, and Caecilians and Their Adaptive Traits, with an Emphasis on Salamander Regeneration and Longevity. Animals (Basel) 2023; 13:3449. [PMID: 38003067 PMCID: PMC10668855 DOI: 10.3390/ani13223449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The extant amphibians have developed uncanny abilities to adapt to their environment. I compared the genes of amphibians to those of other vertebrates to investigate the genetic changes underlying their unique traits, especially salamanders' regeneration and longevity. Using the well-supported Batrachia tree, I found that salamander genomes have undergone accelerated adaptive evolution, especially for development-related genes. The group-based comparison showed that several genes are under positive selection, rapid evolution, and unexpected parallel evolution with traits shared by distantly related species, such as the tail-regenerative lizard and the longer-lived naked mole rat. The genes, such as EEF1E1, PAFAH1B1, and OGFR, may be involved in salamander regeneration, as they are involved in the apoptotic process, blastema formation, and cell proliferation, respectively. The genes PCNA and SIRT1 may be involved in extending lifespan, as they are involved in DNA repair and histone modification, respectively. Some genes, such as PCNA and OGFR, have dual roles in regeneration and aging, which suggests that these two processes are interconnected. My experiment validated the time course differential expression pattern of SERPINI1 and OGFR, two genes that have evolved in parallel in salamanders and lizards during the regeneration process of salamander limbs. In addition, I found several candidate genes responsible for frogs' frequent vocalization and caecilians' degenerative vision. This study provides much-needed insights into the processes of regeneration and aging, and the discovery of the critical genes paves the way for further functional analysis, which could open up new avenues for exploiting the genetic potential of humans and improving human well-being.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
3
|
OUP accepted manuscript. Syst Biol 2022; 71:973-985. [DOI: 10.1093/sysbio/syac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/12/2022] Open
|
4
|
Torres A, Goloboff PA, Catalano SA. Parsimony analysis of phylogenomic datasets (I): scripts and guidelines for using TNT (Tree Analysis using New Technology). Cladistics 2021; 38:103-125. [DOI: 10.1111/cla.12477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ambrosio Torres
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas ‐ Fundación Miguel Lillo Miguel Lillo 251 S. M. de Tucumán Tucumán 4000 Argentina
| | - Pablo A. Goloboff
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas ‐ Fundación Miguel Lillo Miguel Lillo 251 S. M. de Tucumán Tucumán 4000 Argentina
- American Museum of Natural History 200 Central Park West New York NY 10024 USA
| | - Santiago A. Catalano
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas ‐ Fundación Miguel Lillo Miguel Lillo 251 S. M. de Tucumán Tucumán 4000 Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo Universidad Nacional de Tucumán Miguel Lillo 205 S. M. de Tucumán Tucumán 4000 Argentina
| |
Collapse
|
5
|
Heading for higher ground: Developmental origins and evolutionary diversification of the amniote face. Curr Top Dev Biol 2021; 141:241-277. [PMID: 33602490 DOI: 10.1016/bs.ctdb.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amniotes, a clade of terrestrial vertebrates, which includes all of the descendants of the last common ancestor of the reptiles (including dinosaurs and birds) and mammals, is one of the most successful group of animals on our planet. In addition to having an egg equipped with an amnion, an adaptation to lay eggs on land, amniotes possess a number of other major morphological characteristics. Chief among them is the amniote skull, which can be classified into several major types distinguished by the presence and number of temporal fenestrae (windows) in the posterior part. Amniotes evolved from ancestors who possessed a skull composed of a complex mosaic of small bones separated by sutures. Changes in skull composition underlie much of the large-scale evolution of amniotes with many lineages showing a trend in reduction of cranial elements known as the "Williston's Law." The skull of amniotes is also arranged into a set of modules of closely co-evolving bones as revealed by modularity and integration tests. One of the most consistently recovered and at the same time most versatile modules is the "face," anatomically defined as the anterior portion of the head. The faces of amniotes display extraordinary amount of variation, with many adaptive radiations showing parallel tendencies in facial scaling, e.g., changes in length or width. This review explores the natural history of the amniote face and discusses how a better understanding of its anatomy and developmental biology helps to explain the outstanding scale of adaptive facial diversity. We propose a model for facial evolution in the amniotes, based on the differential rate of cranial neural crest cell proliferation and the timing of their skeletal differentiation.
Collapse
|
6
|
Lyson TR, Bever GS. Origin and Evolution of the Turtle Body Plan. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin of turtles and their uniquely shelled body plan is one of the longest standing problems in vertebrate biology. The unfulfilled need for a hypothesis that both explains the derived nature of turtle anatomy and resolves their unclear phylogenetic position among reptiles largely reflects the absence of a transitional fossil record. Recent discoveries have dramatically improved this situation, providing an integrated, time-calibrated model of the morphological, developmental, and ecological transformations responsible for the modern turtle body plan. This evolutionary trajectory was initiated in the Permian (>260 million years ago) when a turtle ancestor with a diapsid skull evolved a novel mechanism for lung ventilation. This key innovation permitted the torso to become apomorphically stiff, most likely as an adaption for digging and a fossorial ecology. The construction of the modern turtle body plan then proceeded over the next 100 million years following a largely stepwise model of osteological innovation.
Collapse
Affiliation(s)
- Tyler R. Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
| | - Gabriel S. Bever
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
7
|
Verberk WCEP, Calosi P, Brischoux F, Spicer JI, Garland T, Bilton DT. Universal metabolic constraints shape the evolutionary ecology of diving in animals. Proc Biol Sci 2020; 287:20200488. [PMID: 32453989 PMCID: PMC7287373 DOI: 10.1098/rspb.2020.0488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023] Open
Abstract
Diving as a lifestyle has evolved on multiple occasions when air-breathing terrestrial animals invaded the aquatic realm, and diving performance shapes the ecology and behaviour of all air-breathing aquatic taxa, from small insects to great whales. Using the largest dataset yet assembled, we show that maximum dive duration increases predictably with body mass in both ectotherms and endotherms. Compared to endotherms, ectotherms can remain submerged for longer, but the mass scaling relationship for dive duration is much steeper in endotherms than in ectotherms. These differences in diving allometry can be fully explained by inherent differences between the two groups in their metabolic rate and how metabolism scales with body mass and temperature. Therefore, we suggest that similar constraints on oxygen storage and usage have shaped the evolutionary ecology of diving in all air-breathing animals, irrespective of their evolutionary history and metabolic mode. The steeper scaling relationship between body mass and dive duration in endotherms not only helps explain why the largest extant vertebrate divers are endothermic rather than ectothermic, but also fits well with the emerging consensus that large extinct tetrapod divers (e.g. plesiosaurs, ichthyosaurs and mosasaurs) were endothermic.
Collapse
Affiliation(s)
- Wilco C E P Verberk
- Department of Animal Ecology and Ecophysiology, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Piero Calosi
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, Canada G5 L 3A1
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - John I Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - David T Bilton
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
| |
Collapse
|
8
|
Stein K, Prondvai E, Huang T, Baele JM, Sander PM, Reisz R. Structure and evolutionary implications of the earliest (Sinemurian, Early Jurassic) dinosaur eggs and eggshells. Sci Rep 2019; 9:4424. [PMID: 30872623 PMCID: PMC6418122 DOI: 10.1038/s41598-019-40604-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/14/2019] [Indexed: 11/08/2022] Open
Abstract
One of the fossil record's most puzzling features is the absence of preserved eggs or eggshell for the first third of the known 315 million year history of amniote evolution. Our meagre understanding of the origin and evolution of calcareous eggshell and amniotic eggs in general, is largely based on Middle Jurassic to Late Cretaceous fossils. For dinosaurs, the most parsimonious inference yields a thick, hard shelled egg, so richly represented in the Late Cretaceous fossil record. Here, we show that a thin calcareous layer (≤100 µm) with interlocking units of radiating crystals (mammillae) and a thick shell membrane already characterize the oldest known amniote eggs, belonging to three coeval, but widely distributed Early Jurassic basal sauropodomorph dinosaurs. This thin shell layer strongly contrasts with the considerably thicker calcareous shells of Late Jurassic dinosaurs. Phylogenetic analyses and their Sinemurian age indicate that the thin eggshell of basal sauropodomorphs represents a major evolutionary innovation at the base of Dinosauria and that the much thicker eggshell of sauropods, theropods, and ornithischian dinosaurs evolved independently. Advanced mineralization of amniote eggshell (≥150 µm in thickness) in general occurred not earlier than Middle Jurassic and may correspond with a global trend of increase in atmospheric oxygen.
Collapse
Affiliation(s)
- Koen Stein
- Earth System Science - AMGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
- Royal Belgian Institute of Natural Sciences, Directorate 'Earth and History of Life', Rue Vautier 29, 1000, Brussels, Belgium.
| | - Edina Prondvai
- Evolutionary Morphology of Vertebrates, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
- MTA-ELTE Lendület Dinosaur Research Group, Eötvös Loránd University, Pázmány P. s. 1/C, 1117, Budapest, Hungary
| | - Timothy Huang
- International Center of Future Science, and Dinosaur Evolution Research Center of Jilin University, Changchun, Jilin Province, China
- National Chung Hsing University, Taichung, 402, Taiwan
| | - Jean-Marc Baele
- Department of Geology and Applied Geology, Faculty of Engineering, University of Mons, Place du Parc 20, 7000, Mons, Belgium
| | - P Martin Sander
- Steinmann Institute of Geology, Mineralogy, and Paleontology, Division of Paleontology, University of Bonn, Nussallee 8, 53115, Bonn, Germany
- Natural History Museum of Los Angeles County, Dinosaur Institute, 900 Exposition Boulevard, Los Angeles, CA, 90007, USA
| | - Robert Reisz
- International Center of Future Science, and Dinosaur Evolution Research Center of Jilin University, Changchun, Jilin Province, China.
- National Chung Hsing University, Taichung, 402, Taiwan.
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada.
| |
Collapse
|
9
|
Springer MS, Gatesy J. Delimiting Coalescence Genes (C-Genes) in Phylogenomic Data Sets. Genes (Basel) 2018; 9:genes9030123. [PMID: 29495400 PMCID: PMC5867844 DOI: 10.3390/genes9030123] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
coalescence methods have emerged as a popular alternative for inferring species trees with large genomic datasets, because these methods explicitly account for incomplete lineage sorting. However, statistical consistency of summary coalescence methods is not guaranteed unless several model assumptions are true, including the critical assumption that recombination occurs freely among but not within coalescence genes (c-genes), which are the fundamental units of analysis for these methods. Each c-gene has a single branching history, and large sets of these independent gene histories should be the input for genome-scale coalescence estimates of phylogeny. By contrast, numerous studies have reported the results of coalescence analyses in which complete protein-coding sequences are treated as c-genes even though exons for these loci can span more than a megabase of DNA. Empirical estimates of recombination breakpoints suggest that c-genes may be much shorter, especially when large clades with many species are the focus of analysis. Although this idea has been challenged recently in the literature, the inverse relationship between c-gene size and increased taxon sampling in a dataset-the 'recombination ratchet'-is a fundamental property of c-genes. For taxonomic groups characterized by genes with long intron sequences, complete protein-coding sequences are likely not valid c-genes and are inappropriate units of analysis for summary coalescence methods unless they occur in recombination deserts that are devoid of incomplete lineage sorting (ILS). Finally, it has been argued that coalescence methods are robust when the no-recombination within loci assumption is violated, but recombination must matter at some scale because ILS, a by-product of recombination, is the raison d'etre for coalescence methods. That is, extensive recombination is required to yield the large number of independently segregating c-genes used to infer a species tree. If coalescent methods are powerful enough to infer the correct species tree for difficult phylogenetic problems in the anomaly zone, where concatenation is expected to fail because of ILS, then there should be a decreasing probability of inferring the correct species tree using longer loci with many intralocus recombination breakpoints (i.e., increased levels of concatenation).
Collapse
Affiliation(s)
- Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| | - John Gatesy
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
10
|
Willis KL, Carr CE. A circuit for detection of interaural time differences in the nucleus laminaris of turtles. ACTA ACUST UNITED AC 2017; 220:4270-4281. [PMID: 28947499 DOI: 10.1242/jeb.164145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/19/2017] [Indexed: 11/20/2022]
Abstract
The physiological hearing range of turtles is approximately 50-1000 Hz, as determined by cochlear microphonics ( Wever and Vernon, 1956a). These low frequencies can constrain sound localization, particularly in red-eared slider turtles, which are freshwater turtles with small heads and isolated middle ears. To determine if these turtles were sensitive to interaural time differences (ITDs), we investigated the connections and physiology of their auditory brainstem nuclei. Tract tracing experiments showed that cranial nerve VIII bifurcated to terminate in the first-order nucleus magnocellularis (NM) and nucleus angularis (NA), and the NM projected bilaterally to the nucleus laminaris (NL). As the NL received inputs from each side, we developed an isolated head preparation to examine responses to binaural auditory stimulation. Magnocellularis and laminaris units responded to frequencies from 100 to 600 Hz, and phase-locked reliably to the auditory stimulus. Responses from the NL were binaural, and sensitive to ITD. Measures of characteristic delay revealed best ITDs around ±200 μs, and NL neurons typically had characteristic phases close to 0, consistent with binaural excitation. Thus, turtles encode ITDs within their physiological range, and their auditory brainstem nuclei have similar connections and cell types to other reptiles.
Collapse
Affiliation(s)
- Katie L Willis
- University of Maryland, Department of Biology, Center for Comparative and Evolutionary Biology of Hearing, Neuroscience and Cognitive Science Graduate Program, College Park, MD 20742, USA
| | - Catherine E Carr
- University of Maryland, Department of Biology, Center for Comparative and Evolutionary Biology of Hearing, Neuroscience and Cognitive Science Graduate Program, College Park, MD 20742, USA
| |
Collapse
|
11
|
Liang Q, Li W, Guo N, Tong C, Zhou Y, Fang W, Li X. Identification and Functional Analysis of Interleukin-1β in the Chinese Soft-Shelled Turtle Pelodiscus sinensis. Genes (Basel) 2016; 7:genes7050018. [PMID: 27153094 PMCID: PMC4880838 DOI: 10.3390/genes7050018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
Abstract
Chinese soft-shelled turtle (Pelodiscus sinensis) is commercially cultured in East and Southeast Asia for its nutritional and medicinal values. In this study, we identified interleukin-1β (IL-1β) from Chinese soft-shelled turtle. The full-length cDNA of Pelodiscus sinensis IL-1β (tIL-1β) consists of 1529 base pairs with an 831-base-pair open reading frame, encoding 277 amino acids. The guanine-cytosine (GC) content in the coding sequence and 3' untranslated region of tIL-1β is considerably higher than that of other vertebrates. Its mRNA expression level increased significantly during Aeromonas hydrophila infection. The tIL-1β lacks the typical IL-1β-converting enzyme (ICE) cut site found in mammalian IL-1β, but still could be cleaved by turtle caspase-1. By mutating the potential cleavage sites, we identified aspartic acid (Asp/D) 130 as the ICE cut site in tIL-1β. The peptide truncated at D130 was expressed using the baculovirus expression system; its bioactivity is confirmed by the ability to induce cyclooxygenase-2 (COX-2) and tIL-1β itself in peripheral blood monocytes. In conclusion, we characterized IL-1β from Chinese soft-shelled turtle and identified its D130 as a non-typical ICE cut size.
Collapse
Affiliation(s)
- Quan Liang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Ningning Guo
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Chao Tong
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yingshan Zhou
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Weihuan Fang
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoliang Li
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Zhang L, Wu W, Yan HF, Ge XJ. Phylotranscriptomic Analysis Based on Coalescence was Less Influenced by the Evolving Rates and the Number of Genes: A Case Study in Ericales. Evol Bioinform Online 2016; 11:81-91. [PMID: 26819541 PMCID: PMC4718149 DOI: 10.4137/ebo.s22448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022] Open
Abstract
Advances in high-throughput sequencing have generated a vast amount of transcriptomic data that are being increasingly used in phylogenetic reconstruction. However, processing the vast datasets for a huge number of genes and even identifying optimal analytical methodology are challenging. Through de novo sequenced and retrieved data from public databases, we identified 221 orthologous protein-coding genes to reconstruct the phylogeny of Ericales, an order characterized by rapid ancient radiation. Seven species representing different families in Ericales were used as in-groups. Both concatenation and coalescence methods yielded the same well-supported topology as previous studies, with only two nodes conflicting with previously reported relationships. The results revealed that a partitioning strategy could improve the traditional concatenation methodology. Rapidly evolving genes negatively affected the concatenation analysis, while slowly evolving genes slightly affected the coalescence analysis. The coalescence methods usually accommodated rate heterogeneity better and required fewer genes to yield well-supported topologies than the concatenation methods with both real and simulated data.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
13
|
Chen J, Jono T, Cui J, Yue X, Tang Y. The Acoustic Properties of Low Intensity Vocalizations Match Hearing Sensitivity in the Webbed-Toed Gecko, Gekko subpalmatus. PLoS One 2016; 11:e0146677. [PMID: 26752301 PMCID: PMC4709187 DOI: 10.1371/journal.pone.0146677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/21/2015] [Indexed: 11/26/2022] Open
Abstract
The design of acoustic signals and hearing sensitivity in socially communicating species would normally be expected to closely match in order to minimize signal degradation and attenuation during signal propagation. Nevertheless, other factors such as sensory biases as well as morphological and physiological constraints may affect strict correspondence between signal features and hearing sensitivity. Thus study of the relationships between sender and receiver characteristics in species utilizing acoustic communication can provide information about how acoustic communication systems evolve. The genus Gekko includes species emitting high-amplitude vocalizations for long-range communication (loud callers) as well as species producing only low-amplitude vocalizations when in close contact with conspecifics (quiet callers) which have rarely been investigated. In order to investigate relationships between auditory physiology and the frequency characteristics of acoustic signals in a quiet caller, Gekko subpalmatus we measured the subjects’ vocal signal characteristics as well as auditory brainstem responses (ABRs) to assess auditory sensitivity. The results show that G. subpalmatus males emit low amplitude calls when encountering females, ranging in dominant frequency from 2.47 to 4.17 kHz with an average at 3.35 kHz. The auditory range with highest sensitivity closely matches the dominant frequency of the vocalizations. This correspondence is consistent with the notion that quiet and loud calling species are under similar selection pressures for matching auditory sensitivity with spectral characteristics of vocalizations.
Collapse
Affiliation(s)
- Jingfeng Chen
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- * E-mail: (JFC); (YZT)
| | - Teppei Jono
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Jianguo Cui
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Xizi Yue
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Yezhong Tang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- * E-mail: (JFC); (YZT)
| |
Collapse
|
14
|
Schoch RR, Sues HD. A Middle Triassic stem-turtle and the evolution of the turtle body plan. Nature 2015; 523:584-7. [DOI: 10.1038/nature14472] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/13/2015] [Indexed: 01/10/2023]
|
15
|
Striedter GF. Evolution of the hippocampus in reptiles and birds. J Comp Neurol 2015; 524:496-517. [DOI: 10.1002/cne.23803] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Georg F. Striedter
- Department of Neurobiology & Behavior and Center for the Neurobiology of Learning and Memory; University of California; Irvine Irvine California 92697-4550
| |
Collapse
|
16
|
Joyce WG. The origin of turtles: a paleontological perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:181-93. [PMID: 25712176 DOI: 10.1002/jez.b.22609] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022]
Abstract
The origin of turtles and their unusual body plan has fascinated scientists for the last two centuries. Over the course of the last decades, a broad sample of molecular analyses have favored a sister group relationship of turtles with archosaurs, but recent studies reveal that this signal may be the result of systematic biases affecting molecular approaches, in particular sampling, non-randomly distributed rate heterogeneity among taxa, and the use of concatenated data sets. Morphological studies, by contrast, disfavor archosaurian relationships for turtles, but the proposed alternative topologies are poorly supported as well. The recently revived paleontological hypothesis that the Middle Permian Eunotosaurus africanus is an intermediate stem turtle is now robustly supported by numerous characters that were previously thought to be unique to turtles and that are now shown to have originated over the course of tens of millions of years unrelated to the origin of the turtle shell. Although E. africanus does not solve the placement of turtles within Amniota, it successfully extends the stem lineage of turtles to the Permian and helps resolve some questions associated with the origin of turtles, in particular the non-composite origin of the shell, the slow origin of the shell, and the terrestrial setting for the origin of turtles.
Collapse
Affiliation(s)
- Walter G Joyce
- Department of Geoscience, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
17
|
Grothe B, Pecka M. The natural history of sound localization in mammals--a story of neuronal inhibition. Front Neural Circuits 2014; 8:116. [PMID: 25324726 PMCID: PMC4181121 DOI: 10.3389/fncir.2014.00116] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Our concepts of sound localization in the vertebrate brain are widely based on the general assumption that both the ability to detect air-borne sounds and the neuronal processing are homologous in archosaurs (present day crocodiles and birds) and mammals. Yet studies repeatedly report conflicting results on the neuronal circuits and mechanisms, in particular the role of inhibition, as well as the coding strategies between avian and mammalian model systems. Here we argue that mammalian and avian phylogeny of spatial hearing is characterized by a convergent evolution of hearing air-borne sounds rather than by homology. In particular, the different evolutionary origins of tympanic ears and the different availability of binaural cues in early mammals and archosaurs imposed distinct constraints on the respective binaural processing mechanisms. The role of synaptic inhibition in generating binaural spatial sensitivity in mammals is highlighted, as it reveals a unifying principle of mammalian circuit design for encoding sound position. Together, we combine evolutionary, anatomical and physiological arguments for making a clear distinction between mammalian processing mechanisms and coding strategies and those of archosaurs. We emphasize that a consideration of the convergent nature of neuronal mechanisms will significantly increase the explanatory power of studies of spatial processing in both mammals and birds.
Collapse
Affiliation(s)
- Benedikt Grothe
- Division of Neurobiology, Department of Biology II, Ludwig Maximilians University Munich Munich, Germany
| | - Michael Pecka
- Division of Neurobiology, Department of Biology II, Ludwig Maximilians University Munich Munich, Germany
| |
Collapse
|
18
|
Field DJ, Gauthier JA, King BL, Pisani D, Lyson TR, Peterson KJ. Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles. Evol Dev 2014; 16:189-96. [PMID: 24798503 PMCID: PMC4215941 DOI: 10.1111/ede.12081] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Understanding the phylogenetic position of crown turtles (Testudines) among amniotes has been a source of particular contention. Recent morphological analyses suggest that turtles are sister to all other reptiles, whereas the vast majority of gene sequence analyses support turtles as being inside Diapsida, and usually as sister to crown Archosauria (birds and crocodilians). Previously, a study using microRNAs (miRNAs) placed turtles inside diapsids, but as sister to lepidosaurs (lizards and Sphenodon) rather than archosaurs. Here, we test this hypothesis with an expanded miRNA presence/absence dataset, and employ more rigorous criteria for miRNA annotation. Significantly, we find no support for a turtle + lepidosaur sister-relationship; instead, we recover strong support for turtles sharing a more recent common ancestor with archosaurs. We further test this result by analyzing a super-alignment of precursor miRNA sequences for every miRNA inferred to have been present in the most recent common ancestor of tetrapods. This analysis yields a topology that is fully congruent with our presence/absence analysis; our results are therefore in accordance with most gene sequence studies, providing strong, consilient molecular evidence from diverse independent datasets regarding the phylogenetic position of turtles.
Collapse
Affiliation(s)
- Daniel J. Field
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
| | - Jacques A. Gauthier
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
| | - Benjamin L. King
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, United Kingdom and School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, United Kingdom
| | - Tyler R. Lyson
- Smithsonian National Museum of Natural History, 10 Street and Constitution Avenue, Washington, DC 20013, USA
| | - Kevin J. Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|