1
|
Briggs EM, Marques CA, Oldrieve GR, Hu J, Otto TD, Matthews KR. Profiling the bloodstream form and procyclic form Trypanosoma brucei cell cycle using single-cell transcriptomics. eLife 2023; 12:e86325. [PMID: 37166108 PMCID: PMC10212563 DOI: 10.7554/elife.86325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
African trypanosomes proliferate as bloodstream forms (BSFs) and procyclic forms in the mammal and tsetse fly midgut, respectively. This allows them to colonise the host environment upon infection and ensure life cycle progression. Yet, understanding of the mechanisms that regulate and drive the cell replication cycle of these forms is limited. Using single-cell transcriptomics on unsynchronised cell populations, we have obtained high resolution cell cycle regulated (CCR) transcriptomes of both procyclic and slender BSF Trypanosoma brucei without prior cell sorting or synchronisation. Additionally, we describe an efficient freeze-thawing protocol that allows single-cell transcriptomic analysis of cryopreserved T. brucei. Computational reconstruction of the cell cycle using periodic pseudotime inference allowed the dynamic expression patterns of cycling genes to be profiled for both life cycle forms. Comparative analyses identify a core cycling transcriptome highly conserved between forms, as well as several genes where transcript levels dynamics are form specific. Comparing transcript expression patterns with protein abundance revealed that the majority of genes with periodic cycling transcript and protein levels exhibit a relative delay between peak transcript and protein expression. This work reveals novel detail of the CCR transcriptomes of both forms, which are available for further interrogation via an interactive webtool.
Collapse
Affiliation(s)
- Emma M Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Catarina A Marques
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Guy R Oldrieve
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Jihua Hu
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Thomas D Otto
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
2
|
Abstract
Trypanosomes have complex life cycles within which there are both proliferative and differentiation cell divisions. The coordination of the cell cycle to achieve these different divisions is critical for the parasite to infect both host and vector. From studying the regulation of the proliferative cell cycle of the Trypanosoma brucei procyclic life cycle stage, three subcycles emerge that control the duplication and segregation of ( a) the nucleus, ( b) the kinetoplast, and ( c) a set of cytoskeletal structures. We discuss how the clear dependency relationships within these subcycles, and the potential for cross talk between them, are likely required for overall cell cycle coordination. Finally, we look at the implications this interdependence has for proliferative and differentiation divisions through the T. brucei life cycle and in related parasitic trypanosomatid species.
Collapse
Affiliation(s)
- Richard J. Wheeler
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Jack D. Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
3
|
Borba JV, Silva AC, Ramos PI, Grazzia N, Miguel DC, Muratov EN, Furnham N, Andrade CH. Unveiling the Kinomes of Leishmania infantum and L. braziliensis Empowers the Discovery of New Kinase Targets and Antileishmanial Compounds. Comput Struct Biotechnol J 2019; 17:352-361. [PMID: 30949306 PMCID: PMC6429582 DOI: 10.1016/j.csbj.2019.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania (NTD) endemic in 98 countries. Although some drugs are available, current treatments deal with issues such as toxicity, low efficacy, and emergence of resistance. Therefore, there is an urgent need to identify new targets for the development of new antileishmanial drugs. Protein kinases (PKs), which play an essential role in many biological processes, have become potential drug targets for many parasitic diseases. A refined bioinformatics pipeline was applied in order to define and compare the kinomes of L. infantum and L. braziliensis, species that cause cutaneous and visceral manifestations of leishmaniasis in the Americas, the latter being potentially fatal if untreated. Respectively, 224 and 221 PKs were identified in L. infantum and L. braziliensis overall. Almost all unclassified eukaryotic PKs were assigned to six of nine major kinase groups and, consequently, most have been classified into family and subfamily. Furthermore, revealing the kinomes for both Leishmania species allowed for the prioritization of potential drug targets that could be explored for discovering new drugs against leishmaniasis. Finally, we used a drug repurposing approach and prioritized seven approved drugs and investigational compounds to be experimentally tested against Leishmania. Trametinib and NMS-1286937 inhibited the growth of L. infantum and L. braziliensis promastigotes and amastigotes and therefore might be good candidates for the drug repurposing pipeline.
Collapse
Affiliation(s)
- Joyce V.B. Borba
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| | - Arthur C. Silva
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| | - Pablo I.P. Ramos
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA, 40296-710, Brazil
| | - Nathalia Grazzia
- LEBIL – Laboratory of Leishmania Biology Infection Studies, Department of Animal Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Danilo C. Miguel
- LEBIL – Laboratory of Leishmania Biology Infection Studies, Department of Animal Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eugene N. Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Carolina H. Andrade
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| |
Collapse
|
4
|
Dichiara M, Marrazzo A, Prezzavento O, Collina S, Rescifina A, Amata E. Repurposing of Human Kinase Inhibitors in Neglected Protozoan Diseases. ChemMedChem 2017; 12:1235-1253. [PMID: 28590590 DOI: 10.1002/cmdc.201700259] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Indexed: 12/11/2022]
Abstract
Human African trypanosomiasis (HAT), Chagas disease, and leishmaniasis belong to a group of infectious diseases known as neglected tropical diseases and are induced by infection with protozoan parasites named trypanosomatids. Drugs in current use have several limitations, and therefore new candidate drugs are required. The majority of current therapeutic trypanosomatid targets are enzymes or cell-surface receptors. Among these, eukaryotic protein kinases are a major group of protein targets whose modulation may be beneficial for the treatment of neglected tropical protozoan diseases. This review summarizes the finding of new hit compounds for neglected tropical protozoan diseases, by repurposing known human kinase inhibitors on trypanosomatids. Kinase inhibitors are grouped by human kinase family and discussed according to the screening (target-based or phenotypic) reported for these compounds on trypanosomatids. This collection aims to provide insight into repurposed human kinase inhibitors and their importance in the development of new chemical entities with potential beneficial effects on the diseases caused by trypanosomatids.
Collapse
Affiliation(s)
- Maria Dichiara
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, V.le Taramelli, 12, 27100, Pavia, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| |
Collapse
|
5
|
Haubrich BA, Swinney DC. Enzyme Activity Assays for Protein Kinases: Strategies to Identify Active Substrates. Curr Drug Discov Technol 2016; 13:2-15. [PMID: 26768716 DOI: 10.2174/1570163813666160115125930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Abstract
Protein kinases are an important class of enzymes and drug targets. New opportunities to discover medicines for neglected diseases can be leveraged by the extensive kinase tools and knowledge created in targeting human kinases. A valuable tool for kinase drug discovery is an enzyme assay that measures catalytic function. The functional assay can be used to identify inhibitors, estimate affinity, characterize molecular mechanisms of action (MMOAs) and evaluate selectivity. However, establishing an enzyme assay for a new kinases requires identification of a suitable substrate. Identification of a new kinase's endogenous physiologic substrate and function can be extremely costly and time consuming. Fortunately, most kinases are promiscuous and will catalyze the phosphotransfer from ATP to alternative substrates with differing degrees of catalytic efficiency. In this manuscript we review strategies and successes in the identification of alternative substrates for kinases from organisms responsible for many of the neglected tropical diseases (NTDs) towards the goal of informing strategies to identify substrates for new kinases. Approaches for establishing a functional kinase assay include measuring auto-activation and use of generic substrates and peptides. The most commonly used generic substrates are casein, myelin basic protein, and histone. Sequence homology modeling can provide insights into the potential substrates and the requirement for activation. Empirical approaches that can identify substrates include screening of lysates (which may also help identify native substrates) and use of peptide arrays. All of these approaches have been used with a varying degree of success to identify alternative substrates.
Collapse
Affiliation(s)
- Brad A Haubrich
- Institute for Rare and Neglected Diseases Drug Discovery, 897 Independence Ave, Suite 2C, Mountain View, CA 94043, USA.
| | | |
Collapse
|